%feature("docstring") OT::MaximumEntropyOrderStatisticsCopula "MaximumEntropyOrderStatisticsCopula copula. Parameters ---------- coll : sequence of :class:`~openturns.Distribution` The margins, with range verifying :math:`a_i \leq a_{i+1}` and :math:`b_i \leq b_{i+1}`. Notes ----- Its probability density function is defined as: .. math:: f_U(u) = \prod\limits_{k=2}^d \frac{\exp\left(-\int_{\partial_{k-1}^{-1}(u_{k-1})}^{\partial_k^{-1}(u_k)} \phi_k(s)\di{s}\right)}{\partial_{k-1}(\partial_k^{-1}(u_k))-u_k} \mathbf{1}_{F_1^{-1}(u_1) \leq \dots \leq F_d^{-1}(u_d)} \text{with } \partial_k(t) = F_k(G^{-1}(t)) \text{ and } G(t) = \frac{1}{t} \sum\limits_{k=1}^d F_k(t) This class is implemented as a :class:`~openturns.SklarCopula` of the underlying :class:`~openturns.MaximumEntropyOrderStatisticsDistribution`. See the documentation of these classes for the numerical details. Examples -------- Create a distribution: >>> import openturns as ot >>> coll = [ot.Uniform(-1.0, 1.0), ot.LogUniform(1.0, 1.2), ot.Triangular(3.0, 4.0, 5.0)] >>> copulaOrderStat = ot.MaximumEntropyOrderStatisticsCopula(coll) Draw a sample: >>> sample = copulaOrderStat.getSample(5)" // --------------------------------------------------------------------- %feature("docstring") OT::MaximumEntropyOrderStatisticsCopula::getDistributionCollection "Accessor to the distribution's margins collection. Returns ------- coll : sequence of :class:`~openturns.Distribution` The marginals." // --------------------------------------------------------------------- %feature("docstring") OT::MaximumEntropyOrderStatisticsCopula::setDistributionCollection "Accessor to the distribution's collection. Parameters ---------- coll : sequence of :class:`~openturns.Distribution` The margins." // ---------------------------------------------------------------------