%feature("docstring") OT::ARMALikelihoodFactory "Maximum likelihood estimator of a multivariate ARMA Gaussian process. Available constructors: ARMALikelihoodFactory() ARMALikelihoodFactory(*p, q, d, invertible*) ARMALikelihoodFactory(*indP, indQ, d, invertible*) Parameters ---------- p : int Order of the AR part of the :math:`ARMA(p,q)` process of dimension :math:`d`. q : int Order of the MA part of the :math:`ARMA(p,q)` process of dimension :math:`d`. d : int, :math:`d \geq 1` Dimension of the process. invertible : bool, optional Restrict the estimation to invertible ARMA processes. By default: True. indP : :class:`~openturns.Indices` All the :math:`p` orders that will be investigated. Care: not yet implemented. indQ : :class:`~openturns.Indices` All the :math:`p` orders that will be investigated. Care: not yet implemented. Notes ----- We suppose here that the white noise is normal with zero mean and covariance matrix :math:`\mat{\Sigma}_{\varepsilon} = \sigma^2\mat{Q}` where :math:`|\mat{Q}| = 1`. It implies that the ARMA process estimated is normal. Let :math:`(t_i, \vect{X}_i)_{0\leq i \leq n-1}` be a multivariate time series of dimension :math:`d` from an :math:`ARMA(p,q)` process. If we note :math:`\vect{W} = (\vect{X}_0, \hdots, \vect{X}_{n-1})`, then :math:`\vect{W}` is normal with zero mean. Its covariance matrix writes :math:`\mathbb{E}(\vect{W}\Tr{\vect{W}})= \sigma^2 \Sigma_{\vect{W}}` which depends on the coefficients :math:`(\mat{A}_k, \mat{B}_l)` for :math:`k = 1,\ldots,p` and :math:`l = 1,\ldots, q` and on the matrix :math:`\mat{Q}`. The likelihood of :math:`\vect{W}` writes : .. math:: L(\vect{\beta}, \sigma^2 | \vect{W}) = (2 \pi \sigma^2) ^{-\frac{d n}{2}} |\Sigma_{w}|^{-\frac{1}{2}} \exp\left(- (2\sigma^2)^{-1} \Tr{\vect{W}} \Sigma_{\vect{W}}^{-1} \vect{W} \right) where :math:`\vect{\beta} = (\mat{A}_{k}, \mat{B}_{l}, \mat{Q}),\ k = 1,\ldots,p`, :math:`l = 1,\ldots, q` and where :math:`|.|` denotes the determinant. No evaluation of selection criteria such as AIC or BIC is done. Examples -------- Create a time series from a scalar ARMA(4,2) and a normal white noise: >>> import openturns as ot >>> myTimeGrid = ot.RegularGrid(0.0, 0.1, 50) >>> myWhiteNoise = ot.WhiteNoise(ot.Triangular(-1.0, 0.0, 1.0), myTimeGrid) >>> myARCoef = ot.ARMACoefficients([0.4, 0.3, 0.2, 0.1]) >>> myMACoef = ot.ARMACoefficients([0.4, 0.3]) >>> myARMAProcess = ot.ARMA(myARCoef, myMACoef, myWhiteNoise) >>> myTimeSeries = myARMAProcess.getRealization() Estimate the ARMA process with the maximum likelihood estimator: >>> myFactory = ot.ARMALikelihoodFactory(4, 2, 1) >>> myARMA = myFactory.build(ot.TimeSeries(myTimeSeries))" // --------------------------------------------------------------------- %feature("docstring") OT::ARMALikelihoodFactory::build "Estimate the ARMA process. Available usages: build(*myTimeSeries*) build(*myProcessSample*) Parameters ---------- myTimeSeries : :class:`~openturns.TimeSeries` One realization of the process. myProcessSample : :class:`~openturns.ProcessSample` Several realizations of the process. Returns ------- myARMA : :class:`~openturns.ARMA` The process estimated with the maximum likelihood estimator. " // --------------------------------------------------------------------- %feature("docstring") OT::ARMALikelihoodFactory::setVerbose "Accessor to the verbose mode. Parameters ---------- verboseMode : bool Set the verbose mode while both the exploration of the possible models and the optimization steps. " // --------------------------------------------------------------------- %feature("docstring") OT::ARMALikelihoodFactory::getVerbose "Accessor to the verbose mode. Returns ------- verboseMode : bool Get the verbose mode while both the exploration of the possible models and the optimization steps. " // --------------------------------------------------------------------- %feature("docstring") OT::ARMALikelihoodFactory::getInitialARCoefficients "Accessor to the initial AR coefficients. Returns ------- initARCoeff : :class:`~openturns.ARMACoefficients` The initial AR coefficients used for the optimization algorithm. " // --------------------------------------------------------------------- %feature("docstring") OT::ARMALikelihoodFactory::setInitialARCoefficients "Accessor to the initial AR coefficients. Parameters ---------- initARCoeff : :class:`~openturns.ARMACoefficients` The initial AR coefficients used for the optimization algorithm. " // --------------------------------------------------------------------- %feature("docstring") OT::ARMALikelihoodFactory::getInitialMACoefficients "Accessor to the initial MA coefficients. Returns ------- initMACoeff : :class:`~openturns.ARMACoefficients` The initial MA coefficients used for the optimization algorithm. " // --------------------------------------------------------------------- %feature("docstring") OT::ARMALikelihoodFactory::setInitialMACoefficients "Accessor to the initial MA coefficients. Parameters ---------- initMACoeff : :class:`~openturns.ARMACoefficients` The initial MA coefficients used for the optimization algorithm. " // --------------------------------------------------------------------- %feature("docstring") OT::ARMALikelihoodFactory::getInitialCovarianceMatrix "Accessor to the initial covariance matrix of the white noise. Returns ------- initCovMat : :class:`~openturns.CovarianceMatrix` The initial covariance matrix of the white noise used for the optimization algorithm. " // --------------------------------------------------------------------- %feature("docstring") OT::ARMALikelihoodFactory::setInitialCovarianceMatrix "Accessor to the initial covariance matrix of the white noise. Parameters ---------- initCovMat : :class:`~openturns.CovarianceMatrix` The initial covariance matrix of the white noise used for the optimization algorithm. " // --------------------------------------------------------------------- %feature("docstring") OT::ARMALikelihoodFactory::setInitialConditions "Accessor to the initial AR coefficients. Parameters ---------- initARCoeff : :class:`~openturns.ARMACoefficients` The initial AR coefficients used for the optimization algorithm. initMACoeff : :class:`~openturns.ARMACoefficients` The initial AR coefficients used for the optimization algorithm. initCovMatr : :class:`~openturns.CovarianceMatrix` The initial covariance matrix of the white noise used for the optimization algorithm. "