Program PWSCF v.6.5 starts on 25May2020 at 12:47:41 This program is part of the open-source Quantum ESPRESSO suite for quantum simulation of materials; please cite "P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009); "P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017); URL http://www.quantum-espresso.org", in publications or presentations arising from this work. More details at http://www.quantum-espresso.org/quote Parallel version (MPI), running on 1 processors MPI processes distributed on 1 nodes Fft bands division: nmany = 1 Reading input from rVV10.in Current dimensions of program PWSCF are: Max number of different atomic species (ntypx) = 10 Max number of k-points (npk) = 40000 Max angular momentum in pseudopotentials (lmaxx) = 3 IMPORTANT: XC functional enforced from input : Exchange-correlation= RVV10 ( 1 4 13 4 26 0 0) Any further DFT definition will be discarded Please, verify this is what you really want gamma-point specific algorithms are used Subspace diagonalization in iterative solution of the eigenvalue problem: a serial algorithm will be used G-vector sticks info -------------------- sticks: dense smooth PW G-vecs: dense smooth PW Sum 301 109 31 10915 2349 287 bravais-lattice index = 4 lattice parameter (alat) = 4.6600 a.u. unit-cell volume = 227.8567 (a.u.)^3 number of atoms/cell = 4 number of atomic types = 1 number of electrons = 16.00 number of Kohn-Sham states= 12 kinetic-energy cutoff = 18.0000 Ry charge density cutoff = 200.0000 Ry convergence threshold = 1.0E-06 mixing beta = 0.5000 number of iterations used = 20 plain mixing Exchange-correlation= RVV10 ( 1 4 13 4 26 0 0) celldm(1)= 4.660000 celldm(2)= 0.000000 celldm(3)= 2.600000 celldm(4)= 0.000000 celldm(5)= 0.000000 celldm(6)= 0.000000 crystal axes: (cart. coord. in units of alat) a(1) = ( 1.000000 0.000000 0.000000 ) a(2) = ( -0.500000 0.866025 0.000000 ) a(3) = ( 0.000000 0.000000 2.600000 ) reciprocal axes: (cart. coord. in units 2 pi/alat) b(1) = ( 1.000000 0.577350 0.000000 ) b(2) = ( 0.000000 1.154701 0.000000 ) b(3) = ( 0.000000 0.000000 0.384615 ) PseudoPot. # 1 for C read from file: /test-suite/..//pseudo/C.pbe-van_bm.UPF MD5 check sum: 221bd0865b555dfe45f643e49cead3b6 Pseudo is Ultrasoft, Zval = 4.0 Generated by new atomic code, or converted to UPF format Using radial grid of 721 points, 4 beta functions with: l(1) = 0 l(2) = 0 l(3) = 1 l(4) = 1 Q(r) pseudized with 8 coefficients, rinner = 0.800 0.800 0.800 atomic species valence mass pseudopotential C 4.00 12.00000 C ( 1.00) 8 Sym. Ops., with inversion, found ( 4 have fractional translation) Cartesian axes site n. atom positions (alat units) 1 C tau( 1) = ( -0.5000000 0.8660254 1.9500000 ) 2 C tau( 2) = ( 0.5000050 0.2886722 1.9500000 ) 3 C tau( 3) = ( -0.5000000 0.8660254 0.6500000 ) 4 C tau( 4) = ( -0.0000050 0.5773532 0.6500000 ) number of k points= 1 Marzari-Vanderbilt smearing, width (Ry)= 0.0200 cart. coord. in units 2pi/alat k( 1) = ( 0.0000000 0.0000000 0.0000000), wk = 2.0000000 Dense grid: 5458 G-vectors FFT dimensions: ( 24, 24, 60) Smooth grid: 1175 G-vectors FFT dimensions: ( 15, 15, 36) Estimated max dynamical RAM per process > 11.49 MB Initial potential from superposition of free atoms starting charge 15.99984, renormalised to 16.00000 --------------------------------------------------------------------------------- Carrying out rVV10 run using the following parameters: Nqs = 20 Nr_points = 1024 r_max = 100.000 b_value = 6.30000 beta = 0.00901 q_mesh = 0.00010000 0.00030000 0.00058939 0.00100810 0.00161396 0.00249058 0.00375900 0.00559430 0.00824984 0.01209221 0.01765183 0.02569619 0.03733578 0.05417739 0.07854596 0.11380545 0.16482331 0.23864234 0.34545298 0.50000000 Gradients computed in Reciprocal space --------------------------------------------------------------------------------- Starting wfcs are 16 randomized atomic wfcs total cpu time spent up to now is 1.9 secs Self-consistent Calculation iteration # 1 ecut= 18.00 Ry beta= 0.50 Davidson diagonalization with overlap ethr = 1.00E-02, avg # of iterations = 3.0 total cpu time spent up to now is 2.0 secs total energy = -44.23241496 Ry estimated scf accuracy < 0.69530568 Ry iteration # 2 ecut= 18.00 Ry beta= 0.50 Davidson diagonalization with overlap ethr = 4.35E-03, avg # of iterations = 2.0 total cpu time spent up to now is 2.2 secs total energy = -44.23230208 Ry estimated scf accuracy < 0.09873249 Ry iteration # 3 ecut= 18.00 Ry beta= 0.50 Davidson diagonalization with overlap ethr = 6.17E-04, avg # of iterations = 2.0 total cpu time spent up to now is 2.3 secs total energy = -44.24234452 Ry estimated scf accuracy < 0.00349362 Ry iteration # 4 ecut= 18.00 Ry beta= 0.50 Davidson diagonalization with overlap ethr = 2.18E-05, avg # of iterations = 2.0 total cpu time spent up to now is 2.4 secs total energy = -44.24253372 Ry estimated scf accuracy < 0.00006027 Ry iteration # 5 ecut= 18.00 Ry beta= 0.50 Davidson diagonalization with overlap ethr = 3.77E-07, avg # of iterations = 2.0 total cpu time spent up to now is 2.5 secs total energy = -44.24255542 Ry estimated scf accuracy < 0.00000547 Ry iteration # 6 ecut= 18.00 Ry beta= 0.50 Davidson diagonalization with overlap ethr = 3.42E-08, avg # of iterations = 2.0 total cpu time spent up to now is 2.6 secs End of self-consistent calculation k = 0.0000 0.0000 0.0000 ( 144 PWs) bands (ev): -11.6901 -11.2205 -0.8773 1.7565 5.6301 5.6304 5.7856 5.7859 11.9227 16.8497 16.8502 16.8847 the Fermi energy is 10.0131 ev ! total energy = -44.24255815 Ry estimated scf accuracy < 0.00000001 Ry smearing contrib. (-TS) = -0.00000000 Ry internal energy E=F+TS = -44.24255815 Ry The total energy is F=E-TS. E is the sum of the following terms: one-electron contribution = -6.74785897 Ry hartree contribution = 12.74798572 Ry xc contribution = -14.37023508 Ry ewald contribution = -35.87244982 Ry convergence has been achieved in 6 iterations Forces acting on atoms (cartesian axes, Ry/au): atom 1 type 1 force = 0.00003658 -0.00002112 0.00000000 atom 2 type 1 force = -0.00007196 0.00004155 0.00000000 atom 3 type 1 force = -0.00003658 0.00002112 0.00000000 atom 4 type 1 force = 0.00007196 -0.00004155 0.00000000 Total force = 0.000132 Total SCF correction = 0.000042 SCF correction compared to forces is large: reduce conv_thr to get better values Computing stress (Cartesian axis) and pressure total stress (Ry/bohr**3) (kbar) P= -358.22 -0.00267637 -0.00000031 0.00000000 -393.71 -0.05 0.00 -0.00000031 -0.00267673 0.00000000 -0.05 -393.76 0.00 0.00000000 0.00000000 -0.00195222 0.00 0.00 -287.18 Writing output data file ./pwscf.save/ init_run : 1.77s CPU 1.80s WALL ( 1 calls) electrons : 0.64s CPU 0.68s WALL ( 1 calls) forces : 0.01s CPU 0.01s WALL ( 1 calls) stress : 0.13s CPU 0.14s WALL ( 1 calls) Called by init_run: wfcinit : 0.00s CPU 0.00s WALL ( 1 calls) potinit : 1.71s CPU 1.73s WALL ( 1 calls) hinit0 : 0.05s CPU 0.06s WALL ( 1 calls) Called by electrons: c_bands : 0.03s CPU 0.03s WALL ( 6 calls) sum_band : 0.02s CPU 0.02s WALL ( 6 calls) v_of_rho : 2.27s CPU 2.31s WALL ( 7 calls) newd : 0.02s CPU 0.02s WALL ( 7 calls) mix_rho : 0.01s CPU 0.01s WALL ( 6 calls) Called by c_bands: init_us_2 : 0.00s CPU 0.00s WALL ( 13 calls) regterg : 0.03s CPU 0.03s WALL ( 6 calls) Called by *egterg: rdiaghg : 0.00s CPU 0.01s WALL ( 19 calls) h_psi : 0.02s CPU 0.02s WALL ( 20 calls) s_psi : 0.00s CPU 0.00s WALL ( 20 calls) g_psi : 0.00s CPU 0.00s WALL ( 13 calls) Called by h_psi: h_psi:calbec : 0.00s CPU 0.00s WALL ( 20 calls) vloc_psi : 0.02s CPU 0.02s WALL ( 20 calls) add_vuspsi : 0.00s CPU 0.00s WALL ( 20 calls) General routines calbec : 0.00s CPU 0.00s WALL ( 31 calls) fft : 0.17s CPU 0.17s WALL ( 476 calls) ffts : 0.00s CPU 0.00s WALL ( 13 calls) fftw : 0.02s CPU 0.02s WALL ( 228 calls) interpolate : 0.00s CPU 0.00s WALL ( 7 calls) Parallel routines PWSCF : 2.68s CPU 2.79s WALL This run was terminated on: 12:47:44 25May2020 =------------------------------------------------------------------------------= JOB DONE. =------------------------------------------------------------------------------=