History log of /xv6-public/lapic.c (Results 26 – 50 of 52)
Revision (<<< Hide revision tags) (Show revision tags >>>) Date Author Comments
Revision tags: xv6-2008
# 4f06ae0d 28-Nov-2007 rsc <rsc>

More complete lapic startup (thanks Silas)


# f97f0d2b 27-Sep-2007 rsc <rsc>

cleaner


# b5dcebdb 27-Sep-2007 rsc <rsc>

better lapic writes, suggested by cliff


# c8919e65 27-Sep-2007 rsc <rsc>

kernel SMP interruptibility fixes.

Last year, right before I sent xv6 to the printer, I changed the
SETGATE calls so that interrupts would be disabled on entry to
interrupt handlers, and I added the

kernel SMP interruptibility fixes.

Last year, right before I sent xv6 to the printer, I changed the
SETGATE calls so that interrupts would be disabled on entry to
interrupt handlers, and I added the nlock++ / nlock-- in trap()
so that interrupts would stay disabled while the hw handlers
(but not the syscall handler) did their work. I did this because
the kernel was otherwise causing Bochs to triple-fault in SMP
mode, and time was short.

Robert observed yesterday that something was keeping the SMP
preemption user test from working. It turned out that when I
simplified the lapic code I swapped the order of two register
writes that I didn't realize were order dependent. I fixed that
and then since I had everything paged in kept going and tried
to figure out why you can't leave interrupts on during interrupt
handlers. There are a few issues.

First, there must be some way to keep interrupts from "stacking
up" and overflowing the stack. Keeping interrupts off the whole
time solves this problem -- even if the clock tick handler runs
long enough that the next clock tick is waiting when it finishes,
keeping interrupts off means that the handler runs all the way
through the "iret" before the next handler begins. This is not
really a problem unless you are putting too many prints in trap
-- if the OS is doing its job right, the handlers should run
quickly and not stack up.

Second, if xv6 had page faults, then it would be important to
keep interrupts disabled between the start of the interrupt and
the time that cr2 was read, to avoid a scenario like:

p1 page faults [cr2 set to faulting address]
p1 starts executing trapasm.S
clock interrupt, p1 preempted, p2 starts executing
p2 page faults [cr2 set to another faulting address]
p2 starts, finishes fault handler
p1 rescheduled, reads cr2, sees wrong fault address

Alternately p1 could be rescheduled on the other cpu, in which
case it would still see the wrong cr2. That said, I think cr2
is the only interrupt state that isn't pushed onto the interrupt
stack atomically at fault time, and xv6 doesn't care. (This isn't
entirely hypothetical -- I debugged this problem on Plan 9.)

Third, and this is the big one, it is not safe to call cpu()
unless interrupts are disabled. If interrupts are enabled then
there is no guarantee that, between the time cpu() looks up the
cpu id and the time that it the result gets used, the process
has not been rescheduled to the other cpu. For example, the
very commonly-used expression curproc[cpu()] (aka the macro cp)
can end up referring to the wrong proc: the code stores the
result of cpu() in %eax, gets rescheduled to the other cpu at
just the wrong instant, and then reads curproc[%eax].

We use curproc[cpu()] to get the current process a LOT. In that
particular case, if we arranged for the current curproc entry
to be addressed by %fs:0 and just use a different %fs on each
CPU, then we could safely get at curproc even with interrupts
disabled, since the read of %fs would be atomic with the read
of %fs:0. Alternately, we could have a curproc() function that
disables interrupts while computing curproc[cpu()]. I've done
that last one.

Even in the current kernel, with interrupts off on entry to trap,
interrupts are enabled inside release if there are no locks held.
Also, the scheduler's idle loop must be interruptible at times
so that the clock and disk interrupts (which might make processes
runnable) can be handled.

In addition to the rampant use of curproc[cpu()], this little
snippet from acquire is wrong on smp:

if(cpus[cpu()].nlock == 0)
cli();
cpus[cpu()].nlock++;

because if interrupts are off then we might call cpu(), get
rescheduled to a different cpu, look at cpus[oldcpu].nlock, and
wrongly decide not to disable interrupts on the new cpu. The
fix is to always call cli(). But this is wrong too:

if(holding(lock))
panic("acquire");
cli();
cpus[cpu()].nlock++;

because holding looks at cpu(). The fix is:

cli();
if(holding(lock))
panic("acquire");
cpus[cpu()].nlock++;

I've done that, and I changed cpu() to complain the first time
it gets called with interrupts disabled. (It gets called too
much to complain every time.)

I added new functions splhi and spllo that are like acquire and
release but without the locking:

void
splhi(void)
{
cli();
cpus[cpu()].nsplhi++;
}

void
spllo(void)
{
if(--cpus[cpu()].nsplhi == 0)
sti();
}

and I've used those to protect other sections of code that refer
to cpu() when interrupts would otherwise be disabled (basically
just curproc and setupsegs). I also use them in acquire/release
and got rid of nlock.

I'm not thrilled with the names, but I think the concept -- a
counted cli/sti -- is sound. Having them also replaces the
nlock++/nlock-- in trap.c and main.c, which is nice.


Final note: it's still not safe to enable interrupts in
the middle of trap() between lapic_eoi and returning
to user space. I don't understand why, but we get a
fault on pop %es because 0x10 is a bad segment
descriptor (!) and then the fault faults trying to go into
a new interrupt because 0x8 is a bad segment descriptor too!
Triple fault. I haven't debugged this yet.

show more ...


# 90d975e9 26-Sep-2007 rsc <rsc>

comment bochs nonsense


# d5596cd6 26-Sep-2007 rsc <rsc>

Apparently the initial interrupt count lapic[TICR]
must be set *after* initializing the lapic[TIMER] vector.

Doing this, we now get clock interrupts on cpu 1.
(No idea why we always got them on cpu

Apparently the initial interrupt count lapic[TICR]
must be set *after* initializing the lapic[TIMER] vector.

Doing this, we now get clock interrupts on cpu 1.
(No idea why we always got them on cpu 0.)

Don't write to TCCR - it is read-only.

show more ...


Revision tags: xv6-2007, xv6-rev1
# 558ab49f 27-Aug-2007 rsc <rsc>

delete unnecessary #include lines


# 99b11b6c 27-Aug-2007 rsc <rsc>

Simplify MP hardware code.
Mainly delete unused constants and code.

Move mp_startthem to main.c as bootothers.


# b63bb0fd 27-Aug-2007 rsc <rsc>

Clean up lapic code.

One initialization function now, not three.
Use #defines instead of enums (consistent with other code, but sigh).

Still boots in Bochs in SMP mode.


# 6861140a 10-Aug-2007 rsc <rsc>

replace bogus loops with slightly less bogus loops.


Revision tags: symlinks, xv6-2006, xv6-rev0
# 4fb68454 08-Sep-2006 rsc <rsc>

formatting nits


# 5c596bb3 08-Sep-2006 kaashoek <kaashoek>

consistency.


# f7017212 07-Sep-2006 kaashoek <kaashoek>

run without lapic and ioapic, if they are not present
if no lapic available, use 8253pit for clock
now xv6 runs both on qemu (uniprocessor) and bochs (uniprocessor and MP)


# 0cfc7290 06-Sep-2006 rsc <rsc>

wrap long lines


# 799c9176 06-Sep-2006 rsc <rsc>

more tabs go away


# f5527388 06-Sep-2006 rsc <rsc>

no /* */ comments


# 9e9bcaf1 06-Sep-2006 rsc <rsc>

standardize various * conventions


# a81e0213 04-Sep-2006 kaashoek <kaashoek>

a few nits


# 801affcd 03-Sep-2006 kaashoek <kaashoek>

centralize credits


# dfcc5b99 29-Aug-2006 rtm <rtm>

prune unneeded panics and debug output


# 8b58e810 23-Aug-2006 kaashoek <kaashoek>

i/o redirection in sh
better parsing of sh commands (copied from jos sh)
cat: read from 1 if no args
sbrk system call, but untested
getpid system call
moved locks in keyboard intr, but why do we get

i/o redirection in sh
better parsing of sh commands (copied from jos sh)
cat: read from 1 if no args
sbrk system call, but untested
getpid system call
moved locks in keyboard intr, but why do we get intr w. null characters from keyboard?

show more ...


# 0e84a0ec 08-Aug-2006 rtm <rtm>

fix race in holding() check in acquire()
give cpu1 a TSS and gdt for when it enters scheduler()
and a pseudo proc[] entry for each cpu
cpu0 waits for each other cpu to start up
read() for files


# c8b29f6d 04-Aug-2006 kaashoek <kaashoek>

better interrupt plan---this one appears to work
ioapic


# 29270816 20-Jul-2006 rtm <rtm>

uint32_t -> uint &c


# c54c7926 17-Jul-2006 rsc <rsc>

nitpicks


123