/***************************************************************************** Copyright (c) 1994, 2016, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2017, 2021, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA *****************************************************************************/ /********************************************************************//** @file rem/rem0rec.cc Record manager Created 5/30/1994 Heikki Tuuri *************************************************************************/ #include "rem0rec.h" #include "page0page.h" #include "mtr0log.h" #include "fts0fts.h" #include "trx0sys.h" #include "row0log.h" /* PHYSICAL RECORD (OLD STYLE) =========================== The physical record, which is the data type of all the records found in index pages of the database, has the following format (lower addresses and more significant bits inside a byte are below represented on a higher text line): | offset of the end of the last field of data, the most significant bit is set to 1 if and only if the field is SQL-null, if the offset is 2-byte, then the second most significant bit is set to 1 if the field is stored on another page: mostly this will occur in the case of big BLOB fields | ... | offset of the end of the first field of data + the SQL-null bit | | 4 bits used to delete mark a record, and mark a predefined minimum record in alphabetical order | | 4 bits giving the number of records owned by this record (this term is explained in page0page.h) | | 13 bits giving the order number of this record in the heap of the index page | | 10 bits giving the number of fields in this record | | 1 bit which is set to 1 if the offsets above are given in one byte format, 0 if in two byte format | | two bytes giving an absolute pointer to the next record in the page | ORIGIN of the record | first field of data | ... | last field of data | The origin of the record is the start address of the first field of data. The offsets are given relative to the origin. The offsets of the data fields are stored in an inverted order because then the offset of the first fields are near the origin, giving maybe a better processor cache hit rate in searches. The offsets of the data fields are given as one-byte (if there are less than 127 bytes of data in the record) or two-byte unsigned integers. The most significant bit is not part of the offset, instead it indicates the SQL-null if the bit is set to 1. */ /* PHYSICAL RECORD (NEW STYLE) =========================== The physical record, which is the data type of all the records found in index pages of the database, has the following format (lower addresses and more significant bits inside a byte are below represented on a higher text line): | length of the last non-null variable-length field of data: if the maximum length is 255, one byte; otherwise, 0xxxxxxx (one byte, length=0..127), or 1exxxxxxxxxxxxxx (two bytes, length=128..16383, extern storage flag) | ... | length of first variable-length field of data | | SQL-null flags (1 bit per nullable field), padded to full bytes | | 4 bits used to delete mark a record, and mark a predefined minimum record in alphabetical order | | 4 bits giving the number of records owned by this record (this term is explained in page0page.h) | | 13 bits giving the order number of this record in the heap of the index page | | 3 bits record type: 000=conventional, 001=node pointer (inside B-tree), 010=infimum, 011=supremum, 1xx=reserved | | two bytes giving a relative pointer to the next record in the page | ORIGIN of the record | first field of data | ... | last field of data | The origin of the record is the start address of the first field of data. The offsets are given relative to the origin. The offsets of the data fields are stored in an inverted order because then the offset of the first fields are near the origin, giving maybe a better processor cache hit rate in searches. The offsets of the data fields are given as one-byte (if there are less than 127 bytes of data in the record) or two-byte unsigned integers. The most significant bit is not part of the offset, instead it indicates the SQL-null if the bit is set to 1. */ /* CANONICAL COORDINATES. A record can be seen as a single string of 'characters' in the following way: catenate the bytes in each field, in the order of fields. An SQL-null field is taken to be an empty sequence of bytes. Then after the position of each field insert in the string the 'character' , except that after an SQL-null field insert . Now the ordinal position of each byte in this canonical string is its canonical coordinate. So, for the record ("AA", SQL-NULL, "BB", ""), the canonical string is "AABB". We identify prefixes (= initial segments) of a record with prefixes of the canonical string. The canonical length of the prefix is the length of the corresponding prefix of the canonical string. The canonical length of a record is the length of its canonical string. For example, the maximal common prefix of records ("AA", SQL-NULL, "BB", "C") and ("AA", SQL-NULL, "B", "C") is "AAB", and its canonical length is 5. A complete-field prefix of a record is a prefix which ends at the end of some field (containing also ). A record is a complete-field prefix of another record, if the corresponding canonical strings have the same property. */ /***************************************************************//** Validates the consistency of an old-style physical record. @return TRUE if ok */ static ibool rec_validate_old( /*=============*/ const rec_t* rec); /*!< in: physical record */ /******************************************************//** Determine how many of the first n columns in a compact physical record are stored externally. @return number of externally stored columns */ ulint rec_get_n_extern_new( /*=================*/ const rec_t* rec, /*!< in: compact physical record */ const dict_index_t* index, /*!< in: record descriptor */ ulint n) /*!< in: number of columns to scan */ { const byte* nulls; const byte* lens; ulint null_mask; ulint n_extern; ulint i; ut_ad(dict_table_is_comp(index->table)); ut_ad(!index->table->supports_instant() || index->is_dummy); ut_ad(!index->is_instant()); ut_ad(rec_get_status(rec) == REC_STATUS_ORDINARY || rec_get_status(rec) == REC_STATUS_COLUMNS_ADDED); ut_ad(n == ULINT_UNDEFINED || n <= dict_index_get_n_fields(index)); if (n == ULINT_UNDEFINED) { n = dict_index_get_n_fields(index); } nulls = rec - (REC_N_NEW_EXTRA_BYTES + 1); lens = nulls - UT_BITS_IN_BYTES(index->n_nullable); null_mask = 1; n_extern = 0; i = 0; /* read the lengths of fields 0..n */ do { const dict_field_t* field = dict_index_get_nth_field(index, i); const dict_col_t* col = dict_field_get_col(field); ulint len; if (!(col->prtype & DATA_NOT_NULL)) { /* nullable field => read the null flag */ if (UNIV_UNLIKELY(!(byte) null_mask)) { nulls--; null_mask = 1; } if (*nulls & null_mask) { null_mask <<= 1; /* No length is stored for NULL fields. */ continue; } null_mask <<= 1; } if (UNIV_UNLIKELY(!field->fixed_len)) { /* Variable-length field: read the length */ len = *lens--; /* If the maximum length of the field is up to 255 bytes, the actual length is always stored in one byte. If the maximum length is more than 255 bytes, the actual length is stored in one byte for 0..127. The length will be encoded in two bytes when it is 128 or more, or when the field is stored externally. */ if (DATA_BIG_COL(col)) { if (len & 0x80) { /* 1exxxxxxx xxxxxxxx */ if (len & 0x40) { n_extern++; } lens--; } } } } while (++i < n); return(n_extern); } /** Get the added field count in a REC_STATUS_COLUMNS_ADDED record. @param[in,out] header variable header of a REC_STATUS_COLUMNS_ADDED record @return number of added fields */ static inline unsigned rec_get_n_add_field(const byte*& header) { unsigned n_fields_add = *--header; if (n_fields_add < 0x80) { ut_ad(rec_get_n_add_field_len(n_fields_add) == 1); return n_fields_add; } n_fields_add &= 0x7f; n_fields_add |= unsigned(*--header) << 7; ut_ad(n_fields_add < REC_MAX_N_FIELDS); ut_ad(rec_get_n_add_field_len(n_fields_add) == 2); return n_fields_add; } /** Format of a leaf-page ROW_FORMAT!=REDUNDANT record */ enum rec_leaf_format { /** Temporary file record */ REC_LEAF_TEMP, /** Temporary file record, with added columns (REC_STATUS_COLUMNS_ADDED) */ REC_LEAF_TEMP_COLUMNS_ADDED, /** Normal (REC_STATUS_ORDINARY) */ REC_LEAF_ORDINARY, /** With added columns (REC_STATUS_COLUMNS_ADDED) */ REC_LEAF_COLUMNS_ADDED }; /** Determine the offset to each field in a leaf-page record in ROW_FORMAT=COMPACT,DYNAMIC,COMPRESSED. This is a special case of rec_init_offsets() and rec_get_offsets_func(). @param[in] rec leaf-page record @param[in] index the index that the record belongs in @param[in] n_core number of core fields (index->n_core_fields) @param[in] def_val default values for non-core fields, or NULL to refer to index->fields[].col->def_val @param[in,out] offsets offsets, with valid rec_offs_n_fields(offsets) @param[in] format record format */ static inline void rec_init_offsets_comp_ordinary( const rec_t* rec, const dict_index_t* index, rec_offs* offsets, ulint n_core, const dict_col_t::def_t*def_val, rec_leaf_format format) { rec_offs offs = 0; rec_offs any = 0; const byte* nulls = rec; const byte* lens = NULL; ulint n_fields = n_core; ulint null_mask = 1; ut_ad(n_core > 0); ut_ad(index->n_core_fields >= n_core); ut_ad(index->n_fields >= index->n_core_fields); ut_ad(index->n_core_null_bytes <= UT_BITS_IN_BYTES(index->n_nullable)); ut_ad(format == REC_LEAF_TEMP || format == REC_LEAF_TEMP_COLUMNS_ADDED || dict_table_is_comp(index->table)); ut_ad(format != REC_LEAF_TEMP_COLUMNS_ADDED || index->n_fields == rec_offs_n_fields(offsets)); ut_d(ulint n_null= 0); const unsigned n_core_null_bytes = UNIV_UNLIKELY(index->n_core_fields != n_core) ? UT_BITS_IN_BYTES(unsigned(index->get_n_nullable(n_core))) : index->n_core_null_bytes; switch (format) { case REC_LEAF_TEMP: if (dict_table_is_comp(index->table)) { /* No need to do adjust fixed_len=0. We only need to adjust it for ROW_FORMAT=REDUNDANT. */ format = REC_LEAF_ORDINARY; } goto ordinary; case REC_LEAF_ORDINARY: nulls -= REC_N_NEW_EXTRA_BYTES; ordinary: lens = --nulls - n_core_null_bytes; ut_d(n_null = std::min(n_core_null_bytes * 8U, index->n_nullable)); break; case REC_LEAF_COLUMNS_ADDED: /* We would have !index->is_instant() when rolling back an instant ADD COLUMN operation. */ nulls -= REC_N_NEW_EXTRA_BYTES; ut_ad(index->is_instant()); /* fall through */ case REC_LEAF_TEMP_COLUMNS_ADDED: n_fields = n_core + 1 + rec_get_n_add_field(nulls); ut_ad(n_fields <= index->n_fields); const ulint n_nullable = index->get_n_nullable(n_fields); const ulint n_null_bytes = UT_BITS_IN_BYTES(n_nullable); ut_d(n_null = n_nullable); ut_ad(n_null <= index->n_nullable); ut_ad(n_null_bytes >= n_core_null_bytes || n_core < index->n_core_fields); lens = --nulls - n_null_bytes; } #ifdef UNIV_DEBUG /* We cannot invoke rec_offs_make_valid() if format==REC_LEAF_TEMP. Similarly, rec_offs_validate() will fail in that case, because it invokes rec_get_status(). */ memcpy(&offsets[RECORD_OFFSET], &rec, sizeof(rec)); memcpy(&offsets[INDEX_OFFSET], &index, sizeof(index)); #endif /* UNIV_DEBUG */ /* read the lengths of fields 0..n_fields */ ulint i = 0; do { const dict_field_t* field = dict_index_get_nth_field(index, i); const dict_col_t* col = dict_field_get_col(field); rec_offs len; /* set default value flag */ if (i < n_fields) { } else if (def_val) { const dict_col_t::def_t& d = def_val[i - n_core]; if (!d.data) { len = combine(offs, SQL_NULL); ut_ad(d.len == UNIV_SQL_NULL); } else { len = combine(offs, DEFAULT); any |= REC_OFFS_DEFAULT; } goto resolved; } else { ulint dlen; if (!index->instant_field_value(i, &dlen)) { len = combine(offs, SQL_NULL); ut_ad(dlen == UNIV_SQL_NULL); } else { len = combine(offs, DEFAULT); any |= REC_OFFS_DEFAULT; } goto resolved; } if (!(col->prtype & DATA_NOT_NULL)) { /* nullable field => read the null flag */ ut_ad(n_null--); if (UNIV_UNLIKELY(!(byte) null_mask)) { nulls--; null_mask = 1; } if (*nulls & null_mask) { null_mask <<= 1; /* No length is stored for NULL fields. We do not advance offs, and we set the length to zero and enable the SQL NULL flag in offsets[]. */ len = combine(offs, SQL_NULL); goto resolved; } null_mask <<= 1; } if (!field->fixed_len || (format == REC_LEAF_TEMP && !dict_col_get_fixed_size(col, true))) { /* Variable-length field: read the length */ len = *lens--; /* If the maximum length of the field is up to 255 bytes, the actual length is always stored in one byte. If the maximum length is more than 255 bytes, the actual length is stored in one byte for 0..127. The length will be encoded in two bytes when it is 128 or more, or when the field is stored externally. */ if ((len & 0x80) && DATA_BIG_COL(col)) { /* 1exxxxxxx xxxxxxxx */ len <<= 8; len |= *lens--; offs += get_value(len); if (UNIV_UNLIKELY(len & 0x4000)) { ut_ad(dict_index_is_clust(index)); any |= REC_OFFS_EXTERNAL; len = combine(offs, STORED_OFFPAGE); } else { len = offs; } goto resolved; } len = offs += len; } else { len = offs += field->fixed_len; } resolved: rec_offs_base(offsets)[i + 1] = len; } while (++i < rec_offs_n_fields(offsets)); *rec_offs_base(offsets) = static_cast(rec - (lens + 1)) | REC_OFFS_COMPACT | any; } #ifdef UNIV_DEBUG /** Update debug data in offsets, in order to tame rec_offs_validate(). @param[in] rec record @param[in] index the index that the record belongs in @param[in] leaf whether the record resides in a leaf page @param[in,out] offsets offsets from rec_get_offsets() to adjust */ void rec_offs_make_valid( const rec_t* rec, const dict_index_t* index, bool leaf, rec_offs* offsets) { ut_ad(rec_offs_n_fields(offsets) <= (leaf ? dict_index_get_n_fields(index) : dict_index_get_n_unique_in_tree_nonleaf(index) + 1) || index->is_dummy || dict_index_is_ibuf(index)); const bool is_user_rec = (dict_table_is_comp(index->table) ? rec_get_heap_no_new(rec) : rec_get_heap_no_old(rec)) >= PAGE_HEAP_NO_USER_LOW; ulint n = rec_get_n_fields(rec, index); /* The infimum and supremum records carry 1 field. */ ut_ad(is_user_rec || n == 1); ut_ad(is_user_rec || rec_offs_n_fields(offsets) == 1); ut_ad(!is_user_rec || (n + (index->id == DICT_INDEXES_ID)) >= index->n_core_fields || n >= rec_offs_n_fields(offsets)); for (; n < rec_offs_n_fields(offsets); n++) { ut_ad(leaf); ut_ad(get_type(rec_offs_base(offsets)[1 + n]) == DEFAULT); } memcpy(&offsets[RECORD_OFFSET], &rec, sizeof(rec)); memcpy(&offsets[INDEX_OFFSET], &index, sizeof(index)); } /** Validate offsets returned by rec_get_offsets(). @param[in] rec record, or NULL @param[in] index the index that the record belongs in, or NULL @param[in,out] offsets the offsets of the record @return true */ bool rec_offs_validate( const rec_t* rec, const dict_index_t* index, const rec_offs* offsets) { ulint i = rec_offs_n_fields(offsets); ulint last = ULINT_MAX; ulint comp = *rec_offs_base(offsets) & REC_OFFS_COMPACT; if (rec) { ut_ad(!memcmp(&rec, &offsets[RECORD_OFFSET], sizeof(rec))); if (!comp) { const bool is_user_rec = rec_get_heap_no_old(rec) >= PAGE_HEAP_NO_USER_LOW; ulint n = rec_get_n_fields_old(rec); /* The infimum and supremum records carry 1 field. */ ut_ad(is_user_rec || n == 1); ut_ad(is_user_rec || i == 1); ut_ad(!is_user_rec || n >= i || !index || (n + (index->id == DICT_INDEXES_ID)) >= index->n_core_fields); for (; n < i; n++) { ut_ad(get_type(rec_offs_base(offsets)[1 + n]) == DEFAULT); } } } if (index) { ulint max_n_fields; ut_ad(!memcmp(&index, &offsets[INDEX_OFFSET], sizeof(index))); max_n_fields = ut_max( dict_index_get_n_fields(index), dict_index_get_n_unique_in_tree(index) + 1); if (comp && rec) { switch (rec_get_status(rec)) { case REC_STATUS_COLUMNS_ADDED: case REC_STATUS_ORDINARY: break; case REC_STATUS_NODE_PTR: max_n_fields = dict_index_get_n_unique_in_tree( index) + 1; break; case REC_STATUS_INFIMUM: case REC_STATUS_SUPREMUM: max_n_fields = 1; break; default: ut_error; } } /* index->n_def == 0 for dummy indexes if !comp */ ut_a(!comp || index->n_def); ut_a(!index->n_def || i <= max_n_fields); } while (i--) { ulint curr = get_value(rec_offs_base(offsets)[1 + i]); ut_a(curr <= last); last = curr; } return(TRUE); } #endif /* UNIV_DEBUG */ /** Determine the offsets to each field in the record. The offsets are written to a previously allocated array of ulint, where rec_offs_n_fields(offsets) has been initialized to the number of fields in the record. The rest of the array will be initialized by this function. rec_offs_base(offsets)[0] will be set to the extra size (if REC_OFFS_COMPACT is set, the record is in the new format; if REC_OFFS_EXTERNAL is set, the record contains externally stored columns), and rec_offs_base(offsets)[1..n_fields] will be set to offsets past the end of fields 0..n_fields, or to the beginning of fields 1..n_fields+1. When the type of the offset at [i+1] is (SQL_NULL), the field i is NULL. When the type of the offset at [i+1] is (STORED_OFFPAGE), the field i is stored externally. @param[in] rec record @param[in] index the index that the record belongs in @param[in] n_core 0, or index->n_core_fields for leaf page @param[in,out] offsets array of offsets, with valid rec_offs_n_fields() */ static void rec_init_offsets( const rec_t* rec, const dict_index_t* index, ulint n_core, rec_offs* offsets) { ulint i = 0; rec_offs offs; ut_ad(index->n_core_null_bytes <= UT_BITS_IN_BYTES(index->n_nullable)); ut_d(memcpy(&offsets[RECORD_OFFSET], &rec, sizeof(rec))); ut_d(memcpy(&offsets[INDEX_OFFSET], &index, sizeof(index))); ut_ad(index->n_fields >= n_core); ut_ad(index->n_core_fields >= n_core); if (dict_table_is_comp(index->table)) { const byte* nulls; const byte* lens; dict_field_t* field; ulint null_mask; rec_comp_status_t status = rec_get_status(rec); ulint n_node_ptr_field = ULINT_UNDEFINED; switch (UNIV_EXPECT(status, REC_STATUS_ORDINARY)) { case REC_STATUS_INFIMUM: case REC_STATUS_SUPREMUM: /* the field is 8 bytes long */ rec_offs_base(offsets)[0] = REC_N_NEW_EXTRA_BYTES | REC_OFFS_COMPACT; rec_offs_base(offsets)[1] = 8; return; case REC_STATUS_NODE_PTR: ut_ad(!n_core); n_node_ptr_field = dict_index_get_n_unique_in_tree_nonleaf( index); break; case REC_STATUS_COLUMNS_ADDED: ut_ad(index->is_instant()); rec_init_offsets_comp_ordinary(rec, index, offsets, n_core, NULL, REC_LEAF_COLUMNS_ADDED); return; case REC_STATUS_ORDINARY: rec_init_offsets_comp_ordinary(rec, index, offsets, n_core, NULL, REC_LEAF_ORDINARY); return; } /* The n_nullable flags in the clustered index node pointer records in ROW_FORMAT=COMPACT or ROW_FORMAT=DYNAMIC must reflect the number of 'core columns'. These flags are useless garbage, and they are only reserved because of file format compatibility. (Clustered index node pointer records only contain the PRIMARY KEY columns, which are always NOT NULL, so we should have used n_nullable=0.) */ ut_ad(index->n_core_fields > 0); nulls = rec - (REC_N_NEW_EXTRA_BYTES + 1); lens = nulls - index->n_core_null_bytes; offs = 0; null_mask = 1; /* read the lengths of fields 0..n */ do { rec_offs len; if (UNIV_UNLIKELY(i == n_node_ptr_field)) { len = offs += REC_NODE_PTR_SIZE; goto resolved; } field = dict_index_get_nth_field(index, i); if (!(dict_field_get_col(field)->prtype & DATA_NOT_NULL)) { /* nullable field => read the null flag */ if (UNIV_UNLIKELY(!(byte) null_mask)) { nulls--; null_mask = 1; } if (*nulls & null_mask) { null_mask <<= 1; /* No length is stored for NULL fields. We do not advance offs, and we set the length to zero and enable the SQL NULL flag in offsets[]. */ len = combine(offs, SQL_NULL); goto resolved; } null_mask <<= 1; } if (UNIV_UNLIKELY(!field->fixed_len)) { const dict_col_t* col = dict_field_get_col(field); /* Variable-length field: read the length */ len = *lens--; /* If the maximum length of the field is up to 255 bytes, the actual length is always stored in one byte. If the maximum length is more than 255 bytes, the actual length is stored in one byte for 0..127. The length will be encoded in two bytes when it is 128 or more, or when the field is stored externally. */ if (DATA_BIG_COL(col)) { if (len & 0x80) { /* 1exxxxxxx xxxxxxxx */ len <<= 8; len |= *lens--; /* B-tree node pointers must not contain externally stored columns. Thus the "e" flag must be 0. */ ut_a(!(len & 0x4000)); offs += get_value(len); len = offs; goto resolved; } } len = offs += len; } else { len = offs += field->fixed_len; } resolved: rec_offs_base(offsets)[i + 1] = len; } while (++i < rec_offs_n_fields(offsets)); *rec_offs_base(offsets) = static_cast(rec - (lens + 1)) | REC_OFFS_COMPACT; } else { /* Old-style record: determine extra size and end offsets */ offs = REC_N_OLD_EXTRA_BYTES; const ulint n_fields = rec_get_n_fields_old(rec); const ulint n = std::min(n_fields, rec_offs_n_fields(offsets)); rec_offs any; if (rec_get_1byte_offs_flag(rec)) { offs += static_cast(n_fields); any = offs; /* Determine offsets to fields */ do { offs = rec_1_get_field_end_info(rec, i); if (offs & REC_1BYTE_SQL_NULL_MASK) { offs &= ~REC_1BYTE_SQL_NULL_MASK; set_type(offs, SQL_NULL); } rec_offs_base(offsets)[1 + i] = offs; } while (++i < n); } else { offs += 2 * static_cast(n_fields); any = offs; /* Determine offsets to fields */ do { offs = rec_2_get_field_end_info(rec, i); if (offs & REC_2BYTE_SQL_NULL_MASK) { offs &= ~REC_2BYTE_SQL_NULL_MASK; set_type(offs, SQL_NULL); } if (offs & REC_2BYTE_EXTERN_MASK) { offs &= ~REC_2BYTE_EXTERN_MASK; set_type(offs, STORED_OFFPAGE); any |= REC_OFFS_EXTERNAL; } rec_offs_base(offsets)[1 + i] = offs; } while (++i < n); } if (i < rec_offs_n_fields(offsets)) { ut_ad(index->is_instant() || i + (index->id == DICT_INDEXES_ID) == rec_offs_n_fields(offsets)); ut_ad(i != 0); offs = combine(rec_offs_base(offsets)[i], DEFAULT); do { rec_offs_base(offsets)[1 + i] = offs; } while (++i < rec_offs_n_fields(offsets)); any |= REC_OFFS_DEFAULT; } *rec_offs_base(offsets) = any; } } /** Determine the offsets to each field in an index record. @param[in] rec physical record @param[in] index the index that the record belongs to @param[in,out] offsets array comprising offsets[0] allocated elements, or an array from rec_get_offsets(), or NULL @param[in] n_core 0, or index->n_core_fields for leaf page @param[in] n_fields maximum number of offsets to compute (ULINT_UNDEFINED to compute all offsets) @param[in,out] heap memory heap @return the new offsets */ rec_offs* rec_get_offsets_func( const rec_t* rec, const dict_index_t* index, rec_offs* offsets, ulint n_core, ulint n_fields, #ifdef UNIV_DEBUG const char* file, /*!< in: file name where called */ unsigned line, /*!< in: line number where called */ #endif /* UNIV_DEBUG */ mem_heap_t** heap) /*!< in/out: memory heap */ { ulint n; ulint size; ut_ad(index->n_core_fields >= n_core); ut_ad(index->n_fields >= index->n_core_fields); if (dict_table_is_comp(index->table)) { switch (UNIV_EXPECT(rec_get_status(rec), REC_STATUS_ORDINARY)) { case REC_STATUS_COLUMNS_ADDED: case REC_STATUS_ORDINARY: ut_ad(n_core); n = dict_index_get_n_fields(index); break; case REC_STATUS_NODE_PTR: /* Node pointer records consist of the uniquely identifying fields of the record followed by a child page number field. */ ut_ad(!n_core); n = dict_index_get_n_unique_in_tree_nonleaf(index) + 1; break; case REC_STATUS_INFIMUM: case REC_STATUS_SUPREMUM: /* infimum or supremum record */ ut_ad(rec_get_heap_no_new(rec) == ulint(rec_get_status(rec) == REC_STATUS_INFIMUM ? PAGE_HEAP_NO_INFIMUM : PAGE_HEAP_NO_SUPREMUM)); n = 1; break; default: ut_error; return(NULL); } } else { n = rec_get_n_fields_old(rec); /* Here, rec can be allocated from the heap (copied from an index page record), or it can be located in an index page. If rec is not in an index page, then page_rec_is_user_rec(rec) and similar predicates cannot be evaluated. We can still distinguish the infimum and supremum record based on the heap number. */ const bool is_user_rec = rec_get_heap_no_old(rec) >= PAGE_HEAP_NO_USER_LOW; /* The infimum and supremum records carry 1 field. */ ut_ad(is_user_rec || n == 1); ut_ad(!is_user_rec || n_core || index->is_dummy || dict_index_is_ibuf(index) || n == n_fields /* dict_stats_analyze_index_level() */ || n == dict_index_get_n_unique_in_tree_nonleaf(index) + 1); ut_ad(!is_user_rec || !n_core || index->is_dummy || dict_index_is_ibuf(index) || n == n_fields /* btr_pcur_restore_position() */ || (n + (index->id == DICT_INDEXES_ID) >= n_core && n <= index->n_fields)); if (is_user_rec && n_core && n < index->n_fields) { ut_ad(!index->is_dummy); ut_ad(!dict_index_is_ibuf(index)); n = index->n_fields; } } if (UNIV_UNLIKELY(n_fields < n)) { n = n_fields; } /* The offsets header consists of the allocation size at offsets[0] and the REC_OFFS_HEADER_SIZE bytes. */ size = n + (1 + REC_OFFS_HEADER_SIZE); if (UNIV_UNLIKELY(!offsets) || UNIV_UNLIKELY(rec_offs_get_n_alloc(offsets) < size)) { if (UNIV_UNLIKELY(!*heap)) { *heap = mem_heap_create_at(size * sizeof(*offsets), file, line); } offsets = static_cast( mem_heap_alloc(*heap, size * sizeof(*offsets))); rec_offs_set_n_alloc(offsets, size); } rec_offs_set_n_fields(offsets, n); rec_init_offsets(rec, index, n_core, offsets); return(offsets); } /******************************************************//** The following function determines the offsets to each field in the record. It can reuse a previously allocated array. */ void rec_get_offsets_reverse( /*====================*/ const byte* extra, /*!< in: the extra bytes of a compact record in reverse order, excluding the fixed-size REC_N_NEW_EXTRA_BYTES */ const dict_index_t* index, /*!< in: record descriptor */ ulint node_ptr,/*!< in: nonzero=node pointer, 0=leaf node */ rec_offs* offsets)/*!< in/out: array consisting of offsets[0] allocated elements */ { ulint n; ulint i; rec_offs offs; rec_offs any_ext = 0; const byte* nulls; const byte* lens; dict_field_t* field; ulint null_mask; ulint n_node_ptr_field; ut_ad(dict_table_is_comp(index->table)); ut_ad(!index->is_instant()); if (UNIV_UNLIKELY(node_ptr != 0)) { n_node_ptr_field = dict_index_get_n_unique_in_tree_nonleaf(index); n = n_node_ptr_field + 1; } else { n_node_ptr_field = ULINT_UNDEFINED; n = dict_index_get_n_fields(index); } ut_a(rec_offs_get_n_alloc(offsets) >= n + (1 + REC_OFFS_HEADER_SIZE)); rec_offs_set_n_fields(offsets, n); nulls = extra; lens = nulls + UT_BITS_IN_BYTES(index->n_nullable); i = offs = 0; null_mask = 1; /* read the lengths of fields 0..n */ do { rec_offs len; if (UNIV_UNLIKELY(i == n_node_ptr_field)) { len = offs += REC_NODE_PTR_SIZE; goto resolved; } field = dict_index_get_nth_field(index, i); if (!(dict_field_get_col(field)->prtype & DATA_NOT_NULL)) { /* nullable field => read the null flag */ if (UNIV_UNLIKELY(!(byte) null_mask)) { nulls++; null_mask = 1; } if (*nulls & null_mask) { null_mask <<= 1; /* No length is stored for NULL fields. We do not advance offs, and we set the length to zero and enable the SQL NULL flag in offsets[]. */ len = combine(offs, SQL_NULL); goto resolved; } null_mask <<= 1; } if (UNIV_UNLIKELY(!field->fixed_len)) { /* Variable-length field: read the length */ const dict_col_t* col = dict_field_get_col(field); len = *lens++; /* If the maximum length of the field is up to 255 bytes, the actual length is always stored in one byte. If the maximum length is more than 255 bytes, the actual length is stored in one byte for 0..127. The length will be encoded in two bytes when it is 128 or more, or when the field is stored externally. */ if (DATA_BIG_COL(col)) { if (len & 0x80) { /* 1exxxxxxx xxxxxxxx */ len <<= 8; len |= *lens++; offs += get_value(len); if (UNIV_UNLIKELY(len & 0x4000)) { any_ext = REC_OFFS_EXTERNAL; len = combine(offs, STORED_OFFPAGE); } else { len = offs; } goto resolved; } } len = offs += len; } else { len = offs += static_cast(field->fixed_len); } resolved: rec_offs_base(offsets)[i + 1] = len; } while (++i < rec_offs_n_fields(offsets)); ut_ad(lens >= extra); *rec_offs_base(offsets) = static_cast(lens - extra + REC_N_NEW_EXTRA_BYTES) | REC_OFFS_COMPACT | any_ext; } /************************************************************//** The following function is used to get the offset to the nth data field in an old-style record. @return offset to the field */ ulint rec_get_nth_field_offs_old( /*=======================*/ const rec_t* rec, /*!< in: record */ ulint n, /*!< in: index of the field */ ulint* len) /*!< out: length of the field; UNIV_SQL_NULL if SQL null */ { ulint os; ulint next_os; ut_a(n < rec_get_n_fields_old(rec)); if (rec_get_1byte_offs_flag(rec)) { os = rec_1_get_field_start_offs(rec, n); next_os = rec_1_get_field_end_info(rec, n); if (next_os & REC_1BYTE_SQL_NULL_MASK) { *len = UNIV_SQL_NULL; return(os); } next_os = next_os & ~REC_1BYTE_SQL_NULL_MASK; } else { os = rec_2_get_field_start_offs(rec, n); next_os = rec_2_get_field_end_info(rec, n); if (next_os & REC_2BYTE_SQL_NULL_MASK) { *len = UNIV_SQL_NULL; return(os); } next_os = next_os & ~(REC_2BYTE_SQL_NULL_MASK | REC_2BYTE_EXTERN_MASK); } *len = next_os - os; ut_ad(*len < srv_page_size); return(os); } /**********************************************************//** Determines the size of a data tuple prefix in ROW_FORMAT=COMPACT. @return total size */ template MY_ATTRIBUTE((warn_unused_result, nonnull(1,2))) static inline ulint rec_get_converted_size_comp_prefix_low( /*===================================*/ const dict_index_t* index, /*!< in: record descriptor; dict_table_is_comp() is assumed to hold, even if it does not */ const dfield_t* fields, /*!< in: array of data fields */ ulint n_fields,/*!< in: number of data fields */ ulint* extra, /*!< out: extra size */ rec_comp_status_t status, /*!< in: status flags */ bool temp) /*!< in: whether this is a temporary file record */ { ulint extra_size = temp ? 0 : REC_N_NEW_EXTRA_BYTES; ulint data_size; ulint i; ut_ad(n_fields > 0); ut_ad(n_fields <= dict_index_get_n_fields(index)); ut_d(ulint n_null = index->n_nullable); ut_ad(status == REC_STATUS_ORDINARY || status == REC_STATUS_NODE_PTR || status == REC_STATUS_COLUMNS_ADDED); unsigned n_core_fields = redundant_temp ? row_log_get_n_core_fields(index) : index->n_core_fields; if (status == REC_STATUS_COLUMNS_ADDED && (!temp || n_fields > n_core_fields)) { if (!redundant_temp) { ut_ad(index->is_instant()); } ut_ad(UT_BITS_IN_BYTES(n_null) >= index->n_core_null_bytes); extra_size += UT_BITS_IN_BYTES(index->get_n_nullable(n_fields)) + rec_get_n_add_field_len(n_fields - 1 - n_core_fields); } else { ut_ad(n_fields <= n_core_fields); extra_size += index->n_core_null_bytes; } data_size = 0; if (temp && dict_table_is_comp(index->table)) { /* No need to do adjust fixed_len=0. We only need to adjust it for ROW_FORMAT=REDUNDANT. */ temp = false; } /* read the lengths of fields 0..n */ for (i = 0; i < n_fields; i++) { const dict_field_t* field; ulint len; ulint fixed_len; const dict_col_t* col; field = dict_index_get_nth_field(index, i); len = dfield_get_len(&fields[i]); col = dict_field_get_col(field); #ifdef UNIV_DEBUG const dtype_t* type = dfield_get_type(&fields[i]); if (dict_index_is_spatial(index)) { if (DATA_GEOMETRY_MTYPE(col->mtype) && i == 0) { ut_ad(type->prtype & DATA_GIS_MBR); } else { ut_ad(type->mtype == DATA_SYS_CHILD || dict_col_type_assert_equal(col, type)); } } else { ut_ad(dict_col_type_assert_equal(col, type)); } #endif /* All NULLable fields must be included in the n_null count. */ ut_ad((col->prtype & DATA_NOT_NULL) || n_null--); if (dfield_is_null(&fields[i])) { /* No length is stored for NULL fields. */ ut_ad(!(col->prtype & DATA_NOT_NULL)); continue; } ut_ad(len <= col->len || DATA_LARGE_MTYPE(col->mtype) || (col->len == 0 && col->mtype == DATA_VARCHAR)); fixed_len = field->fixed_len; if (temp && fixed_len && !dict_col_get_fixed_size(col, temp)) { fixed_len = 0; } /* If the maximum length of a variable-length field is up to 255 bytes, the actual length is always stored in one byte. If the maximum length is more than 255 bytes, the actual length is stored in one byte for 0..127. The length will be encoded in two bytes when it is 128 or more, or when the field is stored externally. */ if (fixed_len) { #ifdef UNIV_DEBUG ut_ad(len <= fixed_len); if (dict_index_is_spatial(index)) { ut_ad(type->mtype == DATA_SYS_CHILD || !col->mbmaxlen || len >= col->mbminlen * fixed_len / col->mbmaxlen); } else { ut_ad(type->mtype != DATA_SYS_CHILD); ut_ad(!col->mbmaxlen || len >= col->mbminlen * fixed_len / col->mbmaxlen); } /* dict_index_add_col() should guarantee this */ ut_ad(!field->prefix_len || fixed_len == field->prefix_len); #endif /* UNIV_DEBUG */ } else if (dfield_is_ext(&fields[i])) { ut_ad(DATA_BIG_COL(col)); extra_size += 2; } else if (len < 128 || !DATA_BIG_COL(col)) { extra_size++; } else { /* For variable-length columns, we look up the maximum length from the column itself. If this is a prefix index column shorter than 256 bytes, this will waste one byte. */ extra_size += 2; } data_size += len; } if (extra) { *extra = extra_size; } return(extra_size + data_size); } /**********************************************************//** Determines the size of a data tuple prefix in ROW_FORMAT=COMPACT. @return total size */ ulint rec_get_converted_size_comp_prefix( /*===============================*/ const dict_index_t* index, /*!< in: record descriptor */ const dfield_t* fields, /*!< in: array of data fields */ ulint n_fields,/*!< in: number of data fields */ ulint* extra) /*!< out: extra size */ { ut_ad(dict_table_is_comp(index->table)); return(rec_get_converted_size_comp_prefix_low( index, fields, n_fields, extra, REC_STATUS_ORDINARY, false)); } /**********************************************************//** Determines the size of a data tuple in ROW_FORMAT=COMPACT. @return total size */ ulint rec_get_converted_size_comp( /*========================*/ const dict_index_t* index, /*!< in: record descriptor; dict_table_is_comp() is assumed to hold, even if it does not */ rec_comp_status_t status, /*!< in: status bits of the record */ const dfield_t* fields, /*!< in: array of data fields */ ulint n_fields,/*!< in: number of data fields */ ulint* extra) /*!< out: extra size */ { ut_ad(n_fields > 0); switch (UNIV_EXPECT(status, REC_STATUS_ORDINARY)) { case REC_STATUS_ORDINARY: if (n_fields > index->n_core_fields) { ut_ad(index->is_instant()); status = REC_STATUS_COLUMNS_ADDED; } /* fall through */ case REC_STATUS_COLUMNS_ADDED: ut_ad(n_fields >= index->n_core_fields); ut_ad(n_fields <= index->n_fields); return rec_get_converted_size_comp_prefix_low( index, fields, n_fields, extra, status, false); case REC_STATUS_NODE_PTR: n_fields--; ut_ad(n_fields == dict_index_get_n_unique_in_tree_nonleaf( index)); ut_ad(dfield_get_len(&fields[n_fields]) == REC_NODE_PTR_SIZE); return REC_NODE_PTR_SIZE /* child page number */ + rec_get_converted_size_comp_prefix_low( index, fields, n_fields, extra, status, false); case REC_STATUS_INFIMUM: case REC_STATUS_SUPREMUM: /* not supported */ break; } ut_error; return(ULINT_UNDEFINED); } /***********************************************************//** Sets the value of the ith field SQL null bit of an old-style record. */ void rec_set_nth_field_null_bit( /*=======================*/ rec_t* rec, /*!< in: record */ ulint i, /*!< in: ith field */ ibool val) /*!< in: value to set */ { ulint info; if (rec_get_1byte_offs_flag(rec)) { info = rec_1_get_field_end_info(rec, i); if (val) { info = info | REC_1BYTE_SQL_NULL_MASK; } else { info = info & ~REC_1BYTE_SQL_NULL_MASK; } rec_1_set_field_end_info(rec, i, info); return; } info = rec_2_get_field_end_info(rec, i); if (val) { info = info | REC_2BYTE_SQL_NULL_MASK; } else { info = info & ~REC_2BYTE_SQL_NULL_MASK; } rec_2_set_field_end_info(rec, i, info); } /***********************************************************//** Sets an old-style record field to SQL null. The physical size of the field is not changed. */ void rec_set_nth_field_sql_null( /*=======================*/ rec_t* rec, /*!< in: record */ ulint n) /*!< in: index of the field */ { ulint offset; offset = rec_get_field_start_offs(rec, n); data_write_sql_null(rec + offset, rec_get_nth_field_size(rec, n)); rec_set_nth_field_null_bit(rec, n, TRUE); } /*********************************************************//** Builds an old-style physical record out of a data tuple and stores it beginning from the start of the given buffer. @return pointer to the origin of physical record */ static rec_t* rec_convert_dtuple_to_rec_old( /*==========================*/ byte* buf, /*!< in: start address of the physical record */ const dtuple_t* dtuple, /*!< in: data tuple */ ulint n_ext) /*!< in: number of externally stored columns */ { const dfield_t* field; ulint n_fields; ulint data_size; rec_t* rec; ulint end_offset; ulint ored_offset; ulint len; ulint i; ut_ad(buf && dtuple); ut_ad(dtuple_validate(dtuple)); ut_ad(dtuple_check_typed(dtuple)); n_fields = dtuple_get_n_fields(dtuple); data_size = dtuple_get_data_size(dtuple, 0); ut_ad(n_fields > 0); /* Calculate the offset of the origin in the physical record */ rec = buf + rec_get_converted_extra_size(data_size, n_fields, n_ext); /* Store the number of fields */ rec_set_n_fields_old(rec, n_fields); /* Set the info bits of the record */ rec_set_info_bits_old(rec, dtuple_get_info_bits(dtuple) & REC_INFO_BITS_MASK); rec_set_heap_no_old(rec, PAGE_HEAP_NO_USER_LOW); /* Store the data and the offsets */ end_offset = 0; if (!n_ext && data_size <= REC_1BYTE_OFFS_LIMIT) { rec_set_1byte_offs_flag(rec, TRUE); for (i = 0; i < n_fields; i++) { field = dtuple_get_nth_field(dtuple, i); if (dfield_is_null(field)) { len = dtype_get_sql_null_size( dfield_get_type(field), 0); data_write_sql_null(rec + end_offset, len); end_offset += len; ored_offset = end_offset | REC_1BYTE_SQL_NULL_MASK; } else { /* If the data is not SQL null, store it */ len = dfield_get_len(field); memcpy(rec + end_offset, dfield_get_data(field), len); end_offset += len; ored_offset = end_offset; } rec_1_set_field_end_info(rec, i, ored_offset); } } else { rec_set_1byte_offs_flag(rec, FALSE); for (i = 0; i < n_fields; i++) { field = dtuple_get_nth_field(dtuple, i); if (dfield_is_null(field)) { len = dtype_get_sql_null_size( dfield_get_type(field), 0); data_write_sql_null(rec + end_offset, len); end_offset += len; ored_offset = end_offset | REC_2BYTE_SQL_NULL_MASK; } else { /* If the data is not SQL null, store it */ len = dfield_get_len(field); memcpy(rec + end_offset, dfield_get_data(field), len); end_offset += len; ored_offset = end_offset; if (dfield_is_ext(field)) { ored_offset |= REC_2BYTE_EXTERN_MASK; } } rec_2_set_field_end_info(rec, i, ored_offset); } } return(rec); } /** Convert a data tuple into a ROW_FORMAT=COMPACT record. @param[out] rec converted record @param[in] index index @param[in] fields data fields to convert @param[in] n_fields number of data fields @param[in] status rec_get_status(rec) @param[in] temp whether to use the format for temporary files in index creation */ template static inline void rec_convert_dtuple_to_rec_comp( rec_t* rec, const dict_index_t* index, const dfield_t* fields, ulint n_fields, rec_comp_status_t status, bool temp) { const dfield_t* field; const dtype_t* type; byte* end; byte* nulls = temp ? rec - 1 : rec - (REC_N_NEW_EXTRA_BYTES + 1); byte* UNINIT_VAR(lens); ulint len; ulint i; ulint UNINIT_VAR(n_node_ptr_field); ulint fixed_len; ulint null_mask = 1; const ulint n_core_fields = redundant_temp ? row_log_get_n_core_fields(index) : index->n_core_fields; ut_ad(n_fields > 0); ut_ad(temp || dict_table_is_comp(index->table)); ut_ad(index->n_core_null_bytes <= UT_BITS_IN_BYTES(index->n_nullable)); ut_d(ulint n_null = index->n_nullable); switch (status) { case REC_STATUS_COLUMNS_ADDED: if (!redundant_temp) { ut_ad(index->is_instant()); } ut_ad(n_fields > n_core_fields); rec_set_n_add_field(nulls, n_fields - 1 - n_core_fields); /* fall through */ case REC_STATUS_ORDINARY: ut_ad(n_fields <= dict_index_get_n_fields(index)); if (!temp) { rec_set_heap_no_new(rec, PAGE_HEAP_NO_USER_LOW); rec_set_status(rec, n_fields == n_core_fields ? REC_STATUS_ORDINARY : REC_STATUS_COLUMNS_ADDED); } if (dict_table_is_comp(index->table)) { /* No need to do adjust fixed_len=0. We only need to adjust it for ROW_FORMAT=REDUNDANT. */ temp = false; } n_node_ptr_field = ULINT_UNDEFINED; lens = nulls - (index->is_instant() ? UT_BITS_IN_BYTES(index->get_n_nullable( n_fields)) : UT_BITS_IN_BYTES( unsigned(index->n_nullable))); break; case REC_STATUS_NODE_PTR: ut_ad(!temp); rec_set_heap_no_new(rec, PAGE_HEAP_NO_USER_LOW); rec_set_status(rec, status); ut_ad(n_fields == dict_index_get_n_unique_in_tree_nonleaf(index) + 1); ut_d(n_null = std::min(index->n_core_null_bytes * 8U, index->n_nullable)); n_node_ptr_field = n_fields - 1; lens = nulls - index->n_core_null_bytes; break; case REC_STATUS_INFIMUM: case REC_STATUS_SUPREMUM: ut_error; return; } end = rec; /* clear the SQL-null flags */ memset(lens + 1, 0, ulint(nulls - lens)); /* Store the data and the offsets */ for (i = 0; i < n_fields; i++) { const dict_field_t* ifield; dict_col_t* col = NULL; field = &fields[i]; type = dfield_get_type(field); len = dfield_get_len(field); if (UNIV_UNLIKELY(i == n_node_ptr_field)) { ut_ad(dtype_get_prtype(type) & DATA_NOT_NULL); ut_ad(len == REC_NODE_PTR_SIZE); memcpy(end, dfield_get_data(field), len); end += REC_NODE_PTR_SIZE; break; } if (!(dtype_get_prtype(type) & DATA_NOT_NULL)) { /* nullable field */ ut_ad(n_null--); if (UNIV_UNLIKELY(!(byte) null_mask)) { nulls--; null_mask = 1; } ut_ad(*nulls < null_mask); /* set the null flag if necessary */ if (dfield_is_null(field)) { *nulls |= null_mask; null_mask <<= 1; continue; } null_mask <<= 1; } /* only nullable fields can be null */ ut_ad(!dfield_is_null(field)); ifield = dict_index_get_nth_field(index, i); fixed_len = ifield->fixed_len; col = ifield->col; if (temp && fixed_len && !dict_col_get_fixed_size(col, temp)) { fixed_len = 0; } /* If the maximum length of a variable-length field is up to 255 bytes, the actual length is always stored in one byte. If the maximum length is more than 255 bytes, the actual length is stored in one byte for 0..127. The length will be encoded in two bytes when it is 128 or more, or when the field is stored externally. */ if (fixed_len) { ut_ad(len <= fixed_len); ut_ad(!col->mbmaxlen || len >= col->mbminlen * fixed_len / col->mbmaxlen); ut_ad(!dfield_is_ext(field)); } else if (dfield_is_ext(field)) { ut_ad(DATA_BIG_COL(col)); ut_ad(len <= REC_ANTELOPE_MAX_INDEX_COL_LEN + BTR_EXTERN_FIELD_REF_SIZE); *lens-- = (byte) (len >> 8) | 0xc0; *lens-- = (byte) len; } else { ut_ad(len <= dtype_get_len(type) || DATA_LARGE_MTYPE(dtype_get_mtype(type)) || !strcmp(index->name, FTS_INDEX_TABLE_IND_NAME)); if (len < 128 || !DATA_BIG_LEN_MTYPE( dtype_get_len(type), dtype_get_mtype(type))) { *lens-- = (byte) len; } else { ut_ad(len < 16384); *lens-- = (byte) (len >> 8) | 0x80; *lens-- = (byte) len; } } if (len) { memcpy(end, dfield_get_data(field), len); end += len; } } } /*********************************************************//** Builds a new-style physical record out of a data tuple and stores it beginning from the start of the given buffer. @return pointer to the origin of physical record */ static rec_t* rec_convert_dtuple_to_rec_new( /*==========================*/ byte* buf, /*!< in: start address of the physical record */ const dict_index_t* index, /*!< in: record descriptor */ const dtuple_t* dtuple) /*!< in: data tuple */ { ut_ad(!(dtuple->info_bits & ~(REC_NEW_STATUS_MASK | REC_INFO_DELETED_FLAG | REC_INFO_MIN_REC_FLAG))); rec_comp_status_t status = static_cast( dtuple->info_bits & REC_NEW_STATUS_MASK); if (status == REC_STATUS_ORDINARY && dtuple->n_fields > index->n_core_fields) { ut_ad(index->is_instant()); status = REC_STATUS_COLUMNS_ADDED; } ulint extra_size; rec_get_converted_size_comp( index, status, dtuple->fields, dtuple->n_fields, &extra_size); rec_t* rec = buf + extra_size; rec_convert_dtuple_to_rec_comp( rec, index, dtuple->fields, dtuple->n_fields, status, false); rec_set_info_bits_new(rec, dtuple->info_bits & ~REC_NEW_STATUS_MASK); return(rec); } /*********************************************************//** Builds a physical record out of a data tuple and stores it beginning from the start of the given buffer. @return pointer to the origin of physical record */ rec_t* rec_convert_dtuple_to_rec( /*======================*/ byte* buf, /*!< in: start address of the physical record */ const dict_index_t* index, /*!< in: record descriptor */ const dtuple_t* dtuple, /*!< in: data tuple */ ulint n_ext) /*!< in: number of externally stored columns */ { rec_t* rec; ut_ad(buf != NULL); ut_ad(index != NULL); ut_ad(dtuple != NULL); ut_ad(dtuple_validate(dtuple)); ut_ad(dtuple_check_typed(dtuple)); if (dict_table_is_comp(index->table)) { rec = rec_convert_dtuple_to_rec_new(buf, index, dtuple); } else { rec = rec_convert_dtuple_to_rec_old(buf, dtuple, n_ext); } return(rec); } /** Determine the size of a data tuple prefix in a temporary file. @param[in] index clustered or secondary index @param[in] fields data fields @param[in] n_fields number of data fields @param[out] extra record header size @param[in] status REC_STATUS_ORDINARY or REC_STATUS_COLUMNS_ADDED @return total size, in bytes */ template ulint rec_get_converted_size_temp( const dict_index_t* index, const dfield_t* fields, ulint n_fields, ulint* extra, rec_comp_status_t status) { return rec_get_converted_size_comp_prefix_low( index, fields, n_fields, extra, status, true); } template ulint rec_get_converted_size_temp( const dict_index_t*, const dfield_t*, ulint, ulint*, rec_comp_status_t); template ulint rec_get_converted_size_temp( const dict_index_t*, const dfield_t*, ulint, ulint*, rec_comp_status_t); /** Determine the offset to each field in temporary file. @param[in] rec temporary file record @param[in] index index of that the record belongs to @param[in,out] offsets offsets to the fields; in: rec_offs_n_fields(offsets) @param[in] n_core number of core fields (index->n_core_fields) @param[in] def_val default values for non-core fields @param[in] status REC_STATUS_ORDINARY or REC_STATUS_COLUMNS_ADDED */ void rec_init_offsets_temp( const rec_t* rec, const dict_index_t* index, rec_offs* offsets, ulint n_core, const dict_col_t::def_t*def_val, rec_comp_status_t status) { ut_ad(status == REC_STATUS_ORDINARY || status == REC_STATUS_COLUMNS_ADDED); /* The table may have been converted to plain format if it was emptied during an ALTER TABLE operation. */ ut_ad(index->n_core_fields == n_core || !index->is_instant()); ut_ad(index->n_core_fields >= n_core); rec_init_offsets_comp_ordinary(rec, index, offsets, n_core, def_val, status == REC_STATUS_COLUMNS_ADDED ? REC_LEAF_TEMP_COLUMNS_ADDED : REC_LEAF_TEMP); } /** Determine the offset to each field in temporary file. @param[in] rec temporary file record @param[in] index index of that the record belongs to @param[in,out] offsets offsets to the fields; in: rec_offs_n_fields(offsets) */ void rec_init_offsets_temp( const rec_t* rec, const dict_index_t* index, rec_offs* offsets) { ut_ad(!index->is_instant()); rec_init_offsets_comp_ordinary(rec, index, offsets, index->n_core_fields, NULL, REC_LEAF_TEMP); } /** Convert a data tuple prefix to the temporary file format. @param[out] rec record in temporary file format @param[in] index clustered or secondary index @param[in] fields data fields @param[in] n_fields number of data fields @param[in] status REC_STATUS_ORDINARY or REC_STATUS_COLUMNS_ADDED */ template void rec_convert_dtuple_to_temp( rec_t* rec, const dict_index_t* index, const dfield_t* fields, ulint n_fields, rec_comp_status_t status) { rec_convert_dtuple_to_rec_comp( rec, index, fields, n_fields, status, true); } template void rec_convert_dtuple_to_temp( rec_t*, const dict_index_t*, const dfield_t*, ulint, rec_comp_status_t); template void rec_convert_dtuple_to_temp( rec_t*, const dict_index_t*, const dfield_t*, ulint, rec_comp_status_t); /** Copy the first n fields of a (copy of a) physical record to a data tuple. The fields are copied into the memory heap. @param[out] tuple data tuple @param[in] rec index record, or a copy thereof @param[in] index index of rec @param[in] n_core index->n_core_fields at the time rec was copied, or 0 if non-leaf page record @param[in] n_fields number of fields to copy @param[in,out] heap memory heap */ void rec_copy_prefix_to_dtuple( dtuple_t* tuple, const rec_t* rec, const dict_index_t* index, ulint n_core, ulint n_fields, mem_heap_t* heap) { rec_offs offsets_[REC_OFFS_NORMAL_SIZE]; rec_offs* offsets = offsets_; rec_offs_init(offsets_); ut_ad(n_core <= index->n_core_fields); ut_ad(n_core || n_fields <= dict_index_get_n_unique_in_tree_nonleaf(index) + 1); offsets = rec_get_offsets(rec, index, offsets, n_core, n_fields, &heap); ut_ad(rec_validate(rec, offsets)); ut_ad(!rec_offs_any_default(offsets)); ut_ad(dtuple_check_typed(tuple)); tuple->info_bits = rec_get_info_bits(rec, rec_offs_comp(offsets)); for (ulint i = 0; i < n_fields; i++) { dfield_t* field; const byte* data; ulint len; field = dtuple_get_nth_field(tuple, i); data = rec_get_nth_field(rec, offsets, i, &len); if (len != UNIV_SQL_NULL) { dfield_set_data(field, mem_heap_dup(heap, data, len), len); ut_ad(!rec_offs_nth_extern(offsets, i)); } else { dfield_set_null(field); } } } /**************************************************************//** Copies the first n fields of an old-style physical record to a new physical record in a buffer. @return own: copied record */ static rec_t* rec_copy_prefix_to_buf_old( /*=======================*/ const rec_t* rec, /*!< in: physical record */ ulint n_fields, /*!< in: number of fields to copy */ ulint area_end, /*!< in: end of the prefix data */ byte** buf, /*!< in/out: memory buffer for the copied prefix, or NULL */ ulint* buf_size) /*!< in/out: buffer size */ { rec_t* copy_rec; ulint area_start; ulint prefix_len; if (rec_get_1byte_offs_flag(rec)) { area_start = REC_N_OLD_EXTRA_BYTES + n_fields; } else { area_start = REC_N_OLD_EXTRA_BYTES + 2 * n_fields; } prefix_len = area_start + area_end; if ((*buf == NULL) || (*buf_size < prefix_len)) { ut_free(*buf); *buf_size = prefix_len; *buf = static_cast(ut_malloc_nokey(prefix_len)); } ut_memcpy(*buf, rec - area_start, prefix_len); copy_rec = *buf + area_start; rec_set_n_fields_old(copy_rec, n_fields); return(copy_rec); } /**************************************************************//** Copies the first n fields of a physical record to a new physical record in a buffer. @return own: copied record */ rec_t* rec_copy_prefix_to_buf( /*===================*/ const rec_t* rec, /*!< in: physical record */ const dict_index_t* index, /*!< in: record descriptor */ ulint n_fields, /*!< in: number of fields to copy */ byte** buf, /*!< in/out: memory buffer for the copied prefix, or NULL */ ulint* buf_size) /*!< in/out: buffer size */ { ut_ad(n_fields <= index->n_fields || dict_index_is_ibuf(index)); ut_ad(index->n_core_null_bytes <= UT_BITS_IN_BYTES(index->n_nullable)); UNIV_PREFETCH_RW(*buf); if (!dict_table_is_comp(index->table)) { ut_ad(rec_validate_old(rec)); return(rec_copy_prefix_to_buf_old( rec, n_fields, rec_get_field_start_offs(rec, n_fields), buf, buf_size)); } ulint prefix_len = 0; ulint instant_omit = 0; const byte* nulls = rec - (REC_N_NEW_EXTRA_BYTES + 1); const byte* nullf = nulls; const byte* lens = nulls - index->n_core_null_bytes; switch (rec_get_status(rec)) { default: /* infimum or supremum record: no sense to copy anything */ ut_error; return(NULL); case REC_STATUS_ORDINARY: ut_ad(n_fields <= index->n_core_fields); break; case REC_STATUS_NODE_PTR: /* For R-tree, we need to copy the child page number field. */ compile_time_assert(DICT_INDEX_SPATIAL_NODEPTR_SIZE == 1); if (dict_index_is_spatial(index)) { ut_ad(index->n_core_null_bytes == 0); ut_ad(n_fields == DICT_INDEX_SPATIAL_NODEPTR_SIZE + 1); ut_ad(index->fields[0].col->prtype & DATA_NOT_NULL); ut_ad(DATA_BIG_COL(index->fields[0].col)); /* This is a deficiency of the format introduced in MySQL 5.7. The length in the R-tree index should always be DATA_MBR_LEN. */ ut_ad(!index->fields[0].fixed_len); ut_ad(*lens == DATA_MBR_LEN); lens--; prefix_len = DATA_MBR_LEN + REC_NODE_PTR_SIZE; n_fields = 0; /* skip the "for" loop below */ break; } /* it doesn't make sense to copy the child page number field */ ut_ad(n_fields <= dict_index_get_n_unique_in_tree_nonleaf(index)); break; case REC_STATUS_COLUMNS_ADDED: /* We would have !index->is_instant() when rolling back an instant ADD COLUMN operation. */ ut_ad(index->is_instant() || page_rec_is_metadata(rec)); nulls++; const ulint n_rec = ulint(index->n_core_fields) + 1 + rec_get_n_add_field(nulls); instant_omit = ulint(&rec[-REC_N_NEW_EXTRA_BYTES] - nulls); ut_ad(instant_omit == 1 || instant_omit == 2); nullf = nulls; const uint nb = UT_BITS_IN_BYTES(index->get_n_nullable(n_rec)); instant_omit += nb - index->n_core_null_bytes; lens = --nulls - nb; } const byte* const lenf = lens; UNIV_PREFETCH_R(lens); /* read the lengths of fields 0..n */ for (ulint i = 0, null_mask = 1; i < n_fields; i++) { const dict_field_t* field; const dict_col_t* col; field = dict_index_get_nth_field(index, i); col = dict_field_get_col(field); if (!(col->prtype & DATA_NOT_NULL)) { /* nullable field => read the null flag */ if (UNIV_UNLIKELY(!(byte) null_mask)) { nulls--; null_mask = 1; } if (*nulls & null_mask) { null_mask <<= 1; continue; } null_mask <<= 1; } if (field->fixed_len) { prefix_len += field->fixed_len; } else { ulint len = *lens--; /* If the maximum length of the column is up to 255 bytes, the actual length is always stored in one byte. If the maximum length is more than 255 bytes, the actual length is stored in one byte for 0..127. The length will be encoded in two bytes when it is 128 or more, or when the column is stored externally. */ if (DATA_BIG_COL(col)) { if (len & 0x80) { /* 1exxxxxx */ len &= 0x3f; len <<= 8; len |= *lens--; UNIV_PREFETCH_R(lens); } } prefix_len += len; } } UNIV_PREFETCH_R(rec + prefix_len); ulint size = prefix_len + ulint(rec - (lens + 1)) - instant_omit; if (*buf == NULL || *buf_size < size) { ut_free(*buf); *buf_size = size; *buf = static_cast(ut_malloc_nokey(size)); } if (instant_omit) { /* Copy and convert the record header to a format where instant ADD COLUMN has not been used: + lengths of variable-length fields in the prefix - omit any null flag bytes for any instantly added columns + index->n_core_null_bytes of null flags - omit the n_add_fields header (1 or 2 bytes) + REC_N_NEW_EXTRA_BYTES of fixed header */ byte* b = *buf; /* copy the lengths of the variable-length fields */ memcpy(b, lens + 1, ulint(lenf - lens)); b += ulint(lenf - lens); /* copy the null flags */ memcpy(b, nullf - index->n_core_null_bytes, index->n_core_null_bytes); b += index->n_core_null_bytes + REC_N_NEW_EXTRA_BYTES; ut_ad(ulint(b - *buf) + prefix_len == size); /* copy the fixed-size header and the record prefix */ memcpy(b - REC_N_NEW_EXTRA_BYTES, rec - REC_N_NEW_EXTRA_BYTES, prefix_len + REC_N_NEW_EXTRA_BYTES); ut_ad(rec_get_status(b) == REC_STATUS_COLUMNS_ADDED); rec_set_status(b, REC_STATUS_ORDINARY); return b; } else { memcpy(*buf, lens + 1, size); return *buf + (rec - (lens + 1)); } } /***************************************************************//** Validates the consistency of an old-style physical record. @return TRUE if ok */ static ibool rec_validate_old( /*=============*/ const rec_t* rec) /*!< in: physical record */ { ulint len; ulint n_fields; ulint len_sum = 0; ulint i; ut_a(rec); n_fields = rec_get_n_fields_old(rec); if ((n_fields == 0) || (n_fields > REC_MAX_N_FIELDS)) { ib::error() << "Record has " << n_fields << " fields"; return(FALSE); } for (i = 0; i < n_fields; i++) { rec_get_nth_field_offs_old(rec, i, &len); if (!((len < srv_page_size) || (len == UNIV_SQL_NULL))) { ib::error() << "Record field " << i << " len " << len; return(FALSE); } if (len != UNIV_SQL_NULL) { len_sum += len; } else { len_sum += rec_get_nth_field_size(rec, i); } } if (len_sum != rec_get_data_size_old(rec)) { ib::error() << "Record len should be " << len_sum << ", len " << rec_get_data_size_old(rec); return(FALSE); } return(TRUE); } /***************************************************************//** Validates the consistency of a physical record. @return TRUE if ok */ ibool rec_validate( /*=========*/ const rec_t* rec, /*!< in: physical record */ const rec_offs* offsets)/*!< in: array returned by rec_get_offsets() */ { ulint len; ulint n_fields; ulint len_sum = 0; ulint i; n_fields = rec_offs_n_fields(offsets); if ((n_fields == 0) || (n_fields > REC_MAX_N_FIELDS)) { ib::error() << "Record has " << n_fields << " fields"; return(FALSE); } ut_a(rec_offs_any_flag(offsets, REC_OFFS_COMPACT | REC_OFFS_DEFAULT) || n_fields <= rec_get_n_fields_old(rec)); for (i = 0; i < n_fields; i++) { rec_get_nth_field_offs(offsets, i, &len); switch (len) { default: if (len >= srv_page_size) { ib::error() << "Record field " << i << " len " << len; return(FALSE); } len_sum += len; break; case UNIV_SQL_DEFAULT: break; case UNIV_SQL_NULL: if (!rec_offs_comp(offsets)) { len_sum += rec_get_nth_field_size(rec, i); } } } if (len_sum != rec_offs_data_size(offsets)) { ib::error() << "Record len should be " << len_sum << ", len " << rec_offs_data_size(offsets); return(FALSE); } if (!rec_offs_comp(offsets)) { ut_a(rec_validate_old(rec)); } return(TRUE); } /***************************************************************//** Prints an old-style physical record. */ void rec_print_old( /*==========*/ FILE* file, /*!< in: file where to print */ const rec_t* rec) /*!< in: physical record */ { const byte* data; ulint len; ulint n; ulint i; n = rec_get_n_fields_old(rec); fprintf(file, "PHYSICAL RECORD: n_fields " ULINTPF ";" " %u-byte offsets; info bits " ULINTPF "\n", n, rec_get_1byte_offs_flag(rec) ? 1 : 2, rec_get_info_bits(rec, FALSE)); for (i = 0; i < n; i++) { data = rec_get_nth_field_old(rec, i, &len); fprintf(file, " " ULINTPF ":", i); if (len != UNIV_SQL_NULL) { if (len <= 30) { ut_print_buf(file, data, len); } else { ut_print_buf(file, data, 30); fprintf(file, " (total " ULINTPF " bytes)", len); } } else { fprintf(file, " SQL NULL, size " ULINTPF " ", rec_get_nth_field_size(rec, i)); } putc(';', file); putc('\n', file); } rec_validate_old(rec); } /***************************************************************//** Prints a physical record in ROW_FORMAT=COMPACT. Ignores the record header. */ static void rec_print_comp( /*===========*/ FILE* file, /*!< in: file where to print */ const rec_t* rec, /*!< in: physical record */ const rec_offs* offsets)/*!< in: array returned by rec_get_offsets() */ { ulint i; for (i = 0; i < rec_offs_n_fields(offsets); i++) { const byte* UNINIT_VAR(data); ulint len; if (rec_offs_nth_default(offsets, i)) { len = UNIV_SQL_DEFAULT; } else { data = rec_get_nth_field(rec, offsets, i, &len); } fprintf(file, " " ULINTPF ":", i); if (len == UNIV_SQL_NULL) { fputs(" SQL NULL", file); } else if (len == UNIV_SQL_DEFAULT) { fputs(" SQL DEFAULT", file); } else { if (len <= 30) { ut_print_buf(file, data, len); } else if (rec_offs_nth_extern(offsets, i)) { ut_print_buf(file, data, 30); fprintf(file, " (total " ULINTPF " bytes, external)", len); ut_print_buf(file, data + len - BTR_EXTERN_FIELD_REF_SIZE, BTR_EXTERN_FIELD_REF_SIZE); } else { ut_print_buf(file, data, 30); fprintf(file, " (total " ULINTPF " bytes)", len); } } putc(';', file); putc('\n', file); } } /***************************************************************//** Prints an old-style spatial index record. */ static void rec_print_mbr_old( /*==============*/ FILE* file, /*!< in: file where to print */ const rec_t* rec) /*!< in: physical record */ { const byte* data; ulint len; ulint n; ulint i; ut_ad(rec); n = rec_get_n_fields_old(rec); fprintf(file, "PHYSICAL RECORD: n_fields %lu;" " %u-byte offsets; info bits %lu\n", (ulong) n, rec_get_1byte_offs_flag(rec) ? 1 : 2, (ulong) rec_get_info_bits(rec, FALSE)); for (i = 0; i < n; i++) { data = rec_get_nth_field_old(rec, i, &len); fprintf(file, " %lu:", (ulong) i); if (len != UNIV_SQL_NULL) { if (i == 0) { fprintf(file, " MBR:"); for (; len > 0; len -= sizeof(double)) { double d = mach_double_read(data); if (len != sizeof(double)) { fprintf(file, "%.2lf,", d); } else { fprintf(file, "%.2lf", d); } data += sizeof(double); } } else { if (len <= 30) { ut_print_buf(file, data, len); } else { ut_print_buf(file, data, 30); fprintf(file, " (total %lu bytes)", (ulong) len); } } } else { fprintf(file, " SQL NULL, size " ULINTPF " ", rec_get_nth_field_size(rec, i)); } putc(';', file); putc('\n', file); } if (rec_get_deleted_flag(rec, false)) { fprintf(file, " Deleted"); } if (rec_get_info_bits(rec, true) & REC_INFO_MIN_REC_FLAG) { fprintf(file, " First rec"); } rec_validate_old(rec); } /***************************************************************//** Prints a spatial index record. */ void rec_print_mbr_rec( /*==============*/ FILE* file, /*!< in: file where to print */ const rec_t* rec, /*!< in: physical record */ const rec_offs* offsets)/*!< in: array returned by rec_get_offsets() */ { ut_ad(rec_offs_validate(rec, NULL, offsets)); ut_ad(!rec_offs_any_default(offsets)); if (!rec_offs_comp(offsets)) { rec_print_mbr_old(file, rec); return; } for (ulint i = 0; i < rec_offs_n_fields(offsets); i++) { const byte* data; ulint len; data = rec_get_nth_field(rec, offsets, i, &len); if (i == 0) { fprintf(file, " MBR:"); for (; len > 0; len -= sizeof(double)) { double d = mach_double_read(data); if (len != sizeof(double)) { fprintf(file, "%.2lf,", d); } else { fprintf(file, "%.2lf", d); } data += sizeof(double); } } else { fprintf(file, " %lu:", (ulong) i); if (len != UNIV_SQL_NULL) { if (len <= 30) { ut_print_buf(file, data, len); } else { ut_print_buf(file, data, 30); fprintf(file, " (total %lu bytes)", (ulong) len); } } else { fputs(" SQL NULL", file); } } putc(';', file); } if (rec_get_info_bits(rec, true) & REC_INFO_DELETED_FLAG) { fprintf(file, " Deleted"); } if (rec_get_info_bits(rec, true) & REC_INFO_MIN_REC_FLAG) { fprintf(file, " First rec"); } rec_validate(rec, offsets); } /***************************************************************//** Prints a physical record. */ void rec_print_new( /*==========*/ FILE* file, /*!< in: file where to print */ const rec_t* rec, /*!< in: physical record */ const rec_offs* offsets)/*!< in: array returned by rec_get_offsets() */ { ut_ad(rec_offs_validate(rec, NULL, offsets)); #ifdef UNIV_DEBUG if (rec_get_deleted_flag(rec, rec_offs_comp(offsets))) { DBUG_PRINT("info", ("deleted ")); } else { DBUG_PRINT("info", ("not-deleted ")); } #endif /* UNIV_DEBUG */ if (!rec_offs_comp(offsets)) { rec_print_old(file, rec); return; } fprintf(file, "PHYSICAL RECORD: n_fields " ULINTPF ";" " compact format; info bits " ULINTPF "\n", rec_offs_n_fields(offsets), rec_get_info_bits(rec, TRUE)); rec_print_comp(file, rec, offsets); rec_validate(rec, offsets); } /***************************************************************//** Prints a physical record. */ void rec_print( /*======*/ FILE* file, /*!< in: file where to print */ const rec_t* rec, /*!< in: physical record */ const dict_index_t* index) /*!< in: record descriptor */ { if (!dict_table_is_comp(index->table)) { rec_print_old(file, rec); return; } else { mem_heap_t* heap = NULL; rec_offs offsets_[REC_OFFS_NORMAL_SIZE]; rec_offs_init(offsets_); rec_print_new(file, rec, rec_get_offsets(rec, index, offsets_, page_rec_is_leaf(rec) ? index->n_core_fields : 0, ULINT_UNDEFINED, &heap)); if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } } } /** Pretty-print a record. @param[in,out] o output stream @param[in] rec physical record @param[in] info rec_get_info_bits(rec) @param[in] offsets rec_get_offsets(rec) */ void rec_print( std::ostream& o, const rec_t* rec, ulint info, const rec_offs* offsets) { const ulint comp = rec_offs_comp(offsets); const ulint n = rec_offs_n_fields(offsets); ut_ad(rec_offs_validate(rec, NULL, offsets)); o << (comp ? "COMPACT RECORD" : "RECORD") << "(info_bits=" << info << ", " << n << " fields): {"; for (ulint i = 0; i < n; i++) { const byte* data; ulint len; if (i) { o << ','; } data = rec_get_nth_field(rec, offsets, i, &len); if (len == UNIV_SQL_DEFAULT) { o << "DEFAULT"; continue; } if (len == UNIV_SQL_NULL) { o << "NULL"; continue; } if (rec_offs_nth_extern(offsets, i)) { ulint local_len = len - BTR_EXTERN_FIELD_REF_SIZE; ut_ad(len >= BTR_EXTERN_FIELD_REF_SIZE); o << '[' << local_len << '+' << BTR_EXTERN_FIELD_REF_SIZE << ']'; ut_print_buf(o, data, local_len); ut_print_buf_hex(o, data + local_len, BTR_EXTERN_FIELD_REF_SIZE); } else { o << '[' << len << ']'; ut_print_buf(o, data, len); } } o << "}"; } /** Display a record. @param[in,out] o output stream @param[in] r record to display @return the output stream */ std::ostream& operator<<(std::ostream& o, const rec_index_print& r) { mem_heap_t* heap = NULL; rec_offs* offsets = rec_get_offsets( r.m_rec, r.m_index, NULL, page_rec_is_leaf(r.m_rec) ? r.m_index->n_core_fields : 0, ULINT_UNDEFINED, &heap); rec_print(o, r.m_rec, rec_get_info_bits(r.m_rec, rec_offs_comp(offsets)), offsets); mem_heap_free(heap); return(o); } /** Display a record. @param[in,out] o output stream @param[in] r record to display @return the output stream */ std::ostream& operator<<(std::ostream& o, const rec_offsets_print& r) { rec_print(o, r.m_rec, rec_get_info_bits(r.m_rec, rec_offs_comp(r.m_offsets)), r.m_offsets); return(o); } #ifdef UNIV_DEBUG /** Read the DB_TRX_ID of a clustered index record. @param[in] rec clustered index record @param[in] index clustered index @return the value of DB_TRX_ID */ trx_id_t rec_get_trx_id( const rec_t* rec, const dict_index_t* index) { ulint trx_id_col = dict_index_get_sys_col_pos(index, DATA_TRX_ID); const byte* trx_id; ulint len; mem_heap_t* heap = NULL; rec_offs offsets_[REC_OFFS_HEADER_SIZE + MAX_REF_PARTS + 2]; rec_offs_init(offsets_); rec_offs* offsets = offsets_; ut_ad(trx_id_col <= MAX_REF_PARTS); ut_ad(dict_index_is_clust(index)); ut_ad(trx_id_col > 0); ut_ad(trx_id_col != ULINT_UNDEFINED); offsets = rec_get_offsets(rec, index, offsets, index->n_core_fields, trx_id_col + 1, &heap); trx_id = rec_get_nth_field(rec, offsets, trx_id_col, &len); ut_ad(len == DATA_TRX_ID_LEN); if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } return(trx_read_trx_id(trx_id)); } #endif /* UNIV_DEBUG */ /** Mark the nth field as externally stored. @param[in] offsets array returned by rec_get_offsets() @param[in] n nth field */ void rec_offs_make_nth_extern( rec_offs* offsets, const ulint n) { ut_ad(!rec_offs_nth_sql_null(offsets, n)); set_type(rec_offs_base(offsets)[1 + n], STORED_OFFPAGE); } #ifdef WITH_WSREP # include "ha_prototypes.h" int wsrep_rec_get_foreign_key( byte *buf, /* out: extracted key */ ulint *buf_len, /* in/out: length of buf */ const rec_t* rec, /* in: physical record */ dict_index_t* index_for, /* in: index in foreign table */ dict_index_t* index_ref, /* in: index in referenced table */ ibool new_protocol) /* in: protocol > 1 */ { const byte* data; ulint len; ulint key_len = 0; ulint i; uint key_parts; mem_heap_t* heap = NULL; rec_offs offsets_[REC_OFFS_NORMAL_SIZE]; const rec_offs* offsets; ut_ad(index_for); ut_ad(index_ref); rec_offs_init(offsets_); offsets = rec_get_offsets(rec, index_for, offsets_, index_for->n_core_fields, ULINT_UNDEFINED, &heap); ut_ad(rec_offs_validate(rec, NULL, offsets)); ut_ad(rec); key_parts = dict_index_get_n_unique_in_tree(index_for); for (i = 0; i < key_parts && (index_for->type & DICT_CLUSTERED || i < key_parts - 1); i++) { dict_field_t* field_f = dict_index_get_nth_field(index_for, i); const dict_col_t* col_f = dict_field_get_col(field_f); dict_field_t* field_r = dict_index_get_nth_field(index_ref, i); const dict_col_t* col_r = dict_field_get_col(field_r); ut_ad(!rec_offs_nth_default(offsets, i)); data = rec_get_nth_field(rec, offsets, i, &len); if (key_len + ((len != UNIV_SQL_NULL) ? len + 1 : 1) > *buf_len) { fprintf(stderr, "WSREP: FK key len exceeded " ULINTPF " " ULINTPF " " ULINTPF "\n", key_len, len, *buf_len); goto err_out; } if (len == UNIV_SQL_NULL) { ut_a(!(col_f->prtype & DATA_NOT_NULL)); *buf++ = 1; key_len++; } else if (!new_protocol) { if (!(col_r->prtype & DATA_NOT_NULL)) { *buf++ = 0; key_len++; } memcpy(buf, data, len); *buf_len = wsrep_innobase_mysql_sort( (int)(col_f->prtype & DATA_MYSQL_TYPE_MASK), (uint)dtype_get_charset_coll(col_f->prtype), buf, len, *buf_len); } else { /* new protocol */ if (!(col_r->prtype & DATA_NOT_NULL)) { *buf++ = 0; key_len++; } switch (col_f->mtype) { case DATA_INT: { byte* ptr = buf+len; for (;;) { ptr--; *ptr = *data; if (ptr == buf) { break; } data++; } if (!(col_f->prtype & DATA_UNSIGNED)) { buf[len-1] = (byte) (buf[len-1] ^ 128); } break; } case DATA_VARCHAR: case DATA_VARMYSQL: case DATA_CHAR: case DATA_MYSQL: /* Copy the actual data */ ut_memcpy(buf, data, len); len = wsrep_innobase_mysql_sort( (int) (col_f->prtype & DATA_MYSQL_TYPE_MASK), (uint) dtype_get_charset_coll(col_f->prtype), buf, len, *buf_len); break; case DATA_BLOB: case DATA_BINARY: case DATA_FIXBINARY: case DATA_GEOMETRY: memcpy(buf, data, len); break; case DATA_FLOAT: { float f = mach_float_read(data); memcpy(buf, &f, sizeof(float)); } break; case DATA_DOUBLE: { double d = mach_double_read(data); memcpy(buf, &d, sizeof(double)); } break; default: break; } key_len += len; buf += len; } } rec_validate(rec, offsets); if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } *buf_len = key_len; return DB_SUCCESS; err_out: if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } return DB_ERROR; } #endif // WITH_WSREP