/* Copyright (c) 2006, Michael Kazhdan and Matthew Bolitho All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. Neither the name of the Johns Hopkins University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ ////////////////////// // Polynomial Roots // ////////////////////// #include #include "Factor.h" int Factor(double a1,double a0,double roots[1][2],const double& EPS){ if(fabs(a1)<=EPS){return 0;} roots[0][0]=-a0/a1; roots[0][1]=0; return 1; } int Factor(double a2,double a1,double a0,double roots[2][2],const double& EPS){ double d; if(fabs(a2)<=EPS){return Factor(a1,a0,roots,EPS);} d=a1*a1-4*a0*a2; a1/=(2*a2); if(d<0){ d=sqrt(-d)/(2*a2); roots[0][0]=roots[1][0]=-a1; roots[0][1]=-d; roots[1][1]= d; } else{ d=sqrt(d)/(2*a2); roots[0][1]=roots[1][1]=0; roots[0][0]=-a1-d; roots[1][0]=-a1+d; } return 2; } // Solution taken from: http://mathworld.wolfram.com/CubicFormula.html // and http://www.csit.fsu.edu/~burkardt/f_src/subpak/subpak.f90 int Factor(double a3,double a2,double a1,double a0,double roots[3][2],const double& EPS){ double q,r,r2,q3; if(fabs(a3)<=EPS){return Factor(a2,a1,a0,roots,EPS);} a2/=a3; a1/=a3; a0/=a3; q=-(3*a1-a2*a2)/9; r=-(9*a2*a1-27*a0-2*a2*a2*a2)/54; r2=r*r; q3=q*q*q; if(r20){return PI/2.0;} else{return -PI/2.0;} } if(x>=0){return atan(y/x);} else{ if(y>=0){return atan(y/x)+PI;} else{return atan(y/x)-PI;} } } double Angle(const double in[2]){ if((in[0]*in[0]+in[1]*in[1])==0.0){return 0;} else{return ArcTan2(in[1],in[0]);} } void Sqrt(const double in[2],double out[2]){ double r=sqrt(sqrt(in[0]*in[0]+in[1]*in[1])); double a=Angle(in)*0.5; out[0]=r*cos(a); out[1]=r*sin(a); } void Add(const double in1[2],const double in2[2],double out[2]){ out[0]=in1[0]+in2[0]; out[1]=in1[1]+in2[1]; } void Subtract(const double in1[2],const double in2[2],double out[2]){ out[0]=in1[0]-in2[0]; out[1]=in1[1]-in2[1]; } void Multiply(const double in1[2],const double in2[2],double out[2]){ out[0]=in1[0]*in2[0]-in1[1]*in2[1]; out[1]=in1[0]*in2[1]+in1[1]*in2[0]; } void Divide(const double in1[2],const double in2[2],double out[2]){ double temp[2]; double l=in2[0]*in2[0]+in2[1]*in2[1]; temp[0]= in2[0]/l; temp[1]=-in2[1]/l; Multiply(in1,temp,out); } // Solution taken from: http://mathworld.wolfram.com/QuarticEquation.html // and http://www.csit.fsu.edu/~burkardt/f_src/subpak/subpak.f90 int Factor(double a4,double a3,double a2,double a1,double a0,double roots[4][2],const double& EPS){ double R[2],D[2],E[2],R2[2]; if(fabs(a4)10e-8){ double temp1[2],temp2[2]; double p1[2],p2[2]; p1[0]=a3*a3*0.75-2.0*a2-R2[0]; p1[1]=0; temp2[0]=((4.0*a3*a2-8.0*a1-a3*a3*a3)/4.0); temp2[1]=0; Divide(temp2,R,p2); Add (p1,p2,temp1); Subtract(p1,p2,temp2); Sqrt(temp1,D); Sqrt(temp2,E); } else{ R[0]=R[1]=0; double temp1[2],temp2[2]; temp1[0]=roots[0][0]*roots[0][0]-4.0*a0; temp1[1]=0; Sqrt(temp1,temp2); temp1[0]=a3*a3*0.75-2.0*a2+2.0*temp2[0]; temp1[1]= 2.0*temp2[1]; Sqrt(temp1,D); temp1[0]=a3*a3*0.75-2.0*a2-2.0*temp2[0]; temp1[1]= -2.0*temp2[1]; Sqrt(temp1,E); } roots[0][0]=-a3/4.0+R[0]/2.0+D[0]/2.0; roots[0][1]= R[1]/2.0+D[1]/2.0; roots[1][0]=-a3/4.0+R[0]/2.0-D[0]/2.0; roots[1][1]= R[1]/2.0-D[1]/2.0; roots[2][0]=-a3/4.0-R[0]/2.0+E[0]/2.0; roots[2][1]= -R[1]/2.0+E[1]/2.0; roots[3][0]=-a3/4.0-R[0]/2.0-E[0]/2.0; roots[3][1]= -R[1]/2.0-E[1]/2.0; return 4; } int Solve(const double* eqns,const double* values,double* solutions,const int& dim){ int i,j,eIndex; double v,m; int *index=new int[dim]; int *set=new int[dim]; double* myEqns=new double[dim*dim]; double* myValues=new double[dim]; for(i=0;im){ m=fabs(myEqns[j*dim+i]); eIndex=j; } } if(eIndex==-1){ delete[] index; delete[] myValues; delete[] myEqns; delete[] set; return 0; } // The position in which the solution for the i-th variable can be found index[i]=eIndex; set[eIndex]=1; // Normalize the equation v=myEqns[eIndex*dim+i]; for(j=0;j