// test_binomial.cpp // Copyright John Maddock 2006. // Copyright Paul A. Bristow 2007. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) // Basic sanity test for Binomial Cumulative Distribution Function. #define BOOST_MATH_DISCRETE_QUANTILE_POLICY real #if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT) # define TEST_FLOAT # define TEST_DOUBLE # define TEST_LDOUBLE # define TEST_REAL_CONCEPT #endif #ifdef _MSC_VER # pragma warning(disable: 4127) // conditional expression is constant. # pragma warning(disable: 4100) // unreferenced formal parameter. // Seems an entirely spurious warning - formal parameter T IS used - get error if /* T */ //# pragma warning(disable: 4535) // calling _set_se_translator() requires /EHa (in Boost.test) // Enable C++ Exceptions Yes With SEH Exceptions (/EHa) prevents warning 4535. #endif #include // for real_concept using ::boost::math::concepts::real_concept; #include // for binomial_distribution using boost::math::binomial_distribution; #define BOOST_TEST_MAIN #include // for test_main #include // for BOOST_CHECK_CLOSE #include "table_type.hpp" #include "test_out_of_range.hpp" #include using std::cout; using std::endl; #include using std::numeric_limits; template void test_spot( RealType N, // Number of trials RealType k, // Number of successes RealType p, // Probability of success RealType P, // CDF RealType Q, // Complement of CDF RealType tol) // Test tolerance { boost::math::binomial_distribution bn(N, p); BOOST_CHECK_CLOSE( cdf(bn, k), P, tol); if((P < 0.99) && (Q < 0.99)) { // // We can only check this if P is not too close to 1, // so that we can guarentee Q is free of error: // BOOST_CHECK_CLOSE( cdf(complement(bn, k)), Q, tol); if(k != 0) { BOOST_CHECK_CLOSE( quantile(bn, P), k, tol); } else { // Just check quantile is very small: if((std::numeric_limits::max_exponent <= std::numeric_limits::max_exponent) && (boost::is_floating_point::value)) { // Limit where this is checked: if exponent range is very large we may // run out of iterations in our root finding algorithm. BOOST_CHECK(quantile(bn, P) < boost::math::tools::epsilon() * 10); } } if(k != 0) { BOOST_CHECK_CLOSE( quantile(complement(bn, Q)), k, tol); } else { // Just check quantile is very small: if((std::numeric_limits::max_exponent <= std::numeric_limits::max_exponent) && (boost::is_floating_point::value)) { // Limit where this is checked: if exponent range is very large we may // run out of iterations in our root finding algorithm. BOOST_CHECK(quantile(complement(bn, Q)) < boost::math::tools::epsilon() * 10); } } if(k > 0) { // estimate success ratio: // Note lower bound uses a different formual internally // from upper bound, have to adjust things to prevent // fencepost errors: BOOST_CHECK_CLOSE( binomial_distribution::find_lower_bound_on_p( N, k+1, Q), p, tol); BOOST_CHECK_CLOSE( binomial_distribution::find_upper_bound_on_p( N, k, P), p, tol); if(Q < P) { // Default method (Clopper Pearson) BOOST_CHECK( binomial_distribution::find_lower_bound_on_p( N, k, Q) <= binomial_distribution::find_upper_bound_on_p( N, k, Q) ); BOOST_CHECK(( binomial_distribution::find_lower_bound_on_p( N, k, Q) <= k/N) && (k/N <= binomial_distribution::find_upper_bound_on_p( N, k, Q)) ); // Bayes Method (Jeffreys Prior) BOOST_CHECK( binomial_distribution::find_lower_bound_on_p( N, k, Q, binomial_distribution::jeffreys_prior_interval) <= binomial_distribution::find_upper_bound_on_p( N, k, Q, binomial_distribution::jeffreys_prior_interval) ); BOOST_CHECK(( binomial_distribution::find_lower_bound_on_p( N, k, Q, binomial_distribution::jeffreys_prior_interval) <= k/N) && (k/N <= binomial_distribution::find_upper_bound_on_p( N, k, Q, binomial_distribution::jeffreys_prior_interval)) ); } else { // Default method (Clopper Pearson) BOOST_CHECK( binomial_distribution::find_lower_bound_on_p( N, k, P) <= binomial_distribution::find_upper_bound_on_p( N, k, P) ); BOOST_CHECK( (binomial_distribution::find_lower_bound_on_p( N, k, P) <= k / N) && (k/N <= binomial_distribution::find_upper_bound_on_p( N, k, P)) ); // Bayes Method (Jeffreys Prior) BOOST_CHECK( binomial_distribution::find_lower_bound_on_p( N, k, P, binomial_distribution::jeffreys_prior_interval) <= binomial_distribution::find_upper_bound_on_p( N, k, P, binomial_distribution::jeffreys_prior_interval) ); BOOST_CHECK( (binomial_distribution::find_lower_bound_on_p( N, k, P, binomial_distribution::jeffreys_prior_interval) <= k / N) && (k/N <= binomial_distribution::find_upper_bound_on_p( N, k, P, binomial_distribution::jeffreys_prior_interval)) ); } } // // estimate sample size: // BOOST_CHECK_CLOSE( binomial_distribution::find_minimum_number_of_trials( k, p, P), N, tol); BOOST_CHECK_CLOSE( binomial_distribution::find_maximum_number_of_trials( k, p, Q), N, tol); } // Double check consistency of CDF and PDF by computing // the finite sum: RealType sum = 0; for(unsigned i = 0; i <= k; ++i) sum += pdf(bn, RealType(i)); BOOST_CHECK_CLOSE( sum, P, tol); // And complement as well: sum = 0; for(RealType i = N; i > k; i -= 1) sum += pdf(bn, i); if(P < 0.99) { BOOST_CHECK_CLOSE( sum, Q, tol); } else { // Not enough information content in P for Q to be meaningful RealType tol = (std::max)(2 * Q, boost::math::tools::epsilon()); BOOST_CHECK(sum < tol); } } template // Any floating-point type RealType. void test_spots(RealType T) { // Basic sanity checks, test data is to double precision only // so set tolerance to 100eps expressed as a persent, or // 100eps of type double expressed as a persent, whichever // is the larger. RealType tolerance = (std::max) (boost::math::tools::epsilon(), static_cast(std::numeric_limits::epsilon())); tolerance *= 100 * 1000; RealType tol2 = boost::math::tools::epsilon() * 5 * 100; // 5 eps as a persent cout << "Tolerance for type " << typeid(T).name() << " is " << tolerance << " %" << endl; // Sources of spot test values: // MathCAD defines pbinom(k, n, p) // returns pr(X ,=k) when random variable X has the binomial distribution with parameters n and p. // 0 <= k ,= n // 0 <= p <= 1 // P = pbinom(30, 500, 0.05) = 0.869147702104609 using boost::math::binomial_distribution; using ::boost::math::cdf; using ::boost::math::pdf; #if !defined(TEST_ROUNDING) || (TEST_ROUNDING == 0) // Test binomial using cdf spot values from MathCAD. // These test quantiles and complements as well. test_spot( static_cast(500), // Sample size, N static_cast(30), // Number of successes, k static_cast(0.05), // Probability of success, p static_cast(0.869147702104609), // Probability of result (CDF), P static_cast(1 - 0.869147702104609), // Q = 1 - P tolerance); test_spot( static_cast(500), // Sample size, N static_cast(250), // Number of successes, k static_cast(0.05), // Probability of success, p static_cast(1), // Probability of result (CDF), P static_cast(0), // Q = 1 - P tolerance); test_spot( static_cast(500), // Sample size, N static_cast(470), // Number of successes, k static_cast(0.95), // Probability of success, p static_cast(0.176470742656766), // Probability of result (CDF), P static_cast(1 - 0.176470742656766), // Q = 1 - P tolerance * 10); // Note higher tolerance on this test! test_spot( static_cast(500), // Sample size, N static_cast(400), // Number of successes, k static_cast(0.05), // Probability of success, p static_cast(1), // Probability of result (CDF), P static_cast(0), // Q = 1 - P tolerance); test_spot( static_cast(500), // Sample size, N static_cast(400), // Number of successes, k static_cast(0.9), // Probability of success, p static_cast(1.80180425681923E-11), // Probability of result (CDF), P static_cast(1 - 1.80180425681923E-11), // Q = 1 - P tolerance); test_spot( static_cast(500), // Sample size, N static_cast(5), // Number of successes, k static_cast(0.05), // Probability of success, p static_cast(9.181808267643E-7), // Probability of result (CDF), P static_cast(1 - 9.181808267643E-7), // Q = 1 - P tolerance); test_spot( static_cast(2), // Sample size, N static_cast(1), // Number of successes, k static_cast(0.5), // Probability of success, p static_cast(0.75), // Probability of result (CDF), P static_cast(0.25), // Q = 1 - P tolerance); test_spot( static_cast(8), // Sample size, N static_cast(3), // Number of successes, k static_cast(0.25), // Probability of success, p static_cast(0.8861846923828125), // Probability of result (CDF), P static_cast(1 - 0.8861846923828125), // Q = 1 - P tolerance); test_spot( static_cast(8), // Sample size, N static_cast(0), // Number of successes, k static_cast(0.25), // Probability of success, p static_cast(0.1001129150390625), // Probability of result (CDF), P static_cast(1 - 0.1001129150390625), // Q = 1 - P tolerance); test_spot( static_cast(8), // Sample size, N static_cast(1), // Number of successes, k static_cast(0.25), // Probability of success, p static_cast(0.36708068847656244), // Probability of result (CDF), P static_cast(1 - 0.36708068847656244), // Q = 1 - P tolerance); test_spot( static_cast(8), // Sample size, N static_cast(4), // Number of successes, k static_cast(0.25), // Probability of success, p static_cast(0.9727020263671875), // Probability of result (CDF), P static_cast(1 - 0.9727020263671875), // Q = 1 - P tolerance); test_spot( static_cast(8), // Sample size, N static_cast(7), // Number of successes, k static_cast(0.25), // Probability of success, p static_cast(0.9999847412109375), // Probability of result (CDF), P static_cast(1 - 0.9999847412109375), // Q = 1 - P tolerance); // Tests on PDF follow: BOOST_CHECK_CLOSE( pdf(binomial_distribution(static_cast(20), static_cast(0.75)), static_cast(10)), // k. static_cast(0.00992227527967770583927631378173), // 0.00992227527967770583927631378173 tolerance); BOOST_CHECK_CLOSE( pdf(binomial_distribution(static_cast(20), static_cast(0.5)), static_cast(10)), // k. static_cast(0.17619705200195312500000000000000000000), // get k=10 0.049611376398388612 p = 0.25 tolerance); // Binomial pdf Test values from // http://www.adsciengineering.com/bpdcalc/index.php for example // http://www.adsciengineering.com/bpdcalc/index.php?n=20&p=0.25&start=0&stop=20&Submit=Generate // Appears to use at least 80-bit long double for 32 decimal digits accuracy, // but loses accuracy of display if leading zeros? // (if trailings zero then are exact values?) // so useful for testing 64-bit double accuracy. // P = 0.25, n = 20, k = 0 to 20 //0 C(20,0) * 0.25^0 * 0.75^20 0.00317121193893399322405457496643 //1 C(20,1) * 0.25^1 * 0.75^19 0.02114141292622662149369716644287 //2 C(20,2) * 0.25^2 * 0.75^18 0.06694780759971763473004102706909 //3 C(20,3) * 0.25^3 * 0.75^17 0.13389561519943526946008205413818 //4 C(20,4) * 0.25^4 * 0.75^16 0.18968545486586663173511624336242 //5 C(20,5) * 0.25^5 * 0.75^15 0.20233115185692440718412399291992 //6 C(20,6) * 0.25^6 * 0.75^14 0.16860929321410367265343666076660 //7 C(20,7) * 0.25^7 * 0.75^13 0.11240619547606911510229110717773 //8 C(20,8) * 0.25^8 * 0.75^12 0.06088668921620410401374101638793 //9 C(20,9) * 0.25^9 * 0.75^11 0.02706075076275737956166267395019 //10 C(20,10) * 0.25^10 * 0.75^10 0.00992227527967770583927631378173 //11 C(20,11) * 0.25^11 * 0.75^9 0.00300675008475081995129585266113 //12 C(20,12) * 0.25^12 * 0.75^8 0.00075168752118770498782396316528 //13 C(20,13) * 0.25^13 * 0.75^7 0.00015419231203850358724594116210 //14 C(20,14) * 0.25^14 * 0.75^6 0.00002569871867308393120765686035 //15 C(20,15) * 0.25^15 * 0.75^5 0.00000342649582307785749435424804 //16 C(20,16) * 0.25^16 * 0.75^4 0.00000035692664823727682232856750 //17 C(20,17) * 0.25^17 * 0.75^3 0.00000002799424692057073116302490 //18 C(20,18) * 0.25^18 * 0.75^2 0.00000000155523594003170728683471 //19 C(20,19) * 0.25^19 * 0.75^1 0.00000000005456968210637569427490 //20 C(20,20) * 0.25^20 * 0.75^0 0.00000000000090949470177292823791 BOOST_CHECK_CLOSE( pdf(binomial_distribution(static_cast(20), static_cast(0.25)), static_cast(10)), // k. static_cast(0.00992227527967770583927631378173), // k=10 p = 0.25 tolerance); BOOST_CHECK_CLOSE( // k = 0 use different formula - only exp so more accurate. pdf(binomial_distribution(static_cast(20), static_cast(0.25)), static_cast(0)), // k. static_cast(0.00317121193893399322405457496643), // k=0 p = 0.25 tolerance); BOOST_CHECK_CLOSE( // k = 20 use different formula - only exp so more accurate. pdf(binomial_distribution(static_cast(20), static_cast(0.25)), static_cast(20)), // k == n. static_cast(0.00000000000090949470177292823791), // k=20 p = 0.25 tolerance); BOOST_CHECK_CLOSE( // k = 1. pdf(binomial_distribution(static_cast(20), static_cast(0.25)), static_cast(1)), // k. static_cast(0.02114141292622662149369716644287), // k=1 p = 0.25 tolerance); // Some exact (probably) values. BOOST_CHECK_CLOSE( pdf(binomial_distribution(static_cast(8), static_cast(0.25)), static_cast(0)), // k. static_cast(0.10011291503906250000000000000000), // k=0 p = 0.25 tolerance); BOOST_CHECK_CLOSE( // k = 1. pdf(binomial_distribution(static_cast(8), static_cast(0.25)), static_cast(1)), // k. static_cast(0.26696777343750000000000000000000), // k=1 p = 0.25 tolerance); BOOST_CHECK_CLOSE( // k = 2. pdf(binomial_distribution(static_cast(8), static_cast(0.25)), static_cast(2)), // k. static_cast(0.31146240234375000000000000000000), // k=2 p = 0.25 tolerance); BOOST_CHECK_CLOSE( // k = 3. pdf(binomial_distribution(static_cast(8), static_cast(0.25)), static_cast(3)), // k. static_cast(0.20764160156250000000000000000000), // k=3 p = 0.25 tolerance); BOOST_CHECK_CLOSE( // k = 7. pdf(binomial_distribution(static_cast(8), static_cast(0.25)), static_cast(7)), // k. static_cast(0.00036621093750000000000000000000), // k=7 p = 0.25 tolerance); BOOST_CHECK_CLOSE( // k = 8. pdf(binomial_distribution(static_cast(8), static_cast(0.25)), static_cast(8)), // k = n. static_cast(0.00001525878906250000000000000000), // k=8 p = 0.25 tolerance); binomial_distribution dist(static_cast(8), static_cast(0.25)); RealType x = static_cast(0.125); using namespace std; // ADL of std names. // mean: BOOST_CHECK_CLOSE( mean(dist) , static_cast(8 * 0.25), tol2); // variance: BOOST_CHECK_CLOSE( variance(dist) , static_cast(8 * 0.25 * 0.75), tol2); // std deviation: BOOST_CHECK_CLOSE( standard_deviation(dist) , static_cast(sqrt(8 * 0.25L * 0.75L)), tol2); // hazard: BOOST_CHECK_CLOSE( hazard(dist, x) , pdf(dist, x) / cdf(complement(dist, x)), tol2); // cumulative hazard: BOOST_CHECK_CLOSE( chf(dist, x) , -log(cdf(complement(dist, x))), tol2); // coefficient_of_variation: BOOST_CHECK_CLOSE( coefficient_of_variation(dist) , standard_deviation(dist) / mean(dist), tol2); // mode: BOOST_CHECK_CLOSE( mode(dist) , static_cast(std::floor(9 * 0.25)), tol2); // skewness: BOOST_CHECK_CLOSE( skewness(dist) , static_cast(0.40824829046386301636621401245098L), (std::max)(tol2, static_cast(5e-29))); // test data has 32 digits only. // kurtosis: BOOST_CHECK_CLOSE( kurtosis(dist) , static_cast(2.916666666666666666666666666666666666L), tol2); // kurtosis excess: BOOST_CHECK_CLOSE( kurtosis_excess(dist) , static_cast(-0.08333333333333333333333333333333333333L), tol2); // Check kurtosis_excess == kurtosis -3; BOOST_CHECK_EQUAL(kurtosis(dist), static_cast(3) + kurtosis_excess(dist)); // special cases for PDF: BOOST_CHECK_EQUAL( pdf( binomial_distribution(static_cast(8), static_cast(0)), static_cast(0)), static_cast(1) ); BOOST_CHECK_EQUAL( pdf( binomial_distribution(static_cast(8), static_cast(0)), static_cast(0.0001)), static_cast(0) ); BOOST_CHECK_EQUAL( pdf( binomial_distribution(static_cast(8), static_cast(1)), static_cast(0.001)), static_cast(0) ); BOOST_CHECK_EQUAL( pdf( binomial_distribution(static_cast(8), static_cast(1)), static_cast(8)), static_cast(1) ); BOOST_CHECK_EQUAL( pdf( binomial_distribution(static_cast(0), static_cast(0.25)), static_cast(0)), static_cast(1) ); BOOST_CHECK_THROW( pdf( binomial_distribution(static_cast(-1), static_cast(0.25)), static_cast(0)), std::domain_error ); BOOST_CHECK_THROW( pdf( binomial_distribution(static_cast(8), static_cast(-0.25)), static_cast(0)), std::domain_error ); BOOST_CHECK_THROW( pdf( binomial_distribution(static_cast(8), static_cast(1.25)), static_cast(0)), std::domain_error ); BOOST_CHECK_THROW( pdf( binomial_distribution(static_cast(8), static_cast(0.25)), static_cast(-1)), std::domain_error ); BOOST_CHECK_THROW( pdf( binomial_distribution(static_cast(8), static_cast(0.25)), static_cast(9)), std::domain_error ); BOOST_CHECK_THROW( cdf( binomial_distribution(static_cast(8), static_cast(0.25)), static_cast(-1)), std::domain_error ); BOOST_CHECK_THROW( cdf( binomial_distribution(static_cast(8), static_cast(0.25)), static_cast(9)), std::domain_error ); BOOST_CHECK_THROW( cdf( binomial_distribution(static_cast(8), static_cast(-0.25)), static_cast(0)), std::domain_error ); BOOST_CHECK_THROW( cdf( binomial_distribution(static_cast(8), static_cast(1.25)), static_cast(0)), std::domain_error ); BOOST_CHECK_THROW( quantile( binomial_distribution(static_cast(8), static_cast(-0.25)), static_cast(0)), std::domain_error ); BOOST_CHECK_THROW( quantile( binomial_distribution(static_cast(8), static_cast(1.25)), static_cast(0)), std::domain_error ); BOOST_CHECK_EQUAL( quantile( binomial_distribution(static_cast(16), static_cast(0.25)), static_cast(0.01)), // Less than cdf == pdf(binomial_distribution(16, 0.25), 0) static_cast(0) // so expect zero as best approximation. ); BOOST_CHECK_EQUAL( cdf( binomial_distribution(static_cast(8), static_cast(0.25)), static_cast(8)), static_cast(1) ); BOOST_CHECK_EQUAL( cdf( binomial_distribution(static_cast(8), static_cast(0)), static_cast(7)), static_cast(1) ); BOOST_CHECK_EQUAL( cdf( binomial_distribution(static_cast(8), static_cast(1)), static_cast(7)), static_cast(0) ); #endif { // This is a visual sanity check that everything is OK: binomial_distribution my8dist(8., 0.25); // Note: double values (matching the distribution definition) avoid the need for any casting. //cout << "mean(my8dist) = " << boost::math::mean(my8dist) << endl; // mean(my8dist) = 2 //cout << "my8dist.trials() = " << my8dist.trials() << endl; // my8dist.trials() = 8 //cout << "my8dist.success_fraction() = " << my8dist.success_fraction() << endl; // my8dist.success_fraction() = 0.25 BOOST_CHECK_CLOSE(my8dist.trials(), static_cast(8), tol2); BOOST_CHECK_CLOSE(my8dist.success_fraction(), static_cast(0.25), tol2); //{ // int n = static_cast(boost::math::tools::real_cast(my8dist.trials())); // RealType sumcdf = 0.; // for (int k = 0; k <= n; k++) // { // cout << k << ' ' << pdf(my8dist, static_cast(k)); // sumcdf += pdf(my8dist, static_cast(k)); // cout << ' ' << sumcdf; // cout << ' ' << cdf(my8dist, static_cast(k)); // cout << ' ' << sumcdf - cdf(my8dist, static_cast(k)) << endl; // } // for k // } // n = 8, p =0.25 //k pdf cdf //0 0.1001129150390625 0.1001129150390625 //1 0.26696777343749994 0.36708068847656244 //2 0.31146240234375017 0.67854309082031261 //3 0.20764160156249989 0.8861846923828125 //4 0.086517333984375 0.9727020263671875 //5 0.023071289062499997 0.9957733154296875 //6 0.0038452148437500009 0.9996185302734375 //7 0.00036621093749999984 0.9999847412109375 //8 1.52587890625e-005 1 1 0 } #define T RealType #include "binomial_quantile.ipp" for(unsigned i = 0; i < binomial_quantile_data.size(); ++i) { using namespace boost::math::policies; typedef policy > P1; typedef policy > P2; typedef policy > P3; typedef policy > P4; typedef policy > P5; typedef policy > P6; RealType tol = boost::math::tools::epsilon() * 500; if(!boost::is_floating_point::value) tol *= 10; // no lanczos approximation implies less accuracy RealType x; #if !defined(TEST_ROUNDING) || (TEST_ROUNDING == 1) // // Check full real value first: // binomial_distribution p1(binomial_quantile_data[i][0], binomial_quantile_data[i][1]); x = quantile(p1, binomial_quantile_data[i][2]); BOOST_CHECK_CLOSE_FRACTION(x, (RealType)binomial_quantile_data[i][3], tol); x = quantile(complement(p1, (RealType)binomial_quantile_data[i][2])); BOOST_CHECK_CLOSE_FRACTION(x, (RealType)binomial_quantile_data[i][4], tol); #endif #if !defined(TEST_ROUNDING) || (TEST_ROUNDING == 2) // // Now with round down to integer: // binomial_distribution p2(binomial_quantile_data[i][0], binomial_quantile_data[i][1]); x = quantile(p2, binomial_quantile_data[i][2]); BOOST_CHECK_EQUAL(x, (RealType)floor(binomial_quantile_data[i][3])); x = quantile(complement(p2, binomial_quantile_data[i][2])); BOOST_CHECK_EQUAL(x, (RealType)floor(binomial_quantile_data[i][4])); #endif #if !defined(TEST_ROUNDING) || (TEST_ROUNDING == 3) // // Now with round up to integer: // binomial_distribution p3(binomial_quantile_data[i][0], binomial_quantile_data[i][1]); x = quantile(p3, binomial_quantile_data[i][2]); BOOST_CHECK_EQUAL(x, (RealType)ceil(binomial_quantile_data[i][3])); x = quantile(complement(p3, binomial_quantile_data[i][2])); BOOST_CHECK_EQUAL(x, (RealType)ceil(binomial_quantile_data[i][4])); #endif #if !defined(TEST_ROUNDING) || (TEST_ROUNDING == 4) // // Now with round to integer "outside": // binomial_distribution p4(binomial_quantile_data[i][0], binomial_quantile_data[i][1]); x = quantile(p4, binomial_quantile_data[i][2]); BOOST_CHECK_EQUAL(x, (RealType)(binomial_quantile_data[i][2] < 0.5f ? floor(binomial_quantile_data[i][3]) : ceil(binomial_quantile_data[i][3]))); x = quantile(complement(p4, binomial_quantile_data[i][2])); BOOST_CHECK_EQUAL(x, (RealType)(binomial_quantile_data[i][2] < 0.5f ? ceil(binomial_quantile_data[i][4]) : floor(binomial_quantile_data[i][4]))); #endif #if !defined(TEST_ROUNDING) || (TEST_ROUNDING == 5) // // Now with round to integer "inside": // binomial_distribution p5(binomial_quantile_data[i][0], binomial_quantile_data[i][1]); x = quantile(p5, binomial_quantile_data[i][2]); BOOST_CHECK_EQUAL(x, (RealType)(binomial_quantile_data[i][2] < 0.5f ? ceil(binomial_quantile_data[i][3]) : floor(binomial_quantile_data[i][3]))); x = quantile(complement(p5, binomial_quantile_data[i][2])); BOOST_CHECK_EQUAL(x, (RealType)(binomial_quantile_data[i][2] < 0.5f ? floor(binomial_quantile_data[i][4]) : ceil(binomial_quantile_data[i][4]))); #endif #if !defined(TEST_ROUNDING) || (TEST_ROUNDING == 6) // // Now with round to nearest integer: // binomial_distribution p6(binomial_quantile_data[i][0], binomial_quantile_data[i][1]); x = quantile(p6, binomial_quantile_data[i][2]); BOOST_CHECK_EQUAL(x, (RealType)(floor(binomial_quantile_data[i][3] + 0.5f))); x = quantile(complement(p6, binomial_quantile_data[i][2])); BOOST_CHECK_EQUAL(x, (RealType)(floor(binomial_quantile_data[i][4] + 0.5f))); #endif } check_out_of_range >(1, 1); // (All) valid constructor parameter values. } // template void test_spots(RealType) BOOST_AUTO_TEST_CASE( test_main ) { BOOST_MATH_CONTROL_FP; // Check that can generate binomial distribution using one convenience methods: binomial_distribution<> mybn2(1., 0.5); // Using default RealType double. // but that // boost::math::binomial mybn1(1., 0.5); // Using typedef fails // error C2039: 'binomial' : is not a member of 'boost::math' // Basic sanity-check spot values. // (Parameter value, arbitrarily zero, only communicates the floating point type). #ifdef TEST_FLOAT test_spots(0.0F); // Test float. #endif #ifdef TEST_DOUBLE test_spots(0.0); // Test double. #endif #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS #ifdef TEST_LDOUBLE test_spots(0.0L); // Test long double. #endif #if !defined(BOOST_MATH_NO_REAL_CONCEPT_TESTS) #ifdef TEST_REAL_CONCEPT test_spots(boost::math::concepts::real_concept(0.)); // Test real concept. #endif #endif #else std::cout << "The long double tests have been disabled on this platform " "either because the long double overloads of the usual math functions are " "not available at all, or because they are too inaccurate for these tests " "to pass." << std::cout; #endif } // BOOST_AUTO_TEST_CASE( test_main ) /* Output is: Description: Autorun "J:\Cpp\MathToolkit\test\Math_test\Debug\test_binomial.exe" Running 1 test case... Tolerance for type float is 0.0119209 % Tolerance for type double is 2.22045e-011 % Tolerance for type long double is 2.22045e-011 % Tolerance for type class boost::math::concepts::real_concept is 2.22045e-011 % *** No errors detected ========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ========== */