/* [auto_generated] boost/numeric/odeint/iterator/detail/times_iterator_impl.hpp [begin_description] tba. [end_description] Copyright 2009-2013 Karsten Ahnert Copyright 2009-2013 Mario Mulansky Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) */ #ifndef BOOST_NUMERIC_ODEINT_ITERATOR_DETAIL_TIMES_ITERATOR_IMPL_HPP_DEFINED #define BOOST_NUMERIC_ODEINT_ITERATOR_DETAIL_TIMES_ITERATOR_IMPL_HPP_DEFINED #include #include #include #include #include #include #include namespace boost { namespace numeric { namespace odeint { template< class Iterator , class Stepper , class System , class State , class TimeIterator , typename Tag , typename StepperTag > class times_iterator_impl; /* * Specilization for basic steppers */ /** * \brief ODE Iterator with constant step size. * * Implements an ODE iterator with observer calls at predefined times. * Uses controlled steppers. times_iterator is a model of single-pass iterator. * * The value type of this iterator is the state type of the stepper. Hence one can only access the state and not the current time. * * \tparam Stepper The stepper type which should be used during the iteration. * \tparam System The type of the system function (ODE) which should be solved. */ template< class Iterator , class Stepper , class System , class State , class TimeIterator , typename Tag > class times_iterator_impl< Iterator , Stepper , System , State , TimeIterator , Tag , stepper_tag > : public detail::ode_iterator_base< Iterator , Stepper , System , State , Tag > { private: typedef Stepper stepper_type; typedef System system_type; typedef typename boost::numeric::odeint::unwrap_reference< stepper_type >::type unwrapped_stepper_type; typedef State state_type; typedef TimeIterator time_iterator_type; typedef typename traits::time_type< stepper_type >::type time_type; typedef typename traits::value_type< stepper_type >::type ode_value_type; #ifndef DOXYGEN_SKIP typedef detail::ode_iterator_base< Iterator , Stepper , System , State , Tag > base_type; #endif public: /** * \brief Constructs a times_iterator. This constructor should be used to construct the begin iterator. * * \param stepper The stepper to use during the iteration. * \param sys The system function (ODE) to solve. * \param s The initial state. adaptive_iterator stores a reference of s and changes its value during the iteration. * \param t_start Iterator to the begin of a sequence of time values. * \param t_end Iterator to the begin of a sequence of time values. * \param dt The (initial) time step. */ times_iterator_impl( stepper_type stepper , system_type sys , state_type &s , time_iterator_type t_start , time_iterator_type t_end , time_type dt ) : base_type( stepper , sys , *t_start , dt ) , m_t_start( t_start ) , m_t_end( t_end ) , m_state( &s ) { if( t_start == t_end ) this->m_at_end = true; } /** * \brief Constructs an adaptive_iterator. This constructor should be used to construct the end iterator. * * \param stepper The stepper to use during the iteration. * \param sys The system function (ODE) to solve. * \param s The initial state. adaptive_iterator store a reference of s and changes its value during the iteration. */ times_iterator_impl( stepper_type stepper , system_type sys , state_type &s ) : base_type( stepper , sys ) , m_state( &s ) { } protected: friend class boost::iterator_core_access; void increment() { unwrapped_stepper_type &stepper = this->m_stepper; if( ++m_t_start != m_t_end ) { while( detail::less_with_sign( this->m_t , static_cast(*m_t_start) , this->m_dt ) ) { const time_type current_dt = detail::min_abs( this->m_dt , static_cast(*m_t_start) - this->m_t ); stepper.do_step( this->m_system , *( this->m_state ) , this->m_t , current_dt ); this->m_t += current_dt; } } else { this->m_at_end = true; } } public: const state_type& get_state() const { return *m_state; } private: time_iterator_type m_t_start; time_iterator_type m_t_end; state_type* m_state; }; /* * Specilization for controlled steppers */ /** * \brief ODE Iterator with adaptive step size control. The value type of this iterator is the state type of the stepper. * * Implements an ODE iterator with observer calls at predefined times. * Uses controlled steppers. times_iterator is a model of single-pass iterator. * * The value type of this iterator is the state type of the stepper. Hence one can only access the state and not the current time. * * \tparam Stepper The stepper type which should be used during the iteration. * \tparam System The type of the system function (ODE) which should be solved. */ template< class Iterator , class Stepper , class System , class State , class TimeIterator , typename Tag > class times_iterator_impl< Iterator , Stepper , System , State , TimeIterator , Tag , controlled_stepper_tag > : public detail::ode_iterator_base< Iterator , Stepper , System , State , Tag > { private: typedef Stepper stepper_type; typedef System system_type; typedef typename boost::numeric::odeint::unwrap_reference< stepper_type >::type unwrapped_stepper_type; typedef State state_type; typedef TimeIterator time_iterator_type; typedef typename traits::time_type< stepper_type >::type time_type; typedef typename traits::value_type< stepper_type >::type ode_value_type; #ifndef DOXYGEN_SKIP typedef detail::ode_iterator_base< Iterator , Stepper , System , State , Tag > base_type; #endif public: /** * \brief Constructs a times_iterator. This constructor should be used to construct the begin iterator. * * \param stepper The stepper to use during the iteration. * \param sys The system function (ODE) to solve. * \param s The initial state. adaptive_iterator stores a reference of s and changes its value during the iteration. * \param t_start Iterator to the begin of a sequence of time values. * \param t_end Iterator to the begin of a sequence of time values. * \param dt The (initial) time step. */ times_iterator_impl( stepper_type stepper , system_type sys , state_type &s , time_iterator_type t_start , time_iterator_type t_end , time_type dt ) : base_type( stepper , sys , *t_start , dt ) , m_t_start( t_start ) , m_t_end( t_end ) , m_state( &s ) { if( t_start == t_end ) this->m_at_end = true; } /** * \brief Constructs an adaptive_iterator. This constructor should be used to construct the end iterator. * * \param stepper The stepper to use during the iteration. * \param sys The system function (ODE) to solve. * \param s The initial state. adaptive_iterator store a reference of s and changes its value during the iteration. */ times_iterator_impl( stepper_type stepper , system_type sys , state_type &s ) : base_type( stepper , sys ) , m_state( &s ) { } protected: friend class boost::iterator_core_access; void increment() { if( ++m_t_start != m_t_end ) { while( detail::less_with_sign( this->m_t , static_cast(*m_t_start) , this->m_dt ) ) { if( detail::less_with_sign( static_cast(*m_t_start) - this->m_t , this->m_dt , this->m_dt ) ) { // we want to end exactly at the time point time_type current_dt = static_cast(*m_t_start) - this->m_t; step_loop( current_dt ); } else { step_loop( this->m_dt ); } } } else { this->m_at_end = true; } } private: void step_loop( time_type &dt ) { unwrapped_stepper_type &stepper = this->m_stepper; const size_t max_attempts = 1000; size_t trials = 0; controlled_step_result res = success; do { res = stepper.try_step( this->m_system , *( this->m_state ) , this->m_t , dt ); ++trials; } while( ( res == fail ) && ( trials < max_attempts ) ); if( trials == max_attempts ) { BOOST_THROW_EXCEPTION( std::overflow_error( "Adaptive iterator : Maximal number of iterations reached. A step size could not be found." ) ); } } public: const state_type& get_state() const { return *m_state; } private: time_iterator_type m_t_start; time_iterator_type m_t_end; state_type* m_state; }; /* * Specilization for dense outputer steppers */ /** * \brief ODE Iterator with step size control and dense output. * Implements an ODE iterator with adaptive step size control. Uses dense-output steppers. * times_iterator is a model of single-pass iterator. * * \tparam Stepper The stepper type which should be used during the iteration. * \tparam System The type of the system function (ODE) which should be solved. */ template< class Iterator , class Stepper , class System , class State , class TimeIterator , typename Tag > class times_iterator_impl< Iterator , Stepper , System , State , TimeIterator , Tag , dense_output_stepper_tag > : public detail::ode_iterator_base< Iterator , Stepper , System , State , Tag > { private: typedef Stepper stepper_type; typedef System system_type; typedef typename boost::numeric::odeint::unwrap_reference< stepper_type >::type unwrapped_stepper_type; typedef State state_type; typedef TimeIterator time_iterator_type; typedef typename traits::time_type< stepper_type >::type time_type; typedef typename traits::value_type< stepper_type >::type ode_value_type; #ifndef DOXYGEN_SKIP typedef detail::ode_iterator_base< Iterator , Stepper , System , State , Tag > base_type; #endif public: /** * \brief Constructs a times_iterator. This constructor should be used to construct the begin iterator. * * \param stepper The stepper to use during the iteration. * \param sys The system function (ODE) to solve. * \param s The initial state. * \param t_start Iterator to the begin of a sequence of time values. * \param t_end Iterator to the begin of a sequence of time values. * \param dt The (initial) time step. */ times_iterator_impl( stepper_type stepper , system_type sys , state_type &s , time_iterator_type t_start , time_iterator_type t_end , time_type dt ) : base_type( stepper , sys , *t_start , dt ) , m_t_start( t_start ) , m_t_end( t_end ) , m_final_time( *(t_end-1) ) , m_state( &s ) { if( t_start != t_end ) { unwrapped_stepper_type &st = this->m_stepper; st.initialize( *( this->m_state ) , this->m_t , this->m_dt ); } else { this->m_at_end = true; } } /** * \brief Constructs a times_iterator. This constructor should be used to construct the end iterator. * * \param stepper The stepper to use during the iteration. * \param sys The system function (ODE) to solve. * \param s The initial state. */ times_iterator_impl( stepper_type stepper , system_type sys , state_type &s ) : base_type( stepper , sys ) , m_state( &s ) { } protected: friend class boost::iterator_core_access; void increment() { unwrapped_stepper_type &st = this->m_stepper; if( ++m_t_start != m_t_end ) { this->m_t = static_cast(*m_t_start); while( detail::less_with_sign( st.current_time() , this->m_t , this->m_dt ) ) { // make sure we don't go beyond the last point if( detail::less_with_sign( m_final_time-st.current_time() , st.current_time_step() , st.current_time_step() ) ) { st.initialize( st.current_state() , st.current_time() , m_final_time-st.current_time() ); } st.do_step( this->m_system ); } st.calc_state( this->m_t , *( this->m_state ) ); } else { this->m_at_end = true; } } public: const state_type& get_state() const { return *m_state; } private: time_iterator_type m_t_start; time_iterator_type m_t_end; time_type m_final_time; state_type* m_state; }; } // namespace odeint } // namespace numeric } // namespace boost #endif // BOOST_NUMERIC_ODEINT_ITERATOR_DETAIL_TIMES_ITERATOR_IMPL_HPP_DEFINED