/*------------------------------------------------------------------------- * * planmain.c * Routines to plan a single query * * What's in a name, anyway? The top-level entry point of the planner/ * optimizer is over in planner.c, not here as you might think from the * file name. But this is the main code for planning a basic join operation, * shorn of features like subselects, inheritance, aggregates, grouping, * and so on. (Those are the things planner.c deals with.) * * Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * src/backend/optimizer/plan/planmain.c * *------------------------------------------------------------------------- */ #include "postgres.h" #include "optimizer/clauses.h" #include "optimizer/orclauses.h" #include "optimizer/pathnode.h" #include "optimizer/paths.h" #include "optimizer/placeholder.h" #include "optimizer/planmain.h" /* * query_planner * Generate a path (that is, a simplified plan) for a basic query, * which may involve joins but not any fancier features. * * Since query_planner does not handle the toplevel processing (grouping, * sorting, etc) it cannot select the best path by itself. Instead, it * returns the RelOptInfo for the top level of joining, and the caller * (grouping_planner) can choose among the surviving paths for the rel. * * root describes the query to plan * tlist is the target list the query should produce * (this is NOT necessarily root->parse->targetList!) * qp_callback is a function to compute query_pathkeys once it's safe to do so * qp_extra is optional extra data to pass to qp_callback * * Note: the PlannerInfo node also includes a query_pathkeys field, which * tells query_planner the sort order that is desired in the final output * plan. This value is *not* available at call time, but is computed by * qp_callback once we have completed merging the query's equivalence classes. * (We cannot construct canonical pathkeys until that's done.) */ RelOptInfo * query_planner(PlannerInfo *root, List *tlist, query_pathkeys_callback qp_callback, void *qp_extra) { Query *parse = root->parse; List *joinlist; RelOptInfo *final_rel; Index rti; double total_pages; /* * If the query has an empty join tree, then it's something easy like * "SELECT 2+2;" or "INSERT ... VALUES()". Fall through quickly. */ if (parse->jointree->fromlist == NIL) { /* We need a dummy joinrel to describe the empty set of baserels */ final_rel = build_empty_join_rel(root); /* * If query allows parallelism in general, check whether the quals are * parallel-restricted. There's currently no real benefit to setting * this flag correctly because we can't yet reference subplans from * parallel workers. But that might change someday, so set this * correctly anyway. */ if (root->glob->parallelModeOK) final_rel->consider_parallel = !has_parallel_hazard(parse->jointree->quals, false); /* The only path for it is a trivial Result path */ add_path(final_rel, (Path *) create_result_path(root, final_rel, final_rel->reltarget, (List *) parse->jointree->quals)); /* Select cheapest path (pretty easy in this case...) */ set_cheapest(final_rel); /* * We still are required to call qp_callback, in case it's something * like "SELECT 2+2 ORDER BY 1". */ root->canon_pathkeys = NIL; (*qp_callback) (root, qp_extra); return final_rel; } /* * Init planner lists to empty. * * NOTE: append_rel_list was set up by subquery_planner, so do not touch * here. */ root->join_rel_list = NIL; root->join_rel_hash = NULL; root->join_rel_level = NULL; root->join_cur_level = 0; root->canon_pathkeys = NIL; root->left_join_clauses = NIL; root->right_join_clauses = NIL; root->full_join_clauses = NIL; root->join_info_list = NIL; root->placeholder_list = NIL; root->fkey_list = NIL; root->initial_rels = NIL; /* * Make a flattened version of the rangetable for faster access (this is * OK because the rangetable won't change any more), and set up an empty * array for indexing base relations. */ setup_simple_rel_arrays(root); /* * Construct RelOptInfo nodes for all base relations in query, and * indirectly for all appendrel member relations ("other rels"). This * will give us a RelOptInfo for every "simple" (non-join) rel involved in * the query. * * Note: the reason we find the rels by searching the jointree and * appendrel list, rather than just scanning the rangetable, is that the * rangetable may contain RTEs for rels not actively part of the query, * for example views. We don't want to make RelOptInfos for them. */ add_base_rels_to_query(root, (Node *) parse->jointree); /* * Examine the targetlist and join tree, adding entries to baserel * targetlists for all referenced Vars, and generating PlaceHolderInfo * entries for all referenced PlaceHolderVars. Restrict and join clauses * are added to appropriate lists belonging to the mentioned relations. We * also build EquivalenceClasses for provably equivalent expressions. The * SpecialJoinInfo list is also built to hold information about join order * restrictions. Finally, we form a target joinlist for make_one_rel() to * work from. */ build_base_rel_tlists(root, tlist); find_placeholders_in_jointree(root); find_lateral_references(root); joinlist = deconstruct_jointree(root); /* * Reconsider any postponed outer-join quals now that we have built up * equivalence classes. (This could result in further additions or * mergings of classes.) */ reconsider_outer_join_clauses(root); /* * If we formed any equivalence classes, generate additional restriction * clauses as appropriate. (Implied join clauses are formed on-the-fly * later.) */ generate_base_implied_equalities(root); /* * We have completed merging equivalence sets, so it's now possible to * generate pathkeys in canonical form; so compute query_pathkeys and * other pathkeys fields in PlannerInfo. */ (*qp_callback) (root, qp_extra); /* * Examine any "placeholder" expressions generated during subquery pullup. * Make sure that the Vars they need are marked as needed at the relevant * join level. This must be done before join removal because it might * cause Vars or placeholders to be needed above a join when they weren't * so marked before. */ fix_placeholder_input_needed_levels(root); /* * Remove any useless outer joins. Ideally this would be done during * jointree preprocessing, but the necessary information isn't available * until we've built baserel data structures and classified qual clauses. */ joinlist = remove_useless_joins(root, joinlist); /* * Now distribute "placeholders" to base rels as needed. This has to be * done after join removal because removal could change whether a * placeholder is evaluable at a base rel. */ add_placeholders_to_base_rels(root); /* * Construct the lateral reference sets now that we have finalized * PlaceHolderVar eval levels. */ create_lateral_join_info(root); /* * Match foreign keys to equivalence classes and join quals. This must be * done after finalizing equivalence classes, and it's useful to wait till * after join removal so that we can skip processing foreign keys * involving removed relations. */ match_foreign_keys_to_quals(root); /* * Look for join OR clauses that we can extract single-relation * restriction OR clauses from. */ extract_restriction_or_clauses(root); /* * We should now have size estimates for every actual table involved in * the query, and we also know which if any have been deleted from the * query by join removal; so we can compute total_table_pages. * * Note that appendrels are not double-counted here, even though we don't * bother to distinguish RelOptInfos for appendrel parents, because the * parents will still have size zero. * * XXX if a table is self-joined, we will count it once per appearance, * which perhaps is the wrong thing ... but that's not completely clear, * and detecting self-joins here is difficult, so ignore it for now. */ total_pages = 0; for (rti = 1; rti < root->simple_rel_array_size; rti++) { RelOptInfo *brel = root->simple_rel_array[rti]; if (brel == NULL) continue; Assert(brel->relid == rti); /* sanity check on array */ if (brel->reloptkind == RELOPT_BASEREL || brel->reloptkind == RELOPT_OTHER_MEMBER_REL) total_pages += (double) brel->pages; } root->total_table_pages = total_pages; /* * Ready to do the primary planning. */ final_rel = make_one_rel(root, joinlist); /* Check that we got at least one usable path */ if (!final_rel || !final_rel->cheapest_total_path || final_rel->cheapest_total_path->param_info != NULL) elog(ERROR, "failed to construct the join relation"); return final_rel; }