%feature("docstring") OT::Mesh "Mesh. Available constructors: Mesh(*dim=1*) Mesh(*vertices*) Mesh(*vertices, simplices, checkValidity*) Parameters ---------- dim : int, :math:`dim \geq 0` The dimension of the vertices. By default, it creates only one vertex of dimension :math:`dim` with components equal to 0. vertices : 2-d sequence of float Vertices' coordinates in :math:`\Rset^{dim}`. simplices : 2-d sequence of int List of simplices defining the topology of the mesh. The simplex :math:`[i_1, \dots, i_{dim+1}]` connects the vertices of indices :math:`(i_1, \dots, i_{dim+1})` in :math:`\Rset^{dim}`. In dimension 1, a simplex is an interval :math:`[i_1, i_2]`; in dimension 2, it is a triangle :math:`[i_1, i_2, i_3]`. checkMeshValidity : bool Tells if we should check if mesh is valid i.e. if there is non-overlapping simplices, no unused vertex, no simplices with duplicate vertices and no coincident vertices. Default value is set to false in resource map key `Mesh-CheckValidity` See also -------- RegularGrid Examples -------- >>> import openturns as ot >>> # Define the vertices of the mesh >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [1.5, 1.0]] >>> # Define the simplices of the mesh >>> simplices = [[0, 1, 2], [1, 2, 3]] >>> # Create the mesh of dimension 2 >>> mesh2d = ot.Mesh(vertices, simplices)" // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::ImportFromMSHFile "Import mesh from FreeFem 2-d mesh files. Parameters ---------- MSHFile : str A MSH ASCII file. Returns ------- mesh : :class:`~openturns.Mesh` Mesh defined in the file *MSHFile*." // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::isNumericallyEmpty "Check if the mesh is numerically empty. Returns ------- isEmpty : bool Flag telling whether the mesh is numerically empty, i.e. if its numerical volume is inferior or equal to :math:`\epsilon` (defined in the :class:`~openturns.ResourceMap`: :math:`\epsilon` = Domain-SmallVolume). Examples -------- >>> import openturns as ot >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]] >>> simplex = [[0, 1, 2]] >>> mesh2d = ot.Mesh(vertices, simplex) >>> print(mesh2d.isNumericallyEmpty()) False" // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::checkPointInSimplex "Check if a point is inside a simplex. Parameters ---------- point : sequence of float Point of dimension :math:`dim`, the dimension of the vertices of the mesh. index : int Integer characterizes one simplex of the mesh. Returns ------- isInside : bool Flag telling whether *point* is inside the simplex of index *index*. Examples -------- >>> import openturns as ot >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]] >>> simplex = [[0, 1, 2]] >>> mesh2d = ot.Mesh(vertices, simplex) >>> # Create a point A inside the simplex >>> pointA = [0.6, 0.3] >>> print(mesh2d.checkPointInSimplex(pointA, 0)) True >>> # Create a point B outside the simplex >>> pointB = [1.1, 0.6] >>> print(mesh2d.checkPointInSimplex(pointB, 0)) False" // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::checkPointInSimplexWithCoordinates "Check if a point is inside a simplex and returns its barycentric coordinates. Parameters ---------- point : sequence of float Point of dimension :math:`dim`, the dimension of the vertices of the mesh. index : int Integer characterizes one simplex of the mesh. Returns ------- isInside : bool Flag telling whether *point* is inside the simplex of index *index*. coordinates : :class:`~openturns.Point` The barycentric coordinates of the given point wrt the vertices of the simplex. Examples -------- >>> import openturns as ot >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]] >>> simplex = [[0, 1, 2]] >>> mesh2d = ot.Mesh(vertices, simplex) >>> # Create a point A inside the simplex >>> pointA = [0.6, 0.3] >>> print(mesh2d.checkPointInSimplexWithCoordinates(pointA, 0)) [True, class=Point name=Unnamed dimension=3 values=[0.4,0.3,0.3]] >>> # Create a point B outside the simplex >>> pointB = [1.1, 0.6] >>> print(mesh2d.checkPointInSimplexWithCoordinates(pointB, 0)) [False, class=Point name=Unnamed dimension=3 values=[-0.1,0.5,0.6]] Notes ----- The tolerance for the check on the barycentric coordinates can be tweaked using the key `Mesh-CoordinateEpsilon`." // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::checkPointInNeighbourhoodWithCoordinates "Check if a point is inside a simplex and returns its barycentric coordinates. Parameters ---------- point : sequence of float Point of dimension :math:`dim`, the dimension of the vertices of the mesh. index : int Integer characterizes a vertex of the mesh. Returns ------- isInside : bool Flag telling whether *point* is inside a simplex containg vertex *index*. simplex : int Index of the simplex containing this point. coordinates : :class:`~openturns.Point` The barycentric coordinates of the given point with respect to the vertices of the simplex. . Examples -------- >>> import openturns as ot >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]] >>> simplex = [[0, 1, 2]] >>> mesh2d = ot.Mesh(vertices, simplex) >>> # Create a point A inside the simplex >>> pointA = [0.6, 0.3] >>> print(mesh2d.checkPointInSimplexWithCoordinates(pointA, 0)) [True, class=Point name=Unnamed dimension=3 values=[0.4,0.3,0.3]] >>> # Create a point B outside the simplex >>> pointB = [1.1, 0.6] >>> print(mesh2d.checkPointInSimplexWithCoordinates(pointB, 0)) [False, class=Point name=Unnamed dimension=3 values=[-0.1,0.5,0.6]]" // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::computeSimplicesVolume "Compute the volume of all simplices. Returns ------- volume : :class:`~openturns.Point` Volume of all simplices. Examples -------- >>> import openturns as ot >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]] >>> simplex = [[0, 1, 2]] >>> mesh2d = ot.Mesh(vertices, simplex) >>> print(mesh2d.computeSimplicesVolume()) [0.5]" // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::computeP1Gram "Compute the P1 Lagrange finite element gram matrix of the mesh. Returns ------- gram : :class:`~openturns.CovarianceMatrix` P1 Lagrange finite element gram matrix of the mesh. Notes ----- The P1 Lagrange finite element space associated to a mesh with vertices :math:`(\vect{x}_i)_{i=1,\hdots,n}` is the space of piecewise-linear functions generated by the functions :math:`(\phi_i)_{i=1,\hdots,n}`, where :math:`\phi_i(\vect{x_i})=1`, :math:`\phi_i(\vect{x_j})=0` for :math:`j\neq i` and the restriction of :math:`\phi_i` to any simplex is an affine function. The vertices that are not included into at least one simplex are not taken into account. The gram matrix of the mesh is defined as the symmetric positive definite matrix :math:`\mat{K}` whose generic element :math:`K_{i,j}` is given by: .. math:: \forall i,j=1,\hdots,n,\quad K_{i,j}=\int_{\cD}\phi_i(\vect{x})\phi_j(\vect{x})\di{\vect{x}} This method is used in several algorithms related to stochastic process representation such as the Karhunen-Loeve decomposition. Examples -------- >>> import openturns as ot >>> # Define the vertices of the mesh >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [1.5, 1.0]] >>> # Define the simplices of the mesh >>> simplices = [[0, 1, 2], [1, 2, 3]] >>> # Create the mesh of dimension 2 >>> mesh2d = ot.Mesh(vertices, simplices) >>> print(mesh2d.computeP1Gram()) [[ 0.0833333 0.0416667 0.0416667 0 ] [ 0.0416667 0.125 0.0625 0.0208333 ] [ 0.0416667 0.0625 0.125 0.0208333 ] [ 0 0.0208333 0.0208333 0.0416667 ]] " // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::draw "Draw the mesh. Returns ------- graph : :class:`~openturns.Graph` If the dimension of the mesh is 1, it draws the corresponding interval, using the :meth:`draw1D` method; if the dimension is 2, it draws the triangular simplices, using the :meth:`draw2D` method; if the dimension is 3, it projects the simplices on the plane of the two first components, using the :meth:`draw3D` method with its default parameters, superposing the simplices." // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::draw1D "Draw the mesh of dimension 1. Returns ------- graph : :class:`~openturns.Graph` Draws the line linking the vertices of the mesh when the mesh is of dimension 1. Examples -------- >>> import openturns as ot >>> from openturns.viewer import View >>> vertices = [[0.5], [1.5], [2.1], [2.7]] >>> simplices = [[0, 1], [1, 2], [2, 3]] >>> mesh1d = ot.Mesh(vertices, simplices) >>> # Create a graph >>> aGraph = mesh1d.draw1D() >>> # Draw the mesh >>> View(aGraph).show()" // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::draw2D "Draw the mesh of dimension 2. Returns ------- graph : :class:`~openturns.Graph` Draws the edges of each simplex, when the mesh is of dimension 2. Examples -------- >>> import openturns as ot >>> from openturns.viewer import View >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [1.5, 1.0]] >>> simplices = [[0, 1, 2], [1, 2, 3]] >>> mesh2d = ot.Mesh(vertices, simplices) >>> # Create a graph >>> aGraph = mesh2d.draw2D() >>> # Draw the mesh >>> View(aGraph).show()" // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::draw3D "Draw the bidimensional projection of the mesh. Available usages: draw3D(*drawEdge=True, thetaX=0.0, thetaY=0.0, thetaZ=0.0, shading=False, rho=1.0*) draw3D(*drawEdge, rotation, shading, rho*) Parameters ---------- drawEdge : bool Tells if the edge of each simplex has to be drawn. thetaX : float Gives the value of the rotation along the X axis in radian. thetaY : float Gives the value of the rotation along the Y axis in radian. thetaZ : float Gives the value of the rotation along the Z axis in radian. rotation : :class:`~openturns.SquareMatrix` Operates a rotation on the mesh before its projection of the plane of the two first components. shading : bool Enables to give a visual perception of depth and orientation. rho : float, :math:`0 \leq \rho \leq 1` Contraction factor of the simplices. If :math:`\rho < 1`, all the simplices are contracted and appear deconnected: some holes are created, which enables to see inside the mesh. If :math:`\rho = 1`, the simplices keep their initial size and appear connected. If :math:`\rho = 0`, each simplex is reduced to its gravity center. Returns ------- graph : :class:`~openturns.Graph` Draws the bidimensional projection of the mesh on the :math:`(x,y)` plane. Examples -------- >>> import openturns as ot >>> from openturns.viewer import View >>> from math import cos, sin, pi >>> vertices = [[0.0, 0.0, 0.0], [0.0, 0.0, 1.0], [0.0, 1.0, 0.0], ... [0.0, 1.0, 1.0], [1.0, 0.0, 0.0], [1.0, 0.0, 1.0], ... [1.0, 1.0, 0.0], [1.0, 1.0, 1.0]] >>> simplices = [[0, 1, 2, 4], [3, 5, 6, 7],[1, 2, 3, 6], ... [1, 2, 4, 6], [1, 3, 5, 6], [1, 4, 5, 6]] >>> mesh3d = ot.Mesh(vertices, simplices) >>> # Create a graph >>> aGraph = mesh3d.draw3D() >>> # Draw the mesh >>> View(aGraph).show() >>> rotation = ot.SquareMatrix(3) >>> rotation[0, 0] = cos(pi / 3.0) >>> rotation[0, 1] = sin(pi / 3.0) >>> rotation[1, 0] = -sin(pi / 3.0) >>> rotation[1, 1] = cos(pi / 3.0) >>> rotation[2, 2] = 1.0 >>> # Create a graph >>> aGraph = mesh3d.draw3D(True, rotation, True, 1.0) >>> # Draw the mesh >>> View(aGraph).show()" // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::exportToVTKFile "Export the mesh to a VTK file. Parameters ---------- myVTKFile.vtk : str Name of the created file which contains the mesh and the associated random values that can be visualized with the open source software `Paraview `_." // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::getDescription "Description accessor. Returns ------- description : :class:`~openturns.Description` Description of the vertices. Examples -------- >>> import openturns as ot >>> mesh = ot.Mesh() >>> vertices = ot.Sample([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]) >>> vertices.setDescription(['X', 'Y']) >>> mesh.setVertices(vertices) >>> print(mesh.getDescription()) [X,Y]" // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::setDescription "Description accessor. Parameters ---------- description : sequence of str Description of the vertices. Examples -------- >>> import openturns as ot >>> mesh = ot.Mesh() >>> vertices = ot.Sample([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]) >>> mesh.setVertices(vertices) >>> mesh.setDescription(['X', 'Y']) >>> print(mesh.getDescription()) [X,Y]" // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::getSimplex "Get the simplex of a given index. Parameters ---------- index : int Index characterizing one simplex of the mesh. Returns ------- indices : :class:`~openturns.Indices` Indices defining the simplex of index *index*. The simplex :math:`[i_1, \dots, i_{n+1}]` relies the vertices of index :math:`(i_1, \dots, i_{n+1})` in :math:`\Rset^{dim}`. In dimension 1, a simplex is an interval :math:`[i_1, i_2]`; in dimension 2, it is a triangle :math:`[i_1, i_2, i_3]`. Examples -------- >>> import openturns as ot >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [1.5, 1.0]] >>> simplices = [[0, 1, 2], [1, 2, 3]] >>> mesh2d = ot.Mesh(vertices, simplices) >>> print(mesh2d.getSimplex(0)) [0,1,2] >>> print(mesh2d.getSimplex(1)) [1,2,3]" // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::getSimplices "Get the simplices of the mesh. Returns ------- indicesCollection : collection of :class:`~openturns.Indices` List of indices defining all the simplices. The simplex :math:`[i_1, \dots, i_{n+1}]` relies the vertices of index :math:`(i_1, \dots, i_{n+1})` in :math:`\Rset^{dim}`. In dimension 1, a simplex is an interval :math:`[i_1, i_2]`; in dimension 2, it is a triangle :math:`[i_1, i_2, i_3]`. Examples -------- >>> import openturns as ot >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [1.5, 1.0]] >>> simplices = [[0, 1, 2], [1, 2, 3]] >>> mesh2d = ot.Mesh(vertices, simplices) >>> print(mesh2d.getSimplices()) [[0,1,2],[1,2,3]]" // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::getSimplicesNumber "Get the number of simplices of the mesh. Returns ------- number : int Number of simplices of the mesh." // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::getVertex "Get the vertex of a given index. Parameters ---------- index : int Index characterizing one vertex of the mesh. Returns ------- vertex : :class:`~openturns.Point` Coordinates in :math:`\Rset^{dim}` of the vertex of index *index*, where :math:`dim` is the dimension of the vertices of the mesh. Examples -------- >>> import openturns as ot >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]] >>> simplices = [[0, 1, 2]] >>> mesh2d = ot.Mesh(vertices, simplices) >>> print(mesh2d.getVertex(1)) [1,0] >>> print(mesh2d.getVertex(0)) [0,0]" // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::getVertices "Get the vertices of the mesh. Returns ------- vertices : :class:`~openturns.Sample` Coordinates in :math:`\Rset^{dim}` of the vertices, where :math:`dim` is the dimension of the vertices of the mesh. Examples -------- >>> import openturns as ot >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]] >>> simplices = [[0, 1, 2]] >>> mesh2d = ot.Mesh(vertices, simplices) >>> print(mesh2d.getVertices()) 0 : [ 0 0 ] 1 : [ 1 0 ] 2 : [ 1 1 ]" // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::getVerticesNumber "Get the number of vertices of the mesh. Returns ------- number : int Number of vertices of the mesh." // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::getVolume "Get the volume of the mesh. Returns ------- volume : float Geometrical volume of the mesh which is the sum of its simplices' volumes. Examples -------- >>> import openturns as ot >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [1.5, 1.0]] >>> simplices = [[0, 1, 2], [1, 2, 3]] >>> mesh2d = ot.Mesh(vertices, simplices) >>> mesh2d.getVolume() 0.75" // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::isRegular "Check if the mesh is regular (only for 1-d meshes). Returns ------- isRegular : bool Tells if the mesh is regular or not. Examples -------- >>> import openturns as ot >>> vertices = [[0.5], [1.5], [2.4], [3.5]] >>> simplices = [[0, 1], [1, 2], [2, 3]] >>> mesh1d = ot.Mesh(vertices, simplices) >>> print(mesh1d.isRegular()) False >>> vertices = [[0.5], [1.5], [2.5], [3.5]] >>> mesh1d = ot.Mesh(vertices, simplices) >>> print(mesh1d.isRegular()) True" // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::isValid "Check the mesh validity. Returns ------- validity : bool Tells if the mesh is valid i.e. if there is non-overlaping simplices, no unused vertex, no simplices with duplicate vertices and no coincident vertices." // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::setSimplices "Set the simplices of the mesh. Parameters ---------- indices : 2-d sequence of int List of indices defining all the simplices. The simplex :math:`[i_1, \dots, i_{n+1}]` relies the vertices of index :math:`(i_1, \dots, i_{n+1})` in :math:`\Rset^{dim}`. In dimension 1, a simplex is an interval :math:`[i_1, i_2]`; in dimension 2, it is a triangle :math:`[i_1, i_2, i_3]`. Examples -------- >>> import openturns as ot >>> mesh = ot.Mesh() >>> simplices = [[0, 1, 2], [1, 2, 3]] >>> mesh.setSimplices(simplices)" // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::setVertex "Set a vertex of a given index. Parameters ---------- index : int Index of the vertex to set. vertex : sequence of float Cordinates in :math:`\Rset^{dim}` of the vertex of index *index*, where :math:`dim` is the dimension of the vertices of the mesh. Examples -------- >>> import openturns as ot >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]] >>> simplices = [[0, 1, 2]] >>> mesh = ot.Mesh(vertices, simplices) >>> vertex = [0.0, 0.5] >>> mesh.setVertex(0, vertex) >>> print(mesh.getVertices()) 0 : [ 0 0.5 ] 1 : [ 1 0 ] 2 : [ 1 1 ]" // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::setVertices "Set the vertices of the mesh. Parameters ---------- vertices : 2-d sequence of float Cordinates in :math:`\Rset^{dim}` of the vertices, where :math:`dim` is the dimension of the vertices of the mesh. Examples -------- >>> import openturns as ot >>> mesh = ot.Mesh() >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]] >>> mesh.setVertices(vertices)" // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::streamToVTKFormat "Give a VTK representation of the mesh. Returns ------- stream : str VTK representation of the mesh." // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::computeWeights "Compute an approximation of an integral defined over the mesh. Returns ------- weights : :class:`~openturns.Point` Weights such that an integral of a function over the mesh is a weighted sum of its values at the vertices." // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::fixOrientation() "Make all the simplices positively oriented. Examples -------- >>> import openturns as ot >>> vertices = [[0.0, 0.0], [1.0, 0.0], [1.0, 1.0]] >>> simplex = [[0, 2, 1]] >>> mesh2d = ot.Mesh(vertices, simplex) >>> print(mesh2d) class=Mesh name=Unnamed dimension=2 vertices=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=3 dimension=2 data=[[0,0],[1,0],[1,1]] simplices=[[0,2,1]] >>> mesh2d.fixOrientation() >>> print(mesh2d) class=Mesh name=Unnamed dimension=2 vertices=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=3 dimension=2 data=[[0,0],[1,0],[1,1]] simplices=[[2,0,1]]" // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::isEmpty "Check whether the mesh is empty. Returns ------- empty : bool Tells if the mesh is empty, ie if its volume is null." // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::getDimension "Dimension accessor. Returns ------- dimension : int Dimension of the vertices." // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::getLowerBound "Lower bound accessor. Returns ------- lower_bound : :class:`~openturns.Point` Min of the vertices." // --------------------------------------------------------------------- %feature("docstring") OT::Mesh::getUpperBound "Upper bound accessor. Returns ------- upper_bound : :class:`~openturns.Point` Max of the vertices."