/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */ // vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4: #ident "$Id$" /*====== This file is part of PerconaFT. Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved. PerconaFT is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2, as published by the Free Software Foundation. PerconaFT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with PerconaFT. If not, see . ---------------------------------------- PerconaFT is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License, version 3, as published by the Free Software Foundation. PerconaFT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with PerconaFT. If not, see . ======= */ #ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved." #include "test.h" #include "cachetable-test.h" // // This test ensures that get_and_pin with dependent nodes works // as intended with checkpoints, by having multiple threads changing // values on elements in data, and ensure that checkpoints always get snapshots // such that the sum of all the elements in data are 0. // // The arrays #define NUM_ELEMENTS 100 #define NUM_MOVER_THREADS 4 int64_t data[NUM_ELEMENTS]; int64_t checkpointed_data[NUM_ELEMENTS]; PAIR data_pair[NUM_ELEMENTS]; uint32_t time_of_test; bool run_test; static void clone_callback( void* value_data, void** cloned_value_data, long* clone_size, PAIR_ATTR* new_attr, bool UU(for_checkpoint), void* UU(write_extraargs) ) { new_attr->is_valid = false; int64_t* XMALLOC(data_val); *data_val = *(int64_t *)value_data; *cloned_value_data = data_val; *clone_size = 8; } static void flush (CACHEFILE f __attribute__((__unused__)), int UU(fd), CACHEKEY k __attribute__((__unused__)), void *v __attribute__((__unused__)), void** UU(dd), void *e __attribute__((__unused__)), PAIR_ATTR s __attribute__((__unused__)), PAIR_ATTR* new_size __attribute__((__unused__)), bool write_me, bool keep_me, bool checkpoint_me, bool UU(is_clone) ) { /* Do nothing */ int64_t val_to_write = *(int64_t *)v; size_t data_index = (size_t)k.b; assert(val_to_write != INT64_MAX); if (write_me) { usleep(10); data[data_index] = val_to_write; if (checkpoint_me) checkpointed_data[data_index] = val_to_write; } if (!keep_me) { toku_free(v); } } static int fetch (CACHEFILE f __attribute__((__unused__)), PAIR p, int UU(fd), CACHEKEY k, uint32_t fullhash __attribute__((__unused__)), void **value, void** UU(dd), PAIR_ATTR *sizep, int *dirtyp, void *extraargs __attribute__((__unused__)) ) { *dirtyp = 0; size_t data_index = (size_t)k.b; assert(data[data_index] != INT64_MAX); int64_t* XMALLOC(data_val); usleep(10); *data_val = data[data_index]; data_pair[data_index] = p; *value = data_val; *sizep = make_pair_attr(8); return 0; } static void *test_time(void *arg) { // // if num_Seconds is set to 0, run indefinitely // if (time_of_test != 0) { usleep(time_of_test*1000*1000); if (verbose) printf("should now end test\n"); run_test = false; } if (verbose) printf("should be ending test now\n"); return arg; } CACHETABLE ct; CACHEFILE f1; static void *move_numbers(void *arg) { while (run_test) { int rand_key1 = 0; int rand_key2 = 0; int less; int greater; int r; while (rand_key1 == rand_key2) { rand_key1 = random() % NUM_ELEMENTS; rand_key2 = random() % NUM_ELEMENTS; less = (rand_key1 < rand_key2) ? rand_key1 : rand_key2; greater = (rand_key1 > rand_key2) ? rand_key1 : rand_key2; } assert(less < greater); /* while (rand_key1 == rand_key2) { rand_key1 = random() % (NUM_ELEMENTS/2); rand_key2 = (NUM_ELEMENTS-1) - rand_key1; less = (rand_key1 < rand_key2) ? rand_key1 : rand_key2; greater = (rand_key1 > rand_key2) ? rand_key1 : rand_key2; } assert(less < greater); */ void* v1; CACHEKEY less_key; less_key.b = less; uint32_t less_fullhash = less; enum cachetable_dirty less_dirty = CACHETABLE_DIRTY; CACHETABLE_WRITE_CALLBACK wc = def_write_callback(NULL); wc.flush_callback = flush; wc.clone_callback = clone_callback; r = toku_cachetable_get_and_pin_with_dep_pairs( f1, less_key, less, &v1, wc, fetch, def_pf_req_callback, def_pf_callback, PL_WRITE_CHEAP, NULL, 0, //num_dependent_pairs NULL, NULL ); assert(r==0); int64_t* first_val = (int64_t *)v1; CACHEKEY greater_key; greater_key.b = greater; uint32_t greater_fullhash = greater; enum cachetable_dirty greater_dirty = CACHETABLE_DIRTY; PAIR dep_pair = data_pair[less]; r = toku_cachetable_get_and_pin_with_dep_pairs( f1, make_blocknum(greater), greater, &v1, wc, fetch, def_pf_req_callback, def_pf_callback, PL_WRITE_CHEAP, NULL, 1, //num_dependent_pairs &dep_pair, &less_dirty ); assert(r==0); int64_t* second_val = (int64_t *)v1; assert(second_val != first_val); // sanity check that we are messing with different vals assert(*first_val != INT64_MAX); assert(*second_val != INT64_MAX); usleep(10); (*first_val)++; (*second_val)--; r = toku_test_cachetable_unpin(f1, less_key, less_fullhash, less_dirty, make_pair_attr(8)); int third = 0; int num_possible_values = (NUM_ELEMENTS-1) - greater; if (num_possible_values > 0) { third = (random() % (num_possible_values)) + greater + 1; CACHEKEY third_key; third_key.b = third; dep_pair = data_pair[greater]; uint32_t third_fullhash = third; enum cachetable_dirty third_dirty = CACHETABLE_DIRTY; r = toku_cachetable_get_and_pin_with_dep_pairs( f1, make_blocknum(third), third, &v1, wc, fetch, def_pf_req_callback, def_pf_callback, PL_WRITE_CHEAP, NULL, 1, //num_dependent_pairs &dep_pair, &greater_dirty ); assert(r==0); int64_t* third_val = (int64_t *)v1; assert(second_val != third_val); // sanity check that we are messing with different vals usleep(10); (*second_val)++; (*third_val)--; r = toku_test_cachetable_unpin(f1, third_key, third_fullhash, third_dirty, make_pair_attr(8)); } r = toku_test_cachetable_unpin(f1, greater_key, greater_fullhash, greater_dirty, make_pair_attr(8)); } return arg; } static void *read_random_numbers(void *arg) { while(run_test) { int rand_key1 = random() % NUM_ELEMENTS; void* v1; int r1; CACHETABLE_WRITE_CALLBACK wc = def_write_callback(NULL); wc.flush_callback = flush; wc.clone_callback = clone_callback; r1 = toku_cachetable_get_and_pin_nonblocking( f1, make_blocknum(rand_key1), rand_key1, &v1, wc, fetch, def_pf_req_callback, def_pf_callback, PL_READ, NULL, NULL ); if (r1 == 0) { r1 = toku_test_cachetable_unpin(f1, make_blocknum(rand_key1), rand_key1, CACHETABLE_CLEAN, make_pair_attr(8)); assert(r1 == 0); } } if (verbose) printf("leaving\n"); return arg; } static int num_checkpoints = 0; static void *checkpoints(void *arg) { // first verify that checkpointed_data is correct; while(run_test) { int64_t sum = 0; for (int i = 0; i < NUM_ELEMENTS; i++) { sum += checkpointed_data[i]; } assert (sum==0); // // now run a checkpoint // CHECKPOINTER cp = toku_cachetable_get_checkpointer(ct); toku_cachetable_begin_checkpoint(cp, NULL); toku_cachetable_end_checkpoint( cp, NULL, NULL, NULL ); assert (sum==0); for (int i = 0; i < NUM_ELEMENTS; i++) { sum += checkpointed_data[i]; } assert (sum==0); usleep(10*1024); num_checkpoints++; } return arg; } static void test_begin_checkpoint ( LSN UU(checkpoint_lsn), void* UU(header_v)) { memcpy(checkpointed_data, data, sizeof(int64_t)*NUM_ELEMENTS); } static void sum_vals(void) { int64_t sum = 0; for (int i = 0; i < NUM_ELEMENTS; i++) { //printf("actual: i %d val %" PRId64 " \n", i, data[i]); sum += data[i]; } if (verbose) printf("actual sum %" PRId64 " \n", sum); assert(sum == 0); sum = 0; for (int i = 0; i < NUM_ELEMENTS; i++) { //printf("checkpointed: i %d val %" PRId64 " \n", i, checkpointed_data[i]); sum += checkpointed_data[i]; } if (verbose) printf("checkpointed sum %" PRId64 " \n", sum); assert(sum == 0); } static void cachetable_test (void) { const int test_limit = NUM_ELEMENTS; // // let's set up the data // for (int64_t i = 0; i < NUM_ELEMENTS; i++) { data[i] = 0; checkpointed_data[i] = 0; } time_of_test = 30; int r; toku_cachetable_create(&ct, test_limit, ZERO_LSN, nullptr); const char *fname1 = TOKU_TEST_FILENAME; unlink(fname1); r = toku_cachetable_openf(&f1, ct, fname1, O_RDWR|O_CREAT, S_IRWXU|S_IRWXG|S_IRWXO); assert(r == 0); toku_cachefile_set_userdata( f1, NULL, &dummy_log_fassociate, &dummy_close_usr, &dummy_free_usr, &dummy_chckpnt_usr, &test_begin_checkpoint, &dummy_end, &dummy_note_pin, &dummy_note_unpin ); toku_pthread_t time_tid; toku_pthread_t checkpoint_tid; toku_pthread_t move_tid[NUM_MOVER_THREADS]; toku_pthread_t read_random_tid[NUM_MOVER_THREADS]; run_test = true; for (int i = 0; i < NUM_MOVER_THREADS; i++) { r = toku_pthread_create(toku_uninstrumented, &read_random_tid[i], nullptr, read_random_numbers, nullptr); assert_zero(r); } for (int i = 0; i < NUM_MOVER_THREADS; i++) { r = toku_pthread_create(toku_uninstrumented, &move_tid[i], nullptr, move_numbers, nullptr); assert_zero(r); } r = toku_pthread_create( toku_uninstrumented, &checkpoint_tid, nullptr, checkpoints, nullptr); assert_zero(r); r = toku_pthread_create( toku_uninstrumented, &time_tid, nullptr, test_time, nullptr); assert_zero(r); void *ret; r = toku_pthread_join(time_tid, &ret); assert_zero(r); r = toku_pthread_join(checkpoint_tid, &ret); assert_zero(r); for (int i = 0; i < NUM_MOVER_THREADS; i++) { r = toku_pthread_join(move_tid[i], &ret); assert_zero(r); } for (int i = 0; i < NUM_MOVER_THREADS; i++) { r = toku_pthread_join(read_random_tid[i], &ret); assert_zero(r); } toku_cachetable_verify(ct); toku_cachefile_close(&f1, false, ZERO_LSN); toku_cachetable_close(&ct); sum_vals(); if (verbose) printf("num_checkpoints %d\n", num_checkpoints); } int test_main(int argc, const char *argv[]) { default_parse_args(argc, argv); cachetable_test(); return 0; }