// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // +build aix darwin dragonfly freebsd hurd linux netbsd openbsd solaris package syscall import ( "internal/race" "runtime" "sync" "unsafe" ) var ( Stdin = 0 Stdout = 1 Stderr = 2 ) const ( darwin64Bit = runtime.GOOS == "darwin" && sizeofPtr == 8 netbsd32Bit = runtime.GOOS == "netbsd" && sizeofPtr == 4 ) // clen returns the index of the first NULL byte in n or len(n) if n contains no NULL byte. func clen(n []byte) int { for i := 0; i < len(n); i++ { if n[i] == 0 { return i } } return len(n) } // Mmap manager, for use by operating system-specific implementations. // Gccgo only has one implementation but we do this to correspond to gc. type mmapper struct { sync.Mutex active map[*byte][]byte // active mappings; key is last byte in mapping mmap func(addr, length uintptr, prot, flags, fd int, offset int64) (uintptr, error) munmap func(addr uintptr, length uintptr) error } func (m *mmapper) Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) { if length <= 0 { return nil, EINVAL } // Map the requested memory. addr, errno := m.mmap(0, uintptr(length), prot, flags, fd, offset) if errno != nil { return nil, errno } // Slice memory layout var sl = struct { addr uintptr len int cap int }{addr, length, length} // Use unsafe to turn sl into a []byte. b := *(*[]byte)(unsafe.Pointer(&sl)) // Register mapping in m and return it. p := &b[cap(b)-1] m.Lock() defer m.Unlock() m.active[p] = b return b, nil } func (m *mmapper) Munmap(data []byte) (err error) { if len(data) == 0 || len(data) != cap(data) { return EINVAL } // Find the base of the mapping. p := &data[cap(data)-1] m.Lock() defer m.Unlock() b := m.active[p] if b == nil || &b[0] != &data[0] { return EINVAL } // Unmap the memory and update m. if errno := m.munmap(uintptr(unsafe.Pointer(&b[0])), uintptr(len(b))); errno != nil { return errno } delete(m.active, p) return nil } var mapper = &mmapper{ active: make(map[*byte][]byte), mmap: mmap, munmap: munmap, } func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) { return mapper.Mmap(fd, offset, length, prot, flags) } func Munmap(b []byte) (err error) { return mapper.Munmap(b) } // Do the interface allocations only once for common // Errno values. var ( errEAGAIN error = EAGAIN errEINVAL error = EINVAL errENOENT error = ENOENT ) // errnoErr returns common boxed Errno values, to prevent // allocations at runtime. func errnoErr(e Errno) error { switch e { case 0: return nil case EAGAIN: return errEAGAIN case EINVAL: return errEINVAL case ENOENT: return errENOENT } return e } // A Signal is a number describing a process signal. // It implements the os.Signal interface. type Signal int func (s Signal) Signal() {} func Signame(s Signal) string func (s Signal) String() string { return Signame(s) } func Read(fd int, p []byte) (n int, err error) { n, err = read(fd, p) if race.Enabled { if n > 0 { race.WriteRange(unsafe.Pointer(&p[0]), n) } if err == nil { race.Acquire(unsafe.Pointer(&ioSync)) } } if msanenabled && n > 0 { msanWrite(unsafe.Pointer(&p[0]), n) } return } func Write(fd int, p []byte) (n int, err error) { if race.Enabled { race.ReleaseMerge(unsafe.Pointer(&ioSync)) } if faketime && (fd == 1 || fd == 2) { n = faketimeWrite(fd, p) if n < 0 { n, err = 0, errnoErr(Errno(-n)) } } else { n, err = write(fd, p) } if race.Enabled && n > 0 { race.ReadRange(unsafe.Pointer(&p[0]), n) } if msanenabled && n > 0 { msanRead(unsafe.Pointer(&p[0]), n) } return } var ioSync int64