%feature("docstring") OT::GeneralLinearModelResult "General linear model result. Parameters ---------- inputSample, outputSample : :class:`~openturns.Sample` The samples :math:`(\vect{x}_k)_{1 \leq k \leq N} \in \Rset^d` and :math:`(\vect{y}_k)_{1 \leq k \leq N}\in \Rset^p`. metaModel : :class:`~openturns.Function` The meta model: :math:`\tilde{\cM}: \Rset^d \rightarrow \Rset^p`, defined in :eq:metaModel. residuals : :class:`~openturns.Point` The residual errors. relativeErrors : :class:`~openturns.Point` The relative errors. basis : collection of :class:`~openturns.Basis` Collection of the :math:`p` functional basis: :math:`(\varphi_j^l: \Rset^d \rightarrow \Rset)_{1 \leq j \leq n_l}` for each :math:`l \in [1, p]`. Its size should be equal to zero if the trend is not estimated. trendCoefficients : collection of :class:`~openturns.Point` The trend coefficients vectors :math:`(\vect{\alpha}^1, \dots, \vect{\alpha}^p)`. covarianceModel : :class:`~openturns.CovarianceModel` Covariance function of the Gaussian process with its optimized parameters. optimalLogLikelihood : float The maximum log-likelihood corresponding to the model. Notes ----- The structure is usually created by the method *run()* of a :class:`~openturns.GeneralLinearModelAlgorithm`, and obtained thanks to the *getResult()* method. The meta model :math:`\tilde{\cM}: \Rset^d \rightarrow \Rset^p` is defined by: .. math:: :label: metaModel \tilde{\cM}(\vect{x}) = \left( \begin{array}{l} \mu_1(\vect{x}) \\ \dots \\ \mu_p(\vect{x}) \end{array} \right) where :math:`\mu_l(\vect{x}) = \sum_{j=1}^{n_l} \alpha_j^l \varphi_j^l(\vect{x})` and :math:`\varphi_j^l: \Rset^d \rightarrow \Rset` are the trend functions. If a normalizing transformation *T* has been used, the meta model is built on the inputs :math:`\vect{z}_k = T(\vect{x}_k)` and the meta model writes: .. math:: :label: metaModelWithT \tilde{\cM}(\vect{x}) = \left( \begin{array}{l} \mu_1\circ T(\vect{x}) \\ \dots \\ \mu_p\circ T(\vect{x}) \end{array} \right) Examples -------- Create the model :math:`\cM: \Rset \mapsto \Rset` and the samples: >>> import openturns as ot >>> f = ot.SymbolicFunction(['x'], ['x * sin(x)']) >>> sampleX = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]] >>> sampleY = f(sampleX) Create the algorithm: >>> basis = ot.Basis([ot.SymbolicFunction(['x'], ['x']), ot.SymbolicFunction(['x'], ['x^2'])]) >>> covarianceModel = ot.GeneralizedExponential([2.0], 2.0) >>> algo = ot.GeneralLinearModelAlgorithm(sampleX, sampleY, covarianceModel, basis) >>> algo.run() Get the result: >>> result = algo.getResult() Get the meta model: >>> metaModel = result.getMetaModel() >>> graph = metaModel.draw(0.0, 7.0) >>> cloud = ot.Cloud(sampleX, sampleY) >>> cloud.setPointStyle('fcircle') >>> graph = ot.Graph() >>> graph.add(cloud) >>> graph.add(f.draw(0.0, 7.0)) >>> graph.setColors(['black', 'blue', 'red']) " // --------------------------------------------------------------------- %feature("docstring") OT::GeneralLinearModelResult::getTrendCoefficients "Accessor to the trend coefficients. Returns ------- trendCoef : collection of :class:`~openturns.Point` The trend coefficients vectors :math:`(\vect{\alpha}^1, \dots, \vect{\alpha}^p)` " // --------------------------------------------------------------------- %feature("docstring") OT::GeneralLinearModelResult::getCovarianceModel "Accessor to the covariance model. Returns ------- covModel : :class:`~openturns.CovarianceModel` The covariance model of the Gaussian process *W*. " // --------------------------------------------------------------------- %feature("docstring") OT::GeneralLinearModelResult::getBasisCollection "Accessor to the collection of basis. Returns ------- basisCollection : collection of :class:`~openturns.Basis` Collection of the :math:`p` function basis: :math:`(\varphi_j^l: \Rset^d \rightarrow \Rset)_{1 \leq j \leq n_l}` for each :math:`l \in [1, p]`. Notes ----- If the trend is not estimated, the collection is empty. " // --------------------------------------------------------------------- %feature("docstring") OT::GeneralLinearModelResult::getMetaModel "Accessor to the metamodel. Returns ------- metaModel : :class:`~openturns.Function` The meta model :math:`\tilde{\cM}: \Rset^d \rightarrow \Rset^p`, defined in :eq:'metaModel'. " // --------------------------------------------------------------------- %feature("docstring") OT::GeneralLinearModelResult::getTransformation "Accessor to the normalizing transformation. Returns ------- transformation : :class:`~openturns.Function` The transformation *T* that normalizes the input sample. " // --------------------------------------------------------------------- %feature("docstring") OT::GeneralLinearModelResult::setTransformation "Set accessor to the normalizing transformation. Parameters ---------- transformation : :class:`~openturns.Function` The transformation *T* that normalizes the input sample. " // --------------------------------------------------------------------- %feature("docstring") OT::GeneralLinearModelResult::getNoise "Accessor to the Gaussian process. Returns ------- process : :class:`~openturns.Process` Returns the Gaussian process :math:`W` with the optimized parameters. " // --------------------------------------------------------------------- %feature("docstring") OT::GeneralLinearModelResult::getOptimalLogLikelihood "Accessor to the optimal log-likelihood of the model. Returns ------- optimalLogLikelihood : float The value of the log-likelihood corresponding to the model. " // ---------------------------------------------------------------------