// Boost.Geometry // Copyright (c) 2018 Adeel Ahmad, Islamabad, Pakistan. // Contributed and/or modified by Adeel Ahmad, as part of Google Summer of Code 2018 program. // This file was modified by Oracle on 2019. // Modifications copyright (c) 2019 Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // This file is converted from GeographicLib, https://geographiclib.sourceforge.io // GeographicLib is originally written by Charles Karney. // Author: Charles Karney (2008-2017) // Last updated version of GeographicLib: 1.49 // Original copyright notice: // Copyright (c) Charles Karney (2008-2017) and licensed // under the MIT/X11 License. For more information, see // https://geographiclib.sourceforge.io #ifndef BOOST_GEOMETRY_FORMULAS_KARNEY_INVERSE_HPP #define BOOST_GEOMETRY_FORMULAS_KARNEY_INVERSE_HPP #include #include #include #include #include #include #include #include namespace boost { namespace geometry { namespace math { // TODO: Moved temporarily because of C++11 is used /*! \brief The exact difference of two angles reduced to (-180deg, 180deg]. */ template inline T difference_angle(T const& x, T const& y, T& e) { T t, d = math::sum_error(std::remainder(-x, T(360)), std::remainder(y, T(360)), t); normalize_azimuth(d); // Here y - x = d + t (mod 360), exactly, where d is in (-180,180] and // abs(t) <= eps (eps = 2^-45 for doubles). The only case where the // addition of t takes the result outside the range (-180,180] is d = 180 // and t > 0. The case, d = -180 + eps, t = -eps, can't happen, since // sum_error would have returned the exact result in such a case (i.e., given t = 0). return math::sum_error(d == 180 && t > 0 ? -180 : d, t, e); } }}} // namespace boost::geometry::math namespace boost { namespace geometry { namespace formula { namespace se = series_expansion; /*! \brief The solution of the inverse problem of geodesics on latlong coordinates, after Karney (2011). \author See - Charles F.F Karney, Algorithms for geodesics, 2011 https://arxiv.org/pdf/1109.4448.pdf */ template < typename CT, bool EnableDistance, bool EnableAzimuth, bool EnableReverseAzimuth = false, bool EnableReducedLength = false, bool EnableGeodesicScale = false, size_t SeriesOrder = 8 > class karney_inverse { static const bool CalcQuantities = EnableReducedLength || EnableGeodesicScale; static const bool CalcAzimuths = EnableAzimuth || EnableReverseAzimuth || CalcQuantities; static const bool CalcFwdAzimuth = EnableAzimuth || CalcQuantities; static const bool CalcRevAzimuth = EnableReverseAzimuth || CalcQuantities; public: typedef result_inverse result_type; template static inline result_type apply(T1 const& lo1, T1 const& la1, T2 const& lo2, T2 const& la2, Spheroid const& spheroid) { static CT const c0 = 0; static CT const c0_001 = 0.001; static CT const c0_1 = 0.1; static CT const c1 = 1; static CT const c2 = 2; static CT const c3 = 3; static CT const c8 = 8; static CT const c16 = 16; static CT const c90 = 90; static CT const c180 = 180; static CT const c200 = 200; static CT const pi = math::pi(); static CT const d2r = math::d2r(); static CT const r2d = math::r2d(); result_type result; CT lat1 = la1; CT lat2 = la2; CT lon1 = lo1; CT lon2 = lo2; CT const a = CT(get_radius<0>(spheroid)); CT const b = CT(get_radius<2>(spheroid)); CT const f = formula::flattening(spheroid); CT const one_minus_f = c1 - f; CT const two_minus_f = c2 - f; CT const tol0 = std::numeric_limits::epsilon(); CT const tol1 = c200 * tol0; CT const tol2 = sqrt(tol0); // Check on bisection interval. CT const tol_bisection = tol0 * tol2; CT const etol2 = c0_1 * tol2 / sqrt((std::max)(c0_001, std::abs(f)) * (std::min)(c1, c1 - f / c2) / c2); CT tiny = std::sqrt((std::numeric_limits::min)()); CT const n = f / two_minus_f; CT const e2 = f * two_minus_f; CT const ep2 = e2 / math::sqr(one_minus_f); // Compute the longitudinal difference. CT lon12_error; CT lon12 = math::difference_angle(lon1, lon2, lon12_error); int lon12_sign = lon12 >= 0 ? 1 : -1; // Make points close to the meridian to lie on it. lon12 = lon12_sign * lon12; lon12_error = (c180 - lon12) - lon12_sign * lon12_error; // Convert to radians. CT lam12 = lon12 * d2r; CT sin_lam12; CT cos_lam12; if (lon12 > c90) { math::sin_cos_degrees(lon12_error, sin_lam12, cos_lam12); cos_lam12 *= -c1; } else { math::sin_cos_degrees(lon12, sin_lam12, cos_lam12); } // Make points close to the equator to lie on it. lat1 = math::round_angle(std::abs(lat1) > c90 ? c90 : lat1); lat2 = math::round_angle(std::abs(lat2) > c90 ? c90 : lat2); // Arrange points in a canonical form, as explained in // paper, Algorithms for geodesics, Eq. (44): // // 0 <= lon12 <= 180 // -90 <= lat1 <= 0 // lat1 <= lat2 <= -lat1 int swap_point = std::abs(lat1) < std::abs(lat2) ? -1 : 1; if (swap_point < 0) { lon12_sign *= -1; swap(lat1, lat2); } // Enforce lat1 to be <= 0. int lat_sign = lat1 < 0 ? 1 : -1; lat1 *= lat_sign; lat2 *= lat_sign; CT sin_beta1, cos_beta1; math::sin_cos_degrees(lat1, sin_beta1, cos_beta1); sin_beta1 *= one_minus_f; math::normalize_unit_vector(sin_beta1, cos_beta1); cos_beta1 = (std::max)(tiny, cos_beta1); CT sin_beta2, cos_beta2; math::sin_cos_degrees(lat2, sin_beta2, cos_beta2); sin_beta2 *= one_minus_f; math::normalize_unit_vector(sin_beta2, cos_beta2); cos_beta2 = (std::max)(tiny, cos_beta2); // If cos_beta1 < -sin_beta1, then cos_beta2 - cos_beta1 is a // sensitive measure of the |beta1| - |beta2|. Alternatively, // (cos_beta1 >= -sin_beta1), abs(sin_beta2) + sin_beta1 is // a better measure. // Sometimes these quantities vanish and in that case we // force beta2 = +/- bet1a exactly. if (cos_beta1 < -sin_beta1) { if (cos_beta1 == cos_beta2) { sin_beta2 = sin_beta2 < 0 ? sin_beta1 : -sin_beta1; } } else { if (std::abs(sin_beta2) == -sin_beta1) { cos_beta2 = cos_beta1; } } CT const dn1 = sqrt(c1 + ep2 * math::sqr(sin_beta1)); CT const dn2 = sqrt(c1 + ep2 * math::sqr(sin_beta2)); CT sigma12; CT m12x, s12x, M21; // Index zero element of coeffs_C1 is unused. se::coeffs_C1 const coeffs_C1(n); bool meridian = lat1 == -90 || sin_lam12 == 0; CT cos_alpha1, sin_alpha1; CT cos_alpha2, sin_alpha2; if (meridian) { // Endpoints lie on a single full meridian. // Point to the target latitude. cos_alpha1 = cos_lam12; sin_alpha1 = sin_lam12; // Heading north at the target. cos_alpha2 = c1; sin_alpha2 = c0; CT sin_sigma1 = sin_beta1; CT cos_sigma1 = cos_alpha1 * cos_beta1; CT sin_sigma2 = sin_beta2; CT cos_sigma2 = cos_alpha2 * cos_beta2; CT sigma12 = std::atan2((std::max)(c0, cos_sigma1 * sin_sigma2 - sin_sigma1 * cos_sigma2), cos_sigma1 * cos_sigma2 + sin_sigma1 * sin_sigma2); CT dummy; meridian_length(n, ep2, sigma12, sin_sigma1, cos_sigma1, dn1, sin_sigma2, cos_sigma2, dn2, cos_beta1, cos_beta2, s12x, m12x, dummy, result.geodesic_scale, M21, coeffs_C1); if (sigma12 < c1 || m12x >= c0) { if (sigma12 < c3 * tiny) { sigma12 = m12x = s12x = c0; } m12x *= b; s12x *= b; } else { // m12 < 0, i.e., prolate and too close to anti-podal. meridian = false; } } CT omega12; if (!meridian && sin_beta1 == c0 && (f <= c0 || lon12_error >= f * c180)) { // Points lie on the equator. cos_alpha1 = cos_alpha2 = c0; sin_alpha1 = sin_alpha2 = c1; s12x = a * lam12; sigma12 = omega12 = lam12 / one_minus_f; m12x = b * sin(sigma12); if (BOOST_GEOMETRY_CONDITION(EnableGeodesicScale)) { result.geodesic_scale = cos(sigma12); } } else if (!meridian) { // If point1 and point2 belong within a hemisphere bounded by a // meridian and geodesic is neither meridional nor equatorial. // Find the starting point for Newton's method. CT dnm; sigma12 = newton_start(sin_beta1, cos_beta1, dn1, sin_beta2, cos_beta2, dn2, lam12, sin_lam12, cos_lam12, sin_alpha1, cos_alpha1, sin_alpha2, cos_alpha2, dnm, coeffs_C1, ep2, tol1, tol2, etol2, n, f); if (sigma12 >= c0) { // Short lines case (newton_start sets sin_alpha2, cos_alpha2, dnm). s12x = sigma12 * b * dnm; m12x = math::sqr(dnm) * b * sin(sigma12 / dnm); if (BOOST_GEOMETRY_CONDITION(EnableGeodesicScale)) { result.geodesic_scale = cos(sigma12 / dnm); } // Convert to radians. omega12 = lam12 / (one_minus_f * dnm); } else { // Apply the Newton's method. CT sin_sigma1 = c0, cos_sigma1 = c0; CT sin_sigma2 = c0, cos_sigma2 = c0; CT eps = c0, diff_omega12 = c0; // Bracketing range. CT sin_alpha1a = tiny, cos_alpha1a = c1; CT sin_alpha1b = tiny, cos_alpha1b = -c1; size_t iteration = 0; size_t max_iterations = 20 + std::numeric_limits::digits + 10; for (bool tripn = false, tripb = false; iteration < max_iterations; ++iteration) { CT dv; CT v = lambda12(sin_beta1, cos_beta1, dn1, sin_beta2, cos_beta2, dn2, sin_alpha1, cos_alpha1, sin_lam12, cos_lam12, sin_alpha2, cos_alpha2, sigma12, sin_sigma1, cos_sigma1, sin_sigma2, cos_sigma2, eps, diff_omega12, iteration < max_iterations, dv, f, n, ep2, tiny, coeffs_C1); // Reversed test to allow escape with NaNs. if (tripb || !(std::abs(v) >= (tripn ? c8 : c1) * tol0)) break; // Update bracketing values. if (v > c0 && (iteration > max_iterations || cos_alpha1 / sin_alpha1 > cos_alpha1b / sin_alpha1b)) { sin_alpha1b = sin_alpha1; cos_alpha1b = cos_alpha1; } else if (v < c0 && (iteration > max_iterations || cos_alpha1 / sin_alpha1 < cos_alpha1a / sin_alpha1a)) { sin_alpha1a = sin_alpha1; cos_alpha1a = cos_alpha1; } if (iteration < max_iterations && dv > c0) { CT diff_alpha1 = -v / dv; CT sin_diff_alpha1 = sin(diff_alpha1); CT cos_diff_alpha1 = cos(diff_alpha1); CT nsin_alpha1 = sin_alpha1 * cos_diff_alpha1 + cos_alpha1 * sin_diff_alpha1; if (nsin_alpha1 > c0 && std::abs(diff_alpha1) < pi) { cos_alpha1 = cos_alpha1 * cos_diff_alpha1 - sin_alpha1 * sin_diff_alpha1; sin_alpha1 = nsin_alpha1; math::normalize_unit_vector(sin_alpha1, cos_alpha1); // In some regimes we don't get quadratic convergence because // slope -> 0. So use convergence conditions based on epsilon // instead of sqrt(epsilon). tripn = std::abs(v) <= c16 * tol0; continue; } } // Either dv was not positive or updated value was outside legal // range. Use the midpoint of the bracket as the next estimate. // This mechanism is not needed for the WGS84 ellipsoid, but it does // catch problems with more eeccentric ellipsoids. Its efficacy is // such for the WGS84 test set with the starting guess set to alp1 = // 90deg: // the WGS84 test set: mean = 5.21, sd = 3.93, max = 24 // WGS84 and random input: mean = 4.74, sd = 0.99 sin_alpha1 = (sin_alpha1a + sin_alpha1b) / c2; cos_alpha1 = (cos_alpha1a + cos_alpha1b) / c2; math::normalize_unit_vector(sin_alpha1, cos_alpha1); tripn = false; tripb = (std::abs(sin_alpha1a - sin_alpha1) + (cos_alpha1a - cos_alpha1) < tol_bisection || std::abs(sin_alpha1 - sin_alpha1b) + (cos_alpha1 - cos_alpha1b) < tol_bisection); } CT dummy; se::coeffs_C1 const coeffs_C1_eps(eps); // Ensure that the reduced length and geodesic scale are computed in // a "canonical" way, with the I2 integral. meridian_length(eps, ep2, sigma12, sin_sigma1, cos_sigma1, dn1, sin_sigma2, cos_sigma2, dn2, cos_beta1, cos_beta2, s12x, m12x, dummy, result.geodesic_scale, M21, coeffs_C1_eps); m12x *= b; s12x *= b; } } if (swap_point < 0) { swap(sin_alpha1, sin_alpha2); swap(cos_alpha1, cos_alpha2); swap(result.geodesic_scale, M21); } sin_alpha1 *= swap_point * lon12_sign; cos_alpha1 *= swap_point * lat_sign; sin_alpha2 *= swap_point * lon12_sign; cos_alpha2 *= swap_point * lat_sign; if (BOOST_GEOMETRY_CONDITION(EnableReducedLength)) { result.reduced_length = m12x; } if (BOOST_GEOMETRY_CONDITION(CalcAzimuths)) { if (BOOST_GEOMETRY_CONDITION(CalcFwdAzimuth)) { result.azimuth = atan2(sin_alpha1, cos_alpha1) * r2d; } if (BOOST_GEOMETRY_CONDITION(CalcRevAzimuth)) { result.reverse_azimuth = atan2(sin_alpha2, cos_alpha2) * r2d; } } if (BOOST_GEOMETRY_CONDITION(EnableDistance)) { result.distance = s12x; } return result; } template static inline void meridian_length(CT const& epsilon, CT const& ep2, CT const& sigma12, CT const& sin_sigma1, CT const& cos_sigma1, CT const& dn1, CT const& sin_sigma2, CT const& cos_sigma2, CT const& dn2, CT const& cos_beta1, CT const& cos_beta2, CT& s12x, CT& m12x, CT& m0, CT& M12, CT& M21, CoeffsC1 const& coeffs_C1) { static CT const c1 = 1; CT A12x = 0, J12 = 0; CT expansion_A1, expansion_A2; // Evaluate the coefficients for C2. se::coeffs_C2 coeffs_C2(epsilon); if (BOOST_GEOMETRY_CONDITION(EnableDistance) || BOOST_GEOMETRY_CONDITION(EnableReducedLength) || BOOST_GEOMETRY_CONDITION(EnableGeodesicScale)) { // Find the coefficients for A1 by computing the // series expansion using Horner scehme. expansion_A1 = se::evaluate_A1(epsilon); if (BOOST_GEOMETRY_CONDITION(EnableReducedLength) || BOOST_GEOMETRY_CONDITION(EnableGeodesicScale)) { // Find the coefficients for A2 by computing the // series expansion using Horner scehme. expansion_A2 = se::evaluate_A2(epsilon); A12x = expansion_A1 - expansion_A2; expansion_A2 += c1; } expansion_A1 += c1; } if (BOOST_GEOMETRY_CONDITION(EnableDistance)) { CT B1 = se::sin_cos_series(sin_sigma2, cos_sigma2, coeffs_C1) - se::sin_cos_series(sin_sigma1, cos_sigma1, coeffs_C1); s12x = expansion_A1 * (sigma12 + B1); if (BOOST_GEOMETRY_CONDITION(EnableReducedLength) || BOOST_GEOMETRY_CONDITION(EnableGeodesicScale)) { CT B2 = se::sin_cos_series(sin_sigma2, cos_sigma2, coeffs_C2) - se::sin_cos_series(sin_sigma1, cos_sigma1, coeffs_C2); J12 = A12x * sigma12 + (expansion_A1 * B1 - expansion_A2 * B2); } } else if (BOOST_GEOMETRY_CONDITION(EnableReducedLength) || BOOST_GEOMETRY_CONDITION(EnableGeodesicScale)) { for (size_t i = 1; i <= SeriesOrder; ++i) { coeffs_C2[i] = expansion_A1 * coeffs_C1[i] - expansion_A2 * coeffs_C2[i]; } J12 = A12x * sigma12 + (se::sin_cos_series(sin_sigma2, cos_sigma2, coeffs_C2) - se::sin_cos_series(sin_sigma1, cos_sigma1, coeffs_C2)); } if (BOOST_GEOMETRY_CONDITION(EnableReducedLength)) { m0 = A12x; m12x = dn2 * (cos_sigma1 * sin_sigma2) - dn1 * (sin_sigma1 * cos_sigma2) - cos_sigma1 * cos_sigma2 * J12; } if (BOOST_GEOMETRY_CONDITION(EnableGeodesicScale)) { CT cos_sigma12 = cos_sigma1 * cos_sigma2 + sin_sigma1 * sin_sigma2; CT t = ep2 * (cos_beta1 - cos_beta2) * (cos_beta1 + cos_beta2) / (dn1 + dn2); M12 = cos_sigma12 + (t * sin_sigma2 - cos_sigma2 * J12) * sin_sigma1 / dn1; M21 = cos_sigma12 - (t * sin_sigma1 - cos_sigma1 * J12) * sin_sigma2 / dn2; } } /* Return a starting point for Newton's method in sin_alpha1 and cos_alpha1 (function value is -1). If Newton's method doesn't need to be used, return also sin_alpha2 and cos_alpha2 and function value is sig12. */ template static inline CT newton_start(CT const& sin_beta1, CT const& cos_beta1, CT const& dn1, CT const& sin_beta2, CT const& cos_beta2, CT dn2, CT const& lam12, CT const& sin_lam12, CT const& cos_lam12, CT& sin_alpha1, CT& cos_alpha1, CT& sin_alpha2, CT& cos_alpha2, CT& dnm, CoeffsC1 const& coeffs_C1, CT const& ep2, CT const& tol1, CT const& tol2, CT const& etol2, CT const& n, CT const& f) { static CT const c0 = 0; static CT const c0_01 = 0.01; static CT const c0_1 = 0.1; static CT const c0_5 = 0.5; static CT const c1 = 1; static CT const c2 = 2; static CT const c6 = 6; static CT const c1000 = 1000; static CT const pi = math::pi(); CT const one_minus_f = c1 - f; CT const x_thresh = c1000 * tol2; // Return a starting point for Newton's method in sin_alpha1 // and cos_alpha1 (function value is -1). If Newton's method // doesn't need to be used, return also sin_alpha2 and // cos_alpha2 and function value is sig12. CT sig12 = -c1; // bet12 = bet2 - bet1 in [0, pi); beta12a = bet2 + bet1 in (-pi, 0] CT sin_beta12 = sin_beta2 * cos_beta1 - cos_beta2 * sin_beta1; CT cos_beta12 = cos_beta2 * cos_beta1 + sin_beta2 * sin_beta1; CT sin_beta12a = sin_beta2 * cos_beta1 + cos_beta2 * sin_beta1; bool shortline = cos_beta12 >= c0 && sin_beta12 < c0_5 && cos_beta2 * lam12 < c0_5; CT sin_omega12, cos_omega12; if (shortline) { CT sin_beta_m2 = math::sqr(sin_beta1 + sin_beta2); sin_beta_m2 /= sin_beta_m2 + math::sqr(cos_beta1 + cos_beta2); dnm = math::sqrt(c1 + ep2 * sin_beta_m2); CT omega12 = lam12 / (one_minus_f * dnm); sin_omega12 = sin(omega12); cos_omega12 = cos(omega12); } else { sin_omega12 = sin_lam12; cos_omega12 = cos_lam12; } sin_alpha1 = cos_beta2 * sin_omega12; cos_alpha1 = cos_omega12 >= c0 ? sin_beta12 + cos_beta2 * sin_beta1 * math::sqr(sin_omega12) / (c1 + cos_omega12) : sin_beta12a - cos_beta2 * sin_beta1 * math::sqr(sin_omega12) / (c1 - cos_omega12); CT sin_sigma12 = boost::math::hypot(sin_alpha1, cos_alpha1); CT cos_sigma12 = sin_beta1 * sin_beta2 + cos_beta1 * cos_beta2 * cos_omega12; if (shortline && sin_sigma12 < etol2) { sin_alpha2 = cos_beta1 * sin_omega12; cos_alpha2 = sin_beta12 - cos_beta1 * sin_beta2 * (cos_omega12 >= c0 ? math::sqr(sin_omega12) / (c1 + cos_omega12) : c1 - cos_omega12); math::normalize_unit_vector(sin_alpha2, cos_alpha2); // Set return value. sig12 = atan2(sin_sigma12, cos_sigma12); } // Skip astroid calculation if too eccentric. else if (std::abs(n) > c0_1 || cos_sigma12 >= c0 || sin_sigma12 >= c6 * std::abs(n) * pi * math::sqr(cos_beta1)) { // Nothing to do, zeroth order spherical approximation will do. } else { // Scale lam12 and bet2 to x, y coordinate system where antipodal // point is at origin and singular point is at y = 0, x = -1. CT lambda_scale, beta_scale; CT y; volatile CT x; CT lam12x = atan2(-sin_lam12, -cos_lam12); if (f >= c0) { CT k2 = math::sqr(sin_beta1) * ep2; CT eps = k2 / (c2 * (c1 + sqrt(c1 + k2)) + k2); se::coeffs_A3 const coeffs_A3(n); CT const A3 = math::horner_evaluate(eps, coeffs_A3.begin(), coeffs_A3.end()); lambda_scale = f * cos_beta1 * A3 * pi; beta_scale = lambda_scale * cos_beta1; x = lam12x / lambda_scale; y = sin_beta12a / beta_scale; } else { CT cos_beta12a = cos_beta2 * cos_beta1 - sin_beta2 * sin_beta1; CT beta12a = atan2(sin_beta12a, cos_beta12a); CT m12b, m0, dummy; meridian_length(n, ep2, pi + beta12a, sin_beta1, -cos_beta1, dn1, sin_beta2, cos_beta2, dn2, cos_beta1, cos_beta2, dummy, m12b, m0, dummy, dummy, coeffs_C1); x = -c1 + m12b / (cos_beta1 * cos_beta2 * m0 * pi); beta_scale = x < -c0_01 ? sin_beta12a / x : -f * math::sqr(cos_beta1) * pi; lambda_scale = beta_scale / cos_beta1; y = lam12x / lambda_scale; } if (y > -tol1 && x > -c1 - x_thresh) { // Strip near cut. if (f >= c0) { sin_alpha1 = (std::min)(c1, -CT(x)); cos_alpha1 = - math::sqrt(c1 - math::sqr(sin_alpha1)); } else { cos_alpha1 = (std::max)(CT(x > -tol1 ? c0 : -c1), CT(x)); sin_alpha1 = math::sqrt(c1 - math::sqr(cos_alpha1)); } } else { // Solve the astroid problem. CT k = astroid(CT(x), y); CT omega12a = lambda_scale * (f >= c0 ? -x * k / (c1 + k) : -y * (c1 + k) / k); sin_omega12 = sin(omega12a); cos_omega12 = -cos(omega12a); // Update spherical estimate of alpha1 using omgega12 instead of lam12. sin_alpha1 = cos_beta2 * sin_omega12; cos_alpha1 = sin_beta12a - cos_beta2 * sin_beta1 * math::sqr(sin_omega12) / (c1 - cos_omega12); } } // Sanity check on starting guess. Backwards check allows NaN through. if (!(sin_alpha1 <= c0)) { math::normalize_unit_vector(sin_alpha1, cos_alpha1); } else { sin_alpha1 = c1; cos_alpha1 = c0; } return sig12; } /* Solve the astroid problem using the equation: κ4 + 2κ3 + (1 − x2 − y 2 )κ2 − 2y 2 κ − y 2 = 0. For details, please refer to Eq. (65) in, Geodesics on an ellipsoid of revolution, Charles F.F Karney, https://arxiv.org/abs/1102.1215 */ static inline CT astroid(CT const& x, CT const& y) { static CT const c0 = 0; static CT const c1 = 1; static CT const c2 = 2; static CT const c3 = 3; static CT const c4 = 4; static CT const c6 = 6; CT k; CT p = math::sqr(x); CT q = math::sqr(y); CT r = (p + q - c1) / c6; if (!(q == c0 && r <= c0)) { // Avoid possible division by zero when r = 0 by multiplying // equations for s and t by r^3 and r, respectively. CT S = p * q / c4; CT r2 = math::sqr(r); CT r3 = r * r2; // The discriminant of the quadratic equation for T3. This is // zero on the evolute curve p^(1/3)+q^(1/3) = 1. CT discriminant = S * (S + c2 * r3); CT u = r; if (discriminant >= c0) { CT T3 = S + r3; // Pick the sign on the sqrt to maximize abs(T3). This minimizes // loss of precision due to cancellation. The result is unchanged // because of the way the T is used in definition of u. T3 += T3 < c0 ? -std::sqrt(discriminant) : std::sqrt(discriminant); CT T = std::cbrt(T3); // T can be zero; but then r2 / T -> 0. u += T + (T != c0 ? r2 / T : c0); } else { CT ang = std::atan2(std::sqrt(-discriminant), -(S + r3)); // There are three possible cube roots. We choose the root which avoids // cancellation. Note that discriminant < 0 implies that r < 0. u += c2 * r * cos(ang / c3); } CT v = std::sqrt(math::sqr(u) + q); // Avoid loss of accuracy when u < 0. CT uv = u < c0 ? q / (v - u) : u + v; CT w = (uv - q) / (c2 * v); // Rearrange expression for k to avoid loss of accuracy due to // subtraction. Division by 0 not possible because uv > 0, w >= 0. k = uv / (std::sqrt(uv + math::sqr(w)) + w); } else // q == 0 && r <= 0 { // y = 0 with |x| <= 1. Handle this case directly. // For y small, positive root is k = abs(y)/sqrt(1-x^2). k = c0; } return k; } template static inline CT lambda12(CT const& sin_beta1, CT const& cos_beta1, CT const& dn1, CT const& sin_beta2, CT const& cos_beta2, CT const& dn2, CT const& sin_alpha1, CT cos_alpha1, CT const& sin_lam120, CT const& cos_lam120, CT& sin_alpha2, CT& cos_alpha2, CT& sigma12, CT& sin_sigma1, CT& cos_sigma1, CT& sin_sigma2, CT& cos_sigma2, CT& eps, CT& diff_omega12, bool diffp, CT& diff_lam12, CT const& f, CT const& n, CT const& ep2, CT const& tiny, CoeffsC1 const& coeffs_C1) { static CT const c0 = 0; static CT const c1 = 1; static CT const c2 = 2; CT const one_minus_f = c1 - f; if (sin_beta1 == c0 && cos_alpha1 == c0) { // Break degeneracy of equatorial line. cos_alpha1 = -tiny; } CT sin_alpha0 = sin_alpha1 * cos_beta1; CT cos_alpha0 = boost::math::hypot(cos_alpha1, sin_alpha1 * sin_beta1); CT sin_omega1, cos_omega1; CT sin_omega2, cos_omega2; CT sin_omega12, cos_omega12; CT lam12; sin_sigma1 = sin_beta1; sin_omega1 = sin_alpha0 * sin_beta1; cos_sigma1 = cos_omega1 = cos_alpha1 * cos_beta1; math::normalize_unit_vector(sin_sigma1, cos_sigma1); // Enforce symmetries in the case abs(beta2) = -beta1. // Otherwise, this can yield singularities in the Newton iteration. // sin(alpha2) * cos(beta2) = sin(alpha0). sin_alpha2 = cos_beta2 != cos_beta1 ? sin_alpha0 / cos_beta2 : sin_alpha1; cos_alpha2 = cos_beta2 != cos_beta1 || std::abs(sin_beta2) != -sin_beta1 ? sqrt(math::sqr(cos_alpha1 * cos_beta1) + (cos_beta1 < -sin_beta1 ? (cos_beta2 - cos_beta1) * (cos_beta1 + cos_beta2) : (sin_beta1 - sin_beta2) * (sin_beta1 + sin_beta2))) / cos_beta2 : std::abs(cos_alpha1); sin_sigma2 = sin_beta2; sin_omega2 = sin_alpha0 * sin_beta2; cos_sigma2 = cos_omega2 = (cos_alpha2 * cos_beta2); // Break degeneracy of equatorial line. math::normalize_unit_vector(sin_sigma2, cos_sigma2); // sig12 = sig2 - sig1, limit to [0, pi]. sigma12 = atan2((std::max)(c0, cos_sigma1 * sin_sigma2 - sin_sigma1 * cos_sigma2), cos_sigma1 * cos_sigma2 + sin_sigma1 * sin_sigma2); // omg12 = omg2 - omg1, limit to [0, pi]. sin_omega12 = (std::max)(c0, cos_omega1 * sin_omega2 - sin_omega1 * cos_omega2); cos_omega12 = cos_omega1 * cos_omega2 + sin_omega1 * sin_omega2; // eta = omg12 - lam120. CT eta = atan2(sin_omega12 * cos_lam120 - cos_omega12 * sin_lam120, cos_omega12 * cos_lam120 + sin_omega12 * sin_lam120); CT B312; CT k2 = math::sqr(cos_alpha0) * ep2; eps = k2 / (c2 * (c1 + std::sqrt(c1 + k2)) + k2); se::coeffs_C3 const coeffs_C3(n, eps); B312 = se::sin_cos_series(sin_sigma2, cos_sigma2, coeffs_C3) - se::sin_cos_series(sin_sigma1, cos_sigma1, coeffs_C3); se::coeffs_A3 const coeffs_A3(n); CT const A3 = math::horner_evaluate(eps, coeffs_A3.begin(), coeffs_A3.end()); diff_omega12 = -f * A3 * sin_alpha0 * (sigma12 + B312); lam12 = eta + diff_omega12; if (diffp) { if (cos_alpha2 == c0) { diff_lam12 = - c2 * one_minus_f * dn1 / sin_beta1; } else { CT dummy; meridian_length(eps, ep2, sigma12, sin_sigma1, cos_sigma1, dn1, sin_sigma2, cos_sigma2, dn2, cos_beta1, cos_beta2, dummy, diff_lam12, dummy, dummy, dummy, coeffs_C1); diff_lam12 *= one_minus_f / (cos_alpha2 * cos_beta2); } } return lam12; } }; }}} // namespace boost::geometry::formula #endif // BOOST_GEOMETRY_FORMULAS_KARNEY_INVERSE_HPP