#include #include #if defined(WIN32) || defined(_WIN32) #include // for open(2) #else #include #endif #include #include #define __STDC_LIMIT_MACROS #include "kthread.h" #include "bseq.h" #include "minimap.h" #include "mmpriv.h" #include "kvec.h" #include "khash.h" #define idx_hash(a) ((a)>>1) #define idx_eq(a, b) ((a)>>1 == (b)>>1) KHASH_INIT(idx, uint64_t, uint64_t, 1, idx_hash, idx_eq) typedef khash_t(idx) idxhash_t; KHASH_MAP_INIT_STR(str, uint32_t) #define kroundup64(x) (--(x), (x)|=(x)>>1, (x)|=(x)>>2, (x)|=(x)>>4, (x)|=(x)>>8, (x)|=(x)>>16, (x)|=(x)>>32, ++(x)) typedef struct mm_idx_bucket_s { mm128_v a; // (minimizer, position) array int32_t n; // size of the _p_ array uint64_t *p; // position array for minimizers appearing >1 times void *h; // hash table indexing _p_ and minimizers appearing once } mm_idx_bucket_t; typedef struct { int32_t st, en, max; // max is not used for now int32_t score:30, strand:2; } mm_idx_intv1_t; typedef struct mm_idx_intv_s { int32_t n, m; mm_idx_intv1_t *a; } mm_idx_intv_t; mm_idx_t *mm_idx_init(int w, int k, int b, int flag) { mm_idx_t *mi; if (k*2 < b) b = k * 2; if (w < 1) w = 1; mi = (mm_idx_t*)calloc(1, sizeof(mm_idx_t)); mi->w = w, mi->k = k, mi->b = b, mi->flag = flag; mi->B = (mm_idx_bucket_t*)calloc(1<km = km_init(); return mi; } void mm_idx_destroy(mm_idx_t *mi) { uint32_t i; if (mi == 0) return; if (mi->h) kh_destroy(str, (khash_t(str)*)mi->h); if (mi->B) { for (i = 0; i < 1U<b; ++i) { free(mi->B[i].p); free(mi->B[i].a.a); kh_destroy(idx, (idxhash_t*)mi->B[i].h); } } if (mi->I) { for (i = 0; i < mi->n_seq; ++i) free(mi->I[i].a); free(mi->I); } if (!mi->km) { for (i = 0; i < mi->n_seq; ++i) free(mi->seq[i].name); free(mi->seq); } else km_destroy(mi->km); free(mi->B); free(mi->S); free(mi); } const uint64_t *mm_idx_get(const mm_idx_t *mi, uint64_t minier, int *n) { int mask = (1<b) - 1; khint_t k; mm_idx_bucket_t *b = &mi->B[minier&mask]; idxhash_t *h = (idxhash_t*)b->h; *n = 0; if (h == 0) return 0; k = kh_get(idx, h, minier>>mi->b<<1); if (k == kh_end(h)) return 0; if (kh_key(h, k)&1) { // special casing when there is only one k-mer *n = 1; return &kh_val(h, k); } else { *n = (uint32_t)kh_val(h, k); return &b->p[kh_val(h, k)>>32]; } } void mm_idx_stat(const mm_idx_t *mi) { int n = 0, n1 = 0; uint32_t i; uint64_t sum = 0, len = 0; fprintf(stderr, "[M::%s] kmer size: %d; skip: %d; is_hpc: %d; #seq: %d\n", __func__, mi->k, mi->w, mi->flag&MM_I_HPC, mi->n_seq); for (i = 0; i < mi->n_seq; ++i) len += mi->seq[i].len; for (i = 0; i < 1U<b; ++i) if (mi->B[i].h) n += kh_size((idxhash_t*)mi->B[i].h); for (i = 0; i < 1U<b; ++i) { idxhash_t *h = (idxhash_t*)mi->B[i].h; khint_t k; if (h == 0) continue; for (k = 0; k < kh_end(h); ++k) if (kh_exist(h, k)) { sum += kh_key(h, k)&1? 1 : (uint32_t)kh_val(h, k); if (kh_key(h, k)&1) ++n1; } } fprintf(stderr, "[M::%s::%.3f*%.2f] distinct minimizers: %d (%.2f%% are singletons); average occurrences: %.3lf; average spacing: %.3lf; total length: %ld\n", __func__, realtime() - mm_realtime0, cputime() / (realtime() - mm_realtime0), n, 100.0*n1/n, (double)sum / n, (double)len / sum, (long)len); } int mm_idx_index_name(mm_idx_t *mi) { khash_t(str) *h; uint32_t i; int has_dup = 0, absent; if (mi->h) return 0; h = kh_init(str); for (i = 0; i < mi->n_seq; ++i) { khint_t k; k = kh_put(str, h, mi->seq[i].name, &absent); if (absent) kh_val(h, k) = i; else has_dup = 1; } mi->h = h; if (has_dup && mm_verbose >= 2) fprintf(stderr, "[WARNING] some database sequences have identical sequence names\n"); return has_dup; } int mm_idx_name2id(const mm_idx_t *mi, const char *name) { khash_t(str) *h = (khash_t(str)*)mi->h; khint_t k; if (h == 0) return -2; k = kh_get(str, h, name); return k == kh_end(h)? -1 : kh_val(h, k); } int mm_idx_getseq(const mm_idx_t *mi, uint32_t rid, uint32_t st, uint32_t en, uint8_t *seq) { uint64_t i, st1, en1; if (rid >= mi->n_seq || st >= mi->seq[rid].len) return -1; if (en > mi->seq[rid].len) en = mi->seq[rid].len; st1 = mi->seq[rid].offset + st; en1 = mi->seq[rid].offset + en; for (i = st1; i < en1; ++i) seq[i - st1] = mm_seq4_get(mi->S, i); return en - st; } int mm_idx_getseq_rev(const mm_idx_t *mi, uint32_t rid, uint32_t st, uint32_t en, uint8_t *seq) { uint64_t i, st1, en1; const mm_idx_seq_t *s; if (rid >= mi->n_seq || st >= mi->seq[rid].len) return -1; s = &mi->seq[rid]; if (en > s->len) en = s->len; st1 = s->offset + (s->len - en); en1 = s->offset + (s->len - st); for (i = st1; i < en1; ++i) { uint8_t c = mm_seq4_get(mi->S, i); seq[en1 - i - 1] = c < 4? 3 - c : c; } return en - st; } int mm_idx_getseq2(const mm_idx_t *mi, int is_rev, uint32_t rid, uint32_t st, uint32_t en, uint8_t *seq) { if (is_rev) return mm_idx_getseq_rev(mi, rid, st, en, seq); else return mm_idx_getseq(mi, rid, st, en, seq); } int32_t mm_idx_cal_max_occ(const mm_idx_t *mi, float f) { int i; size_t n = 0; uint32_t thres; khint_t *a, k; if (f <= 0.) return INT32_MAX; for (i = 0; i < 1<b; ++i) if (mi->B[i].h) n += kh_size((idxhash_t*)mi->B[i].h); a = (uint32_t*)malloc(n * 4); for (i = n = 0; i < 1<b; ++i) { idxhash_t *h = (idxhash_t*)mi->B[i].h; if (h == 0) continue; for (k = 0; k < kh_end(h); ++k) { if (!kh_exist(h, k)) continue; a[n++] = kh_key(h, k)&1? 1 : (uint32_t)kh_val(h, k); } } thres = ks_ksmall_uint32_t(n, a, (uint32_t)((1. - f) * n)) + 1; free(a); return thres; } /********************************* * Sort and generate hash tables * *********************************/ static void worker_post(void *g, long i, int tid) { int n, n_keys; size_t j, start_a, start_p; idxhash_t *h; mm_idx_t *mi = (mm_idx_t*)g; mm_idx_bucket_t *b = &mi->B[i]; if (b->a.n == 0) return; // sort by minimizer radix_sort_128x(b->a.a, b->a.a + b->a.n); // count and preallocate for (j = 1, n = 1, n_keys = 0, b->n = 0; j <= b->a.n; ++j) { if (j == b->a.n || b->a.a[j].x>>8 != b->a.a[j-1].x>>8) { ++n_keys; if (n > 1) b->n += n; n = 1; } else ++n; } h = kh_init(idx); kh_resize(idx, h, n_keys); b->p = (uint64_t*)calloc(b->n, 8); // create the hash table for (j = 1, n = 1, start_a = start_p = 0; j <= b->a.n; ++j) { if (j == b->a.n || b->a.a[j].x>>8 != b->a.a[j-1].x>>8) { khint_t itr; int absent; mm128_t *p = &b->a.a[j-1]; itr = kh_put(idx, h, p->x>>8>>mi->b<<1, &absent); assert(absent && j == start_a + n); if (n == 1) { kh_key(h, itr) |= 1; kh_val(h, itr) = p->y; } else { int k; for (k = 0; k < n; ++k) b->p[start_p + k] = b->a.a[start_a + k].y; radix_sort_64(&b->p[start_p], &b->p[start_p + n]); // sort by position; needed as in-place radix_sort_128x() is not stable kh_val(h, itr) = (uint64_t)start_p<<32 | n; start_p += n; } start_a = j, n = 1; } else ++n; } b->h = h; assert(b->n == (int32_t)start_p); // deallocate and clear b->a kfree(0, b->a.a); b->a.n = b->a.m = 0, b->a.a = 0; } static void mm_idx_post(mm_idx_t *mi, int n_threads) { kt_for(n_threads, worker_post, mi, 1<b); } /****************** * Generate index * ******************/ #include #include #include "bseq.h" typedef struct { int mini_batch_size; uint64_t batch_size, sum_len; mm_bseq_file_t *fp; mm_idx_t *mi; } pipeline_t; typedef struct { int n_seq; mm_bseq1_t *seq; mm128_v a; } step_t; static void mm_idx_add(mm_idx_t *mi, int n, const mm128_t *a) { int i, mask = (1<b) - 1; for (i = 0; i < n; ++i) { mm128_v *p = &mi->B[a[i].x>>8&mask].a; kv_push(mm128_t, 0, *p, a[i]); } } static void *worker_pipeline(void *shared, int step, void *in) { int i; pipeline_t *p = (pipeline_t*)shared; if (step == 0) { // step 0: read sequences step_t *s; if (p->sum_len > p->batch_size) return 0; s = (step_t*)calloc(1, sizeof(step_t)); s->seq = mm_bseq_read(p->fp, p->mini_batch_size, 0, &s->n_seq); // read a mini-batch if (s->seq) { uint32_t old_m, m; assert((uint64_t)p->mi->n_seq + s->n_seq <= UINT32_MAX); // to prevent integer overflow // make room for p->mi->seq old_m = p->mi->n_seq, m = p->mi->n_seq + s->n_seq; kroundup32(m); kroundup32(old_m); if (old_m != m) p->mi->seq = (mm_idx_seq_t*)krealloc(p->mi->km, p->mi->seq, m * sizeof(mm_idx_seq_t)); // make room for p->mi->S if (!(p->mi->flag & MM_I_NO_SEQ)) { uint64_t sum_len, old_max_len, max_len; for (i = 0, sum_len = 0; i < s->n_seq; ++i) sum_len += s->seq[i].l_seq; old_max_len = (p->sum_len + 7) / 8; max_len = (p->sum_len + sum_len + 7) / 8; kroundup64(old_max_len); kroundup64(max_len); if (old_max_len != max_len) { p->mi->S = (uint32_t*)realloc(p->mi->S, max_len * 4); memset(&p->mi->S[old_max_len], 0, 4 * (max_len - old_max_len)); } } // populate p->mi->seq for (i = 0; i < s->n_seq; ++i) { mm_idx_seq_t *seq = &p->mi->seq[p->mi->n_seq]; uint32_t j; if (!(p->mi->flag & MM_I_NO_NAME)) { seq->name = (char*)kmalloc(p->mi->km, strlen(s->seq[i].name) + 1); strcpy(seq->name, s->seq[i].name); } else seq->name = 0; seq->len = s->seq[i].l_seq; seq->offset = p->sum_len; seq->is_alt = 0; // copy the sequence if (!(p->mi->flag & MM_I_NO_SEQ)) { for (j = 0; j < seq->len; ++j) { // TODO: this is not the fastest way, but let's first see if speed matters here uint64_t o = p->sum_len + j; int c = seq_nt4_table[(uint8_t)s->seq[i].seq[j]]; mm_seq4_set(p->mi->S, o, c); } } // update p->sum_len and p->mi->n_seq p->sum_len += seq->len; s->seq[i].rid = p->mi->n_seq++; } return s; } else free(s); } else if (step == 1) { // step 1: compute sketch step_t *s = (step_t*)in; for (i = 0; i < s->n_seq; ++i) { mm_bseq1_t *t = &s->seq[i]; if (t->l_seq > 0) mm_sketch(0, t->seq, t->l_seq, p->mi->w, p->mi->k, t->rid, p->mi->flag&MM_I_HPC, &s->a); else if (mm_verbose >= 2) fprintf(stderr, "[WARNING] the length database sequence '%s' is 0\n", t->name); free(t->seq); free(t->name); } free(s->seq); s->seq = 0; return s; } else if (step == 2) { // dispatch sketch to buckets step_t *s = (step_t*)in; mm_idx_add(p->mi, s->a.n, s->a.a); kfree(0, s->a.a); free(s); } return 0; } mm_idx_t *mm_idx_gen(mm_bseq_file_t *fp, int w, int k, int b, int flag, int mini_batch_size, int n_threads, uint64_t batch_size) { pipeline_t pl; if (fp == 0 || mm_bseq_eof(fp)) return 0; memset(&pl, 0, sizeof(pipeline_t)); pl.mini_batch_size = (uint64_t)mini_batch_size < batch_size? mini_batch_size : batch_size; pl.batch_size = batch_size; pl.fp = fp; pl.mi = mm_idx_init(w, k, b, flag); kt_pipeline(n_threads < 3? n_threads : 3, worker_pipeline, &pl, 3); if (mm_verbose >= 3) fprintf(stderr, "[M::%s::%.3f*%.2f] collected minimizers\n", __func__, realtime() - mm_realtime0, cputime() / (realtime() - mm_realtime0)); mm_idx_post(pl.mi, n_threads); if (mm_verbose >= 3) fprintf(stderr, "[M::%s::%.3f*%.2f] sorted minimizers\n", __func__, realtime() - mm_realtime0, cputime() / (realtime() - mm_realtime0)); return pl.mi; } mm_idx_t *mm_idx_build(const char *fn, int w, int k, int flag, int n_threads) // a simpler interface; deprecated { mm_bseq_file_t *fp; mm_idx_t *mi; fp = mm_bseq_open(fn); if (fp == 0) return 0; mi = mm_idx_gen(fp, w, k, 14, flag, 1<<18, n_threads, UINT64_MAX); mm_bseq_close(fp); return mi; } mm_idx_t *mm_idx_str(int w, int k, int is_hpc, int bucket_bits, int n, const char **seq, const char **name) { uint64_t sum_len = 0; mm128_v a = {0,0,0}; mm_idx_t *mi; khash_t(str) *h; int i, flag = 0; if (n <= 0) return 0; for (i = 0; i < n; ++i) // get the total length sum_len += strlen(seq[i]); if (is_hpc) flag |= MM_I_HPC; if (name == 0) flag |= MM_I_NO_NAME; if (bucket_bits < 0) bucket_bits = 14; mi = mm_idx_init(w, k, bucket_bits, flag); mi->n_seq = n; mi->seq = (mm_idx_seq_t*)kcalloc(mi->km, n, sizeof(mm_idx_seq_t)); // ->seq is allocated from km mi->S = (uint32_t*)calloc((sum_len + 7) / 8, 4); mi->h = h = kh_init(str); for (i = 0, sum_len = 0; i < n; ++i) { const char *s = seq[i]; mm_idx_seq_t *p = &mi->seq[i]; uint32_t j; if (name && name[i]) { int absent; p->name = (char*)kmalloc(mi->km, strlen(name[i]) + 1); strcpy(p->name, name[i]); kh_put(str, h, p->name, &absent); assert(absent); } p->offset = sum_len; p->len = strlen(s); p->is_alt = 0; for (j = 0; j < p->len; ++j) { int c = seq_nt4_table[(uint8_t)s[j]]; uint64_t o = sum_len + j; mm_seq4_set(mi->S, o, c); } sum_len += p->len; if (p->len > 0) { a.n = 0; mm_sketch(0, s, p->len, w, k, i, is_hpc, &a); mm_idx_add(mi, a.n, a.a); } } free(a.a); mm_idx_post(mi, 1); return mi; } /************* * index I/O * *************/ void mm_idx_dump(FILE *fp, const mm_idx_t *mi) { uint64_t sum_len = 0; uint32_t x[5], i; x[0] = mi->w, x[1] = mi->k, x[2] = mi->b, x[3] = mi->n_seq, x[4] = mi->flag; fwrite(MM_IDX_MAGIC, 1, 4, fp); fwrite(x, 4, 5, fp); for (i = 0; i < mi->n_seq; ++i) { if (mi->seq[i].name) { uint8_t l = strlen(mi->seq[i].name); fwrite(&l, 1, 1, fp); fwrite(mi->seq[i].name, 1, l, fp); } else { uint8_t l = 0; fwrite(&l, 1, 1, fp); } fwrite(&mi->seq[i].len, 4, 1, fp); sum_len += mi->seq[i].len; } for (i = 0; i < 1<b; ++i) { mm_idx_bucket_t *b = &mi->B[i]; khint_t k; idxhash_t *h = (idxhash_t*)b->h; uint32_t size = h? h->size : 0; fwrite(&b->n, 4, 1, fp); fwrite(b->p, 8, b->n, fp); fwrite(&size, 4, 1, fp); if (size == 0) continue; for (k = 0; k < kh_end(h); ++k) { uint64_t x[2]; if (!kh_exist(h, k)) continue; x[0] = kh_key(h, k), x[1] = kh_val(h, k); fwrite(x, 8, 2, fp); } } if (!(mi->flag & MM_I_NO_SEQ)) fwrite(mi->S, 4, (sum_len + 7) / 8, fp); fflush(fp); } mm_idx_t *mm_idx_load(FILE *fp) { char magic[4]; uint32_t x[5], i; uint64_t sum_len = 0; mm_idx_t *mi; if (fread(magic, 1, 4, fp) != 4) return 0; if (strncmp(magic, MM_IDX_MAGIC, 4) != 0) return 0; if (fread(x, 4, 5, fp) != 5) return 0; mi = mm_idx_init(x[0], x[1], x[2], x[4]); mi->n_seq = x[3]; mi->seq = (mm_idx_seq_t*)kcalloc(mi->km, mi->n_seq, sizeof(mm_idx_seq_t)); for (i = 0; i < mi->n_seq; ++i) { uint8_t l; mm_idx_seq_t *s = &mi->seq[i]; fread(&l, 1, 1, fp); if (l) { s->name = (char*)kmalloc(mi->km, l + 1); fread(s->name, 1, l, fp); s->name[l] = 0; } fread(&s->len, 4, 1, fp); s->offset = sum_len; s->is_alt = 0; sum_len += s->len; } for (i = 0; i < 1<b; ++i) { mm_idx_bucket_t *b = &mi->B[i]; uint32_t j, size; khint_t k; idxhash_t *h; fread(&b->n, 4, 1, fp); b->p = (uint64_t*)malloc(b->n * 8); fread(b->p, 8, b->n, fp); fread(&size, 4, 1, fp); if (size == 0) continue; b->h = h = kh_init(idx); kh_resize(idx, h, size); for (j = 0; j < size; ++j) { uint64_t x[2]; int absent; fread(x, 8, 2, fp); k = kh_put(idx, h, x[0], &absent); assert(absent); kh_val(h, k) = x[1]; } } if (!(mi->flag & MM_I_NO_SEQ)) { mi->S = (uint32_t*)malloc((sum_len + 7) / 8 * 4); fread(mi->S, 4, (sum_len + 7) / 8, fp); } return mi; } int64_t mm_idx_is_idx(const char *fn) { int fd, is_idx = 0; int64_t ret, off_end; char magic[4]; if (strcmp(fn, "-") == 0) return 0; // read from pipe; not an index fd = open(fn, O_RDONLY); if (fd < 0) return -1; // error #ifdef WIN32 if ((off_end = _lseeki64(fd, 0, SEEK_END)) >= 4) { _lseeki64(fd, 0, SEEK_SET); #else if ((off_end = lseek(fd, 0, SEEK_END)) >= 4) { lseek(fd, 0, SEEK_SET); #endif // WIN32 ret = read(fd, magic, 4); if (ret == 4 && strncmp(magic, MM_IDX_MAGIC, 4) == 0) is_idx = 1; } close(fd); return is_idx? off_end : 0; } mm_idx_reader_t *mm_idx_reader_open(const char *fn, const mm_idxopt_t *opt, const char *fn_out) { int64_t is_idx; mm_idx_reader_t *r; is_idx = mm_idx_is_idx(fn); if (is_idx < 0) return 0; // failed to open the index r = (mm_idx_reader_t*)calloc(1, sizeof(mm_idx_reader_t)); r->is_idx = is_idx; if (opt) r->opt = *opt; else mm_idxopt_init(&r->opt); if (r->is_idx) { r->fp.idx = fopen(fn, "rb"); r->idx_size = is_idx; } else r->fp.seq = mm_bseq_open(fn); if (fn_out) r->fp_out = fopen(fn_out, "wb"); return r; } void mm_idx_reader_close(mm_idx_reader_t *r) { if (r->is_idx) fclose(r->fp.idx); else mm_bseq_close(r->fp.seq); if (r->fp_out) fclose(r->fp_out); free(r); } mm_idx_t *mm_idx_reader_read(mm_idx_reader_t *r, int n_threads) { mm_idx_t *mi; if (r->is_idx) { mi = mm_idx_load(r->fp.idx); if (mi && mm_verbose >= 2 && (mi->k != r->opt.k || mi->w != r->opt.w || (mi->flag&MM_I_HPC) != (r->opt.flag&MM_I_HPC))) fprintf(stderr, "[WARNING]\033[1;31m Indexing parameters (-k, -w or -H) overridden by parameters used in the prebuilt index.\033[0m\n"); } else mi = mm_idx_gen(r->fp.seq, r->opt.w, r->opt.k, r->opt.bucket_bits, r->opt.flag, r->opt.mini_batch_size, n_threads, r->opt.batch_size); if (mi) { if (r->fp_out) mm_idx_dump(r->fp_out, mi); mi->index = r->n_parts++; } return mi; } int mm_idx_reader_eof(const mm_idx_reader_t *r) // TODO: in extremely rare cases, mm_bseq_eof() might not work { return r->is_idx? (feof(r->fp.idx) || ftell(r->fp.idx) == r->idx_size) : mm_bseq_eof(r->fp.seq); } #include #include #include "ksort.h" #include "kseq.h" KSTREAM_DECLARE(gzFile, gzread) int mm_idx_alt_read(mm_idx_t *mi, const char *fn) { int n_alt = 0; gzFile fp; kstream_t *ks; kstring_t str = {0,0,0}; fp = fn && strcmp(fn, "-")? gzopen(fn, "r") : gzdopen(fileno(stdin), "r"); if (fp == 0) return -1; ks = ks_init(fp); if (mi->h == 0) mm_idx_index_name(mi); while (ks_getuntil(ks, KS_SEP_LINE, &str, 0) >= 0) { char *p; int id; for (p = str.s; *p && !isspace(*p); ++p) { } *p = 0; id = mm_idx_name2id(mi, str.s); if (id >= 0) mi->seq[id].is_alt = 1, ++n_alt; } mi->n_alt = n_alt; if (mm_verbose >= 3) fprintf(stderr, "[M::%s] found %d ALT contigs\n", __func__, n_alt); return n_alt; } #define sort_key_bed(a) ((a).st) KRADIX_SORT_INIT(bed, mm_idx_intv1_t, sort_key_bed, 4) mm_idx_intv_t *mm_idx_read_bed(const mm_idx_t *mi, const char *fn, int read_junc) { gzFile fp; kstream_t *ks; kstring_t str = {0,0,0}; mm_idx_intv_t *I; fp = fn && strcmp(fn, "-")? gzopen(fn, "r") : gzdopen(fileno(stdin), "r"); if (fp == 0) return 0; I = (mm_idx_intv_t*)calloc(mi->n_seq, sizeof(*I)); ks = ks_init(fp); while (ks_getuntil(ks, KS_SEP_LINE, &str, 0) >= 0) { mm_idx_intv_t *r; mm_idx_intv1_t t = {-1,-1,-1,-1,0}; char *p, *q, *bl, *bs; int32_t i, id = -1, n_blk = 0; for (p = q = str.s, i = 0;; ++p) { if (*p == 0 || *p == '\t') { int32_t c = *p; *p = 0; if (i == 0) { // chr id = mm_idx_name2id(mi, q); if (id < 0) break; // unknown name; TODO: throw a warning } else if (i == 1) { // start t.st = atol(q); // TODO: watch out integer overflow! if (t.st < 0) break; } else if (i == 2) { // end t.en = atol(q); if (t.en < 0) break; } else if (i == 4) { // BED score t.score = atol(q); } else if (i == 5) { // strand t.strand = *q == '+'? 1 : *q == '-'? -1 : 0; } else if (i == 9) { if (!isdigit(*q)) break; n_blk = atol(q); } else if (i == 10) { bl = q; } else if (i == 11) { bs = q; break; } if (c == 0) break; ++i, q = p + 1; } } if (id < 0 || t.st < 0 || t.st >= t.en) continue; r = &I[id]; if (i >= 11 && read_junc) { // BED12 int32_t st, sz, en; st = strtol(bs, &bs, 10); ++bs; sz = strtol(bl, &bl, 10); ++bl; en = t.st + st + sz; for (i = 1; i < n_blk; ++i) { mm_idx_intv1_t s = t; if (r->n == r->m) { r->m = r->m? r->m + (r->m>>1) : 16; r->a = (mm_idx_intv1_t*)realloc(r->a, sizeof(*r->a) * r->m); } st = strtol(bs, &bs, 10); ++bs; sz = strtol(bl, &bl, 10); ++bl; s.st = en, s.en = t.st + st; en = t.st + st + sz; if (s.en > s.st) r->a[r->n++] = s; } } else { if (r->n == r->m) { r->m = r->m? r->m + (r->m>>1) : 16; r->a = (mm_idx_intv1_t*)realloc(r->a, sizeof(*r->a) * r->m); } r->a[r->n++] = t; } } free(str.s); ks_destroy(ks); gzclose(fp); return I; } int mm_idx_bed_read(mm_idx_t *mi, const char *fn, int read_junc) { int32_t i; if (mi->h == 0) mm_idx_index_name(mi); mi->I = mm_idx_read_bed(mi, fn, read_junc); if (mi->I == 0) return -1; for (i = 0; i < mi->n_seq; ++i) // TODO: eliminate redundant intervals radix_sort_bed(mi->I[i].a, mi->I[i].a + mi->I[i].n); return 0; } int mm_idx_bed_junc(const mm_idx_t *mi, int32_t ctg, int32_t st, int32_t en, uint8_t *s) { int32_t i, left, right; mm_idx_intv_t *r; memset(s, 0, en - st); if (mi->I == 0 || ctg < 0 || ctg >= mi->n_seq) return -1; r = &mi->I[ctg]; left = 0, right = r->n; while (right > left) { int32_t mid = left + ((right - left) >> 1); if (r->a[mid].st >= st) right = mid; else left = mid + 1; } for (i = left; i < r->n; ++i) { if (st <= r->a[i].st && en >= r->a[i].en && r->a[i].strand != 0) { if (r->a[i].strand > 0) { s[r->a[i].st - st] |= 1, s[r->a[i].en - 1 - st] |= 2; } else { s[r->a[i].st - st] |= 8, s[r->a[i].en - 1 - st] |= 4; } } } return left; }