/* $XConsortium: CrCmap.c,v 1.6 94/04/17 20:15:53 rws Exp $ */ /* Copyright (c) 1989 X Consortium Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from the X Consortium. */ /* * Author: Donna Converse, MIT X Consortium */ /* * CreateCmap.c - given a standard colormap description, make the map. */ #include #include #include #include static int ROmap(); /* allocate entire map Read Only */ static Status ROorRWcell(); /* allocate a cell, prefer Read Only */ static Status RWcell(); /* allocate a cell Read Write */ static int compare(); /* for quicksort */ static Status contiguous(); /* find contiguous sequence of cells */ static void free_cells(); /* frees resources before quitting */ static Status readonly_map(); /* create a map in a RO visual type */ static Status readwrite_map(); /* create a map in a RW visual type */ #define lowbit(x) ((x) & (~(x) + 1)) #define TRUEMATCH(mult,max,mask) \ (colormap->max * colormap->mult <= vinfo->mask && \ lowbit(vinfo->mask) == colormap->mult) /* * To create any one colormap which is described by an XStandardColormap * structure, use XmuCreateColormap(). * * Return 0 on failure, non-zero on success. * Resources created by this function are not made permanent. * No argument error checking is provided. Use at your own risk. * * All colormaps are created with read only allocations, with the exception * of read only allocations of colors in the default map or otherwise * which fail to return the expected pixel value, and these are individually * defined as read/write allocations. This is done so that all the cells * defined in the default map are contiguous, for use in image processing. * This typically happens with White and Black in the default map. * * Colormaps of static visuals are considered to be successfully created if * the map of the static visual matches the definition given in the * standard colormap structure. */ Status XmuCreateColormap(dpy, colormap) Display *dpy; /* specifies the connection under * which the map is created */ XStandardColormap *colormap; /* specifies the map to be created, * and returns, particularly if the * map is created as a subset of the * default colormap of the screen, * the base_pixel of the map. */ { XVisualInfo vinfo_template; /* template visual information */ XVisualInfo *vinfo; /* matching visual information */ XVisualInfo *vpointer; /* for freeing the entire list */ long vinfo_mask; /* specifies the visual mask value */ int n; /* number of matching visuals */ int status; vinfo_template.visualid = colormap->visualid; vinfo_mask = VisualIDMask; if ((vinfo = XGetVisualInfo(dpy, vinfo_mask, &vinfo_template, &n)) == NULL) return 0; /* A visual id may be valid on multiple screens. Also, there may * be multiple visuals with identical visual ids at different depths. * If the colormap is the Default Colormap, use the Default Visual. * Otherwise, arbitrarily, use the deepest visual. */ vpointer = vinfo; if (n > 1) { register int i; register int screen_number; Bool def_cmap; def_cmap = False; for (screen_number = ScreenCount(dpy); --screen_number >= 0; ) if (colormap->colormap == DefaultColormap(dpy, screen_number)) { def_cmap = True; break; } if (def_cmap) { for (i=0; i < n; i++, vinfo++) { if (vinfo->visual == DefaultVisual(dpy, screen_number)) break; } } else { unsigned int maxdepth = 0; XVisualInfo *v; for (i=0; i < n; i++, vinfo++) if (vinfo->depth > maxdepth) { maxdepth = vinfo->depth; v = vinfo; } vinfo = v; } } if (vinfo->class == PseudoColor || vinfo->class == DirectColor || vinfo->class == GrayScale) status = readwrite_map(dpy, vinfo, colormap); else if (vinfo->class == TrueColor) status = TRUEMATCH(red_mult, red_max, red_mask) && TRUEMATCH(green_mult, green_max, green_mask) && TRUEMATCH(blue_mult, blue_max, blue_mask); else status = readonly_map(dpy, vinfo, colormap); XFree((char *) vpointer); return status; } /****************************************************************************/ static Status readwrite_map(dpy, vinfo, colormap) Display *dpy; XVisualInfo *vinfo; XStandardColormap *colormap; { register unsigned long i, n; /* index counters */ int ncolors; /* number of colors to be defined */ int npixels; /* number of pixels allocated R/W */ int first_index; /* first index of pixels to use */ int remainder; /* first index of remainder */ XColor color; /* the definition of a color */ unsigned long *pixels; /* array of colormap pixels */ unsigned long delta; /* Determine ncolors, the number of colors to be defined. * Insure that 1 < ncolors <= the colormap size. */ if (vinfo->class == DirectColor) { ncolors = colormap->red_max; if (colormap->green_max > ncolors) ncolors = colormap->green_max; if (colormap->blue_max > ncolors) ncolors = colormap->blue_max; ncolors++; delta = lowbit(vinfo->red_mask) + lowbit(vinfo->green_mask) + lowbit(vinfo->blue_mask); } else { ncolors = colormap->red_max * colormap->red_mult + colormap->green_max * colormap->green_mult + colormap->blue_max * colormap->blue_mult + 1; delta = 1; } if (ncolors <= 1 || ncolors > vinfo->colormap_size) return 0; /* Allocate Read/Write as much of the colormap as we can possibly get. * Then insure that the pixels we were allocated are given in * monotonically increasing order, using a quicksort. Next, insure * that our allocation includes a subset of contiguous pixels at least * as long as the number of colors to be defined. Now we know that * these conditions are met: * 1) There are no free cells in the colormap. * 2) We have a contiguous sequence of pixels, monotonically * increasing, of length >= the number of colors requested. * * One cell at a time, we will free, compute the next color value, * then allocate read only. This takes a long time. * This is done to insure that cells are allocated read only in the * contiguous order which we prefer. If the server has a choice of * cells to grant to an allocation request, the server may give us any * cell, so that is why we do these slow gymnastics. */ if ((pixels = (unsigned long *) calloc((unsigned) vinfo->colormap_size, sizeof(unsigned long))) == NULL) return 0; if ((npixels = ROmap(dpy, colormap->colormap, pixels, vinfo->colormap_size, ncolors)) == 0) { free((char *) pixels); return 0; } qsort((char *) pixels, npixels, sizeof(unsigned long), compare); if (!contiguous(pixels, npixels, ncolors, delta, &first_index, &remainder)) { /* can't find enough contiguous cells, give up */ XFreeColors(dpy, colormap->colormap, pixels, npixels, (unsigned long) 0); free((char *) pixels); return 0; } colormap->base_pixel = pixels[first_index]; /* construct a gray map */ if (colormap->red_mult == 1 && colormap->green_mult == 1 && colormap->blue_mult == 1) for (n=colormap->base_pixel, i=0; i < ncolors; i++, n += delta) { color.pixel = n; color.blue = color.green = color.red = (unsigned short) ((i * 65535) / (colormap->red_max + colormap->green_max + colormap->blue_max)); if (! ROorRWcell(dpy, colormap->colormap, pixels, npixels, &color, first_index + i)) return 0; } /* construct a red ramp map */ else if (colormap->green_max == 0 && colormap->blue_max == 0) for (n=colormap->base_pixel, i=0; i < ncolors; i++, n += delta) { color.pixel = n; color.red = (unsigned short) ((i * 65535) / colormap->red_max); color.green = color.blue = 0; if (! ROorRWcell(dpy, colormap->colormap, pixels, npixels, &color, first_index + i)) return 0; } /* construct a green ramp map */ else if (colormap->red_max == 0 && colormap->blue_max == 0) for (n=colormap->base_pixel, i=0; i < ncolors; i++, n += delta) { color.pixel = n; color.green = (unsigned short) ((i * 65535) / colormap->green_max); color.red = color.blue = 0; if (! ROorRWcell(dpy, colormap->colormap, pixels, npixels, &color, first_index + i)) return 0; } /* construct a blue ramp map */ else if (colormap->red_max == 0 && colormap->green_max == 0) for (n=colormap->base_pixel, i=0; i < ncolors; i++, n += delta) { color.pixel = n; color.blue = (unsigned short) ((i * 65535) / colormap->blue_max); color.red = color.green = 0; if (! ROorRWcell(dpy, colormap->colormap, pixels, npixels, &color, first_index + i)) return 0; } /* construct a standard red green blue cube map */ else { #define calc(max,mult) (((n / colormap->mult) % \ (colormap->max + 1)) * 65535) / colormap->max for (n=0, i=0; i < ncolors; i++, n += delta) { color.pixel = n + colormap->base_pixel; color.red = calc(red_max, red_mult); color.green = calc(green_max, green_mult); color.blue = calc(blue_max, blue_mult); if (! ROorRWcell(dpy, colormap->colormap, pixels, npixels, &color, first_index + i)) return 0; } #undef calc } /* We have a read-only map defined. Now free unused cells, * first those occurring before the contiguous sequence begins, * then any following the contiguous sequence. */ if (first_index) XFreeColors(dpy, colormap->colormap, pixels, first_index, (unsigned long) 0); if (remainder) XFreeColors(dpy, colormap->colormap, &(pixels[first_index + ncolors]), remainder, (unsigned long) 0); free((char *) pixels); return 1; } /****************************************************************************/ static int ROmap(dpy, cmap, pixels, m, n) Display *dpy; /* the X server connection */ Colormap cmap; /* specifies colormap ID */ unsigned long pixels[]; /* returns pixel allocations */ int m; /* specifies colormap size */ int n; /* specifies number of colors */ { register int p; /* first try to allocate the entire colormap */ if (XAllocColorCells(dpy, cmap, 1, (unsigned long *) NULL, (unsigned) 0, pixels, (unsigned) m)) return m; /* Allocate all available cells in the colormap, using a binary * algorithm to discover how many cells we can allocate in the colormap. */ m--; while (n <= m) { p = n + ((m - n + 1) / 2); if (XAllocColorCells(dpy, cmap, 1, (unsigned long *) NULL, (unsigned) 0, pixels, (unsigned) p)) { if (p == m) return p; else { XFreeColors(dpy, cmap, pixels, p, (unsigned long) 0); n = p; } } else m = p - 1; } return 0; } /****************************************************************************/ static Status contiguous(pixels, npixels, ncolors, delta, first, rem) unsigned long pixels[]; /* specifies allocated pixels */ int npixels; /* specifies count of alloc'd pixels */ int ncolors; /* specifies needed sequence length */ unsigned long delta; /* between pixels */ int *first; /* returns first index of sequence */ int *rem; /* returns first index after sequence, * or 0, if none follow */ { register int i = 1; /* walking index into the pixel array */ register int count = 1; /* length of sequence discovered so far */ *first = 0; if (npixels == ncolors) { *rem = 0; return 1; } *rem = npixels - 1; while (count < ncolors && ncolors - count <= *rem) { if (pixels[i-1] + delta == pixels[i]) count++; else { count = 1; *first = i; } i++; (*rem)--; } if (count != ncolors) return 0; return 1; } /****************************************************************************/ static Status ROorRWcell(dpy, cmap, pixels, npixels, color, p) Display *dpy; Colormap cmap; unsigned long pixels[]; int npixels; XColor *color; unsigned long p; { unsigned long pixel; XColor request; /* Free the read/write allocation of one cell in the colormap. * Request a read only allocation of one cell in the colormap. * If the read only allocation cannot be granted, give up, because * there must be no free cells in the colormap. * If the read only allocation is granted, but gives us a cell which * is not the one that we just freed, it is probably the case that * we are trying allocate White or Black or some other color which * already has a read-only allocation in the map. So we try to * allocate the previously freed cell with a read/write allocation, * because we want contiguous cells for image processing algorithms. */ pixel = color->pixel; request.red = color->red; request.green = color->green; request.blue = color->blue; XFreeColors(dpy, cmap, &pixel, 1, (unsigned long) 0); if (! XAllocColor(dpy, cmap, color) || (color->pixel != pixel && (!RWcell(dpy, cmap, color, &request, &pixel)))) { free_cells(dpy, cmap, pixels, npixels, (int)p); return 0; } return 1; } /****************************************************************************/ static void free_cells(dpy, cmap, pixels, npixels, p) Display *dpy; Colormap cmap; unsigned long pixels[]; /* to be freed */ int npixels; /* original number allocated */ int p; { /* One of the npixels allocated has already been freed. * p is the index of the freed pixel. * First free the pixels preceding p, and there are p of them; * then free the pixels following p, there are npixels - p - 1 of them. */ XFreeColors(dpy, cmap, pixels, p, (unsigned long) 0); XFreeColors(dpy, cmap, &(pixels[p+1]), npixels - p - 1, (unsigned long) 0); free((char *) pixels); } /****************************************************************************/ static Status RWcell(dpy, cmap, color, request, pixel) Display *dpy; Colormap cmap; XColor *color; XColor *request; unsigned long *pixel; { unsigned long n = *pixel; XFreeColors(dpy, cmap, &(color->pixel), 1, (unsigned long)0); if (! XAllocColorCells(dpy, cmap, (Bool) 0, (unsigned long *) NULL, (unsigned) 0, pixel, (unsigned) 1)) return 0; if (*pixel != n) { XFreeColors(dpy, cmap, pixel, 1, (unsigned long) 0); return 0; } color->pixel = *pixel; color->flags = DoRed | DoGreen | DoBlue; color->red = request->red; color->green = request->green; color->blue = request->blue; XStoreColors(dpy, cmap, color, 1); return 1; } /****************************************************************************/ static int compare(e1, e2) unsigned long *e1, *e2; { if (*e1 < *e2) return -1; if (*e1 > *e2) return 1; return 0; } /****************************************************************************/ static Status readonly_map(dpy, vinfo, colormap) Display *dpy; XVisualInfo *vinfo; XStandardColormap *colormap; { int i, last_pixel; XColor color; last_pixel = (colormap->red_max + 1) * (colormap->green_max + 1) * (colormap->blue_max + 1) + colormap->base_pixel - 1; for(i=colormap->base_pixel; i <= last_pixel; i++) { color.pixel = (unsigned long) i; color.red = (unsigned short) (((i/colormap->red_mult) * 65535) / colormap->red_max); if (vinfo->class == StaticColor) { color.green = (unsigned short) ((((i/colormap->green_mult) % (colormap->green_max + 1)) * 65535) / colormap->green_max); color.blue = (unsigned short) (((i%colormap->green_mult) * 65535) / colormap->blue_max); } else /* vinfo->class == GrayScale, old style allocation XXX */ color.green = color.blue = color.red; XAllocColor(dpy, colormap->colormap, &color); if (color.pixel != (unsigned long) i) return 0; } return 1; }