//===- llvm/unittest/ADT/APFloat.cpp - APFloat unit tests ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/Hashing.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Error.h" #include "llvm/Support/FormatVariadic.h" #include "gtest/gtest.h" #include #include #include #include using namespace llvm; static std::string convertToErrorFromString(StringRef Str) { llvm::APFloat F(0.0); auto StatusOrErr = F.convertFromString(Str, llvm::APFloat::rmNearestTiesToEven); EXPECT_TRUE(!StatusOrErr); return toString(StatusOrErr.takeError()); } static double convertToDoubleFromString(StringRef Str) { llvm::APFloat F(0.0); auto StatusOrErr = F.convertFromString(Str, llvm::APFloat::rmNearestTiesToEven); EXPECT_FALSE(!StatusOrErr); consumeError(StatusOrErr.takeError()); return F.convertToDouble(); } static std::string convertToString(double d, unsigned Prec, unsigned Pad, bool Tr = true) { llvm::SmallVector Buffer; llvm::APFloat F(d); F.toString(Buffer, Prec, Pad, Tr); return std::string(Buffer.data(), Buffer.size()); } namespace { TEST(APFloatTest, isSignaling) { // We test qNaN, -qNaN, +sNaN, -sNaN with and without payloads. *NOTE* The // positive/negative distinction is included only since the getQNaN/getSNaN // API provides the option. APInt payload = APInt::getOneBitSet(4, 2); EXPECT_FALSE(APFloat::getQNaN(APFloat::IEEEsingle(), false).isSignaling()); EXPECT_FALSE(APFloat::getQNaN(APFloat::IEEEsingle(), true).isSignaling()); EXPECT_FALSE(APFloat::getQNaN(APFloat::IEEEsingle(), false, &payload).isSignaling()); EXPECT_FALSE(APFloat::getQNaN(APFloat::IEEEsingle(), true, &payload).isSignaling()); EXPECT_TRUE(APFloat::getSNaN(APFloat::IEEEsingle(), false).isSignaling()); EXPECT_TRUE(APFloat::getSNaN(APFloat::IEEEsingle(), true).isSignaling()); EXPECT_TRUE(APFloat::getSNaN(APFloat::IEEEsingle(), false, &payload).isSignaling()); EXPECT_TRUE(APFloat::getSNaN(APFloat::IEEEsingle(), true, &payload).isSignaling()); } TEST(APFloatTest, next) { APFloat test(APFloat::IEEEquad(), APFloat::uninitialized); APFloat expected(APFloat::IEEEquad(), APFloat::uninitialized); // 1. Test Special Cases Values. // // Test all special values for nextUp and nextDown perscribed by IEEE-754R // 2008. These are: // 1. +inf // 2. -inf // 3. getLargest() // 4. -getLargest() // 5. getSmallest() // 6. -getSmallest() // 7. qNaN // 8. sNaN // 9. +0 // 10. -0 // nextUp(+inf) = +inf. test = APFloat::getInf(APFloat::IEEEquad(), false); expected = APFloat::getInf(APFloat::IEEEquad(), false); EXPECT_EQ(test.next(false), APFloat::opOK); EXPECT_TRUE(test.isInfinity()); EXPECT_TRUE(!test.isNegative()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextDown(+inf) = -nextUp(-inf) = -(-getLargest()) = getLargest() test = APFloat::getInf(APFloat::IEEEquad(), false); expected = APFloat::getLargest(APFloat::IEEEquad(), false); EXPECT_EQ(test.next(true), APFloat::opOK); EXPECT_TRUE(!test.isNegative()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextUp(-inf) = -getLargest() test = APFloat::getInf(APFloat::IEEEquad(), true); expected = APFloat::getLargest(APFloat::IEEEquad(), true); EXPECT_EQ(test.next(false), APFloat::opOK); EXPECT_TRUE(test.isNegative()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextDown(-inf) = -nextUp(+inf) = -(+inf) = -inf. test = APFloat::getInf(APFloat::IEEEquad(), true); expected = APFloat::getInf(APFloat::IEEEquad(), true); EXPECT_EQ(test.next(true), APFloat::opOK); EXPECT_TRUE(test.isInfinity() && test.isNegative()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextUp(getLargest()) = +inf test = APFloat::getLargest(APFloat::IEEEquad(), false); expected = APFloat::getInf(APFloat::IEEEquad(), false); EXPECT_EQ(test.next(false), APFloat::opOK); EXPECT_TRUE(test.isInfinity() && !test.isNegative()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextDown(getLargest()) = -nextUp(-getLargest()) // = -(-getLargest() + inc) // = getLargest() - inc. test = APFloat::getLargest(APFloat::IEEEquad(), false); expected = APFloat(APFloat::IEEEquad(), "0x1.fffffffffffffffffffffffffffep+16383"); EXPECT_EQ(test.next(true), APFloat::opOK); EXPECT_TRUE(!test.isInfinity() && !test.isNegative()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextUp(-getLargest()) = -getLargest() + inc. test = APFloat::getLargest(APFloat::IEEEquad(), true); expected = APFloat(APFloat::IEEEquad(), "-0x1.fffffffffffffffffffffffffffep+16383"); EXPECT_EQ(test.next(false), APFloat::opOK); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextDown(-getLargest()) = -nextUp(getLargest()) = -(inf) = -inf. test = APFloat::getLargest(APFloat::IEEEquad(), true); expected = APFloat::getInf(APFloat::IEEEquad(), true); EXPECT_EQ(test.next(true), APFloat::opOK); EXPECT_TRUE(test.isInfinity() && test.isNegative()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextUp(getSmallest()) = getSmallest() + inc. test = APFloat(APFloat::IEEEquad(), "0x0.0000000000000000000000000001p-16382"); expected = APFloat(APFloat::IEEEquad(), "0x0.0000000000000000000000000002p-16382"); EXPECT_EQ(test.next(false), APFloat::opOK); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextDown(getSmallest()) = -nextUp(-getSmallest()) = -(-0) = +0. test = APFloat(APFloat::IEEEquad(), "0x0.0000000000000000000000000001p-16382"); expected = APFloat::getZero(APFloat::IEEEquad(), false); EXPECT_EQ(test.next(true), APFloat::opOK); EXPECT_TRUE(test.isPosZero()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextUp(-getSmallest()) = -0. test = APFloat(APFloat::IEEEquad(), "-0x0.0000000000000000000000000001p-16382"); expected = APFloat::getZero(APFloat::IEEEquad(), true); EXPECT_EQ(test.next(false), APFloat::opOK); EXPECT_TRUE(test.isNegZero()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextDown(-getSmallest()) = -nextUp(getSmallest()) = -getSmallest() - inc. test = APFloat(APFloat::IEEEquad(), "-0x0.0000000000000000000000000001p-16382"); expected = APFloat(APFloat::IEEEquad(), "-0x0.0000000000000000000000000002p-16382"); EXPECT_EQ(test.next(true), APFloat::opOK); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextUp(qNaN) = qNaN test = APFloat::getQNaN(APFloat::IEEEquad(), false); expected = APFloat::getQNaN(APFloat::IEEEquad(), false); EXPECT_EQ(test.next(false), APFloat::opOK); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextDown(qNaN) = qNaN test = APFloat::getQNaN(APFloat::IEEEquad(), false); expected = APFloat::getQNaN(APFloat::IEEEquad(), false); EXPECT_EQ(test.next(true), APFloat::opOK); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextUp(sNaN) = qNaN test = APFloat::getSNaN(APFloat::IEEEquad(), false); expected = APFloat::getQNaN(APFloat::IEEEquad(), false); EXPECT_EQ(test.next(false), APFloat::opInvalidOp); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextDown(sNaN) = qNaN test = APFloat::getSNaN(APFloat::IEEEquad(), false); expected = APFloat::getQNaN(APFloat::IEEEquad(), false); EXPECT_EQ(test.next(true), APFloat::opInvalidOp); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextUp(+0) = +getSmallest() test = APFloat::getZero(APFloat::IEEEquad(), false); expected = APFloat::getSmallest(APFloat::IEEEquad(), false); EXPECT_EQ(test.next(false), APFloat::opOK); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextDown(+0) = -nextUp(-0) = -getSmallest() test = APFloat::getZero(APFloat::IEEEquad(), false); expected = APFloat::getSmallest(APFloat::IEEEquad(), true); EXPECT_EQ(test.next(true), APFloat::opOK); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextUp(-0) = +getSmallest() test = APFloat::getZero(APFloat::IEEEquad(), true); expected = APFloat::getSmallest(APFloat::IEEEquad(), false); EXPECT_EQ(test.next(false), APFloat::opOK); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextDown(-0) = -nextUp(0) = -getSmallest() test = APFloat::getZero(APFloat::IEEEquad(), true); expected = APFloat::getSmallest(APFloat::IEEEquad(), true); EXPECT_EQ(test.next(true), APFloat::opOK); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // 2. Binade Boundary Tests. // 2a. Test denormal <-> normal binade boundaries. // * nextUp(+Largest Denormal) -> +Smallest Normal. // * nextDown(-Largest Denormal) -> -Smallest Normal. // * nextUp(-Smallest Normal) -> -Largest Denormal. // * nextDown(+Smallest Normal) -> +Largest Denormal. // nextUp(+Largest Denormal) -> +Smallest Normal. test = APFloat(APFloat::IEEEquad(), "0x0.ffffffffffffffffffffffffffffp-16382"); expected = APFloat(APFloat::IEEEquad(), "0x1.0000000000000000000000000000p-16382"); EXPECT_EQ(test.next(false), APFloat::opOK); EXPECT_FALSE(test.isDenormal()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextDown(-Largest Denormal) -> -Smallest Normal. test = APFloat(APFloat::IEEEquad(), "-0x0.ffffffffffffffffffffffffffffp-16382"); expected = APFloat(APFloat::IEEEquad(), "-0x1.0000000000000000000000000000p-16382"); EXPECT_EQ(test.next(true), APFloat::opOK); EXPECT_FALSE(test.isDenormal()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextUp(-Smallest Normal) -> -LargestDenormal. test = APFloat(APFloat::IEEEquad(), "-0x1.0000000000000000000000000000p-16382"); expected = APFloat(APFloat::IEEEquad(), "-0x0.ffffffffffffffffffffffffffffp-16382"); EXPECT_EQ(test.next(false), APFloat::opOK); EXPECT_TRUE(test.isDenormal()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextDown(+Smallest Normal) -> +Largest Denormal. test = APFloat(APFloat::IEEEquad(), "+0x1.0000000000000000000000000000p-16382"); expected = APFloat(APFloat::IEEEquad(), "+0x0.ffffffffffffffffffffffffffffp-16382"); EXPECT_EQ(test.next(true), APFloat::opOK); EXPECT_TRUE(test.isDenormal()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // 2b. Test normal <-> normal binade boundaries. // * nextUp(-Normal Binade Boundary) -> -Normal Binade Boundary + 1. // * nextDown(+Normal Binade Boundary) -> +Normal Binade Boundary - 1. // * nextUp(+Normal Binade Boundary - 1) -> +Normal Binade Boundary. // * nextDown(-Normal Binade Boundary + 1) -> -Normal Binade Boundary. // nextUp(-Normal Binade Boundary) -> -Normal Binade Boundary + 1. test = APFloat(APFloat::IEEEquad(), "-0x1p+1"); expected = APFloat(APFloat::IEEEquad(), "-0x1.ffffffffffffffffffffffffffffp+0"); EXPECT_EQ(test.next(false), APFloat::opOK); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextDown(+Normal Binade Boundary) -> +Normal Binade Boundary - 1. test = APFloat(APFloat::IEEEquad(), "0x1p+1"); expected = APFloat(APFloat::IEEEquad(), "0x1.ffffffffffffffffffffffffffffp+0"); EXPECT_EQ(test.next(true), APFloat::opOK); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextUp(+Normal Binade Boundary - 1) -> +Normal Binade Boundary. test = APFloat(APFloat::IEEEquad(), "0x1.ffffffffffffffffffffffffffffp+0"); expected = APFloat(APFloat::IEEEquad(), "0x1p+1"); EXPECT_EQ(test.next(false), APFloat::opOK); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextDown(-Normal Binade Boundary + 1) -> -Normal Binade Boundary. test = APFloat(APFloat::IEEEquad(), "-0x1.ffffffffffffffffffffffffffffp+0"); expected = APFloat(APFloat::IEEEquad(), "-0x1p+1"); EXPECT_EQ(test.next(true), APFloat::opOK); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // 2c. Test using next at binade boundaries with a direction away from the // binade boundary. Away from denormal <-> normal boundaries. // // This is to make sure that even though we are at a binade boundary, since // we are rounding away, we do not trigger the binade boundary code. Thus we // test: // * nextUp(-Largest Denormal) -> -Largest Denormal + inc. // * nextDown(+Largest Denormal) -> +Largest Denormal - inc. // * nextUp(+Smallest Normal) -> +Smallest Normal + inc. // * nextDown(-Smallest Normal) -> -Smallest Normal - inc. // nextUp(-Largest Denormal) -> -Largest Denormal + inc. test = APFloat(APFloat::IEEEquad(), "-0x0.ffffffffffffffffffffffffffffp-16382"); expected = APFloat(APFloat::IEEEquad(), "-0x0.fffffffffffffffffffffffffffep-16382"); EXPECT_EQ(test.next(false), APFloat::opOK); EXPECT_TRUE(test.isDenormal()); EXPECT_TRUE(test.isNegative()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextDown(+Largest Denormal) -> +Largest Denormal - inc. test = APFloat(APFloat::IEEEquad(), "0x0.ffffffffffffffffffffffffffffp-16382"); expected = APFloat(APFloat::IEEEquad(), "0x0.fffffffffffffffffffffffffffep-16382"); EXPECT_EQ(test.next(true), APFloat::opOK); EXPECT_TRUE(test.isDenormal()); EXPECT_TRUE(!test.isNegative()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextUp(+Smallest Normal) -> +Smallest Normal + inc. test = APFloat(APFloat::IEEEquad(), "0x1.0000000000000000000000000000p-16382"); expected = APFloat(APFloat::IEEEquad(), "0x1.0000000000000000000000000001p-16382"); EXPECT_EQ(test.next(false), APFloat::opOK); EXPECT_TRUE(!test.isDenormal()); EXPECT_TRUE(!test.isNegative()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextDown(-Smallest Normal) -> -Smallest Normal - inc. test = APFloat(APFloat::IEEEquad(), "-0x1.0000000000000000000000000000p-16382"); expected = APFloat(APFloat::IEEEquad(), "-0x1.0000000000000000000000000001p-16382"); EXPECT_EQ(test.next(true), APFloat::opOK); EXPECT_TRUE(!test.isDenormal()); EXPECT_TRUE(test.isNegative()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // 2d. Test values which cause our exponent to go to min exponent. This // is to ensure that guards in the code to check for min exponent // trigger properly. // * nextUp(-0x1p-16381) -> -0x1.ffffffffffffffffffffffffffffp-16382 // * nextDown(-0x1.ffffffffffffffffffffffffffffp-16382) -> // -0x1p-16381 // * nextUp(0x1.ffffffffffffffffffffffffffffp-16382) -> 0x1p-16382 // * nextDown(0x1p-16382) -> 0x1.ffffffffffffffffffffffffffffp-16382 // nextUp(-0x1p-16381) -> -0x1.ffffffffffffffffffffffffffffp-16382 test = APFloat(APFloat::IEEEquad(), "-0x1p-16381"); expected = APFloat(APFloat::IEEEquad(), "-0x1.ffffffffffffffffffffffffffffp-16382"); EXPECT_EQ(test.next(false), APFloat::opOK); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextDown(-0x1.ffffffffffffffffffffffffffffp-16382) -> // -0x1p-16381 test = APFloat(APFloat::IEEEquad(), "-0x1.ffffffffffffffffffffffffffffp-16382"); expected = APFloat(APFloat::IEEEquad(), "-0x1p-16381"); EXPECT_EQ(test.next(true), APFloat::opOK); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextUp(0x1.ffffffffffffffffffffffffffffp-16382) -> 0x1p-16381 test = APFloat(APFloat::IEEEquad(), "0x1.ffffffffffffffffffffffffffffp-16382"); expected = APFloat(APFloat::IEEEquad(), "0x1p-16381"); EXPECT_EQ(test.next(false), APFloat::opOK); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextDown(0x1p-16381) -> 0x1.ffffffffffffffffffffffffffffp-16382 test = APFloat(APFloat::IEEEquad(), "0x1p-16381"); expected = APFloat(APFloat::IEEEquad(), "0x1.ffffffffffffffffffffffffffffp-16382"); EXPECT_EQ(test.next(true), APFloat::opOK); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // 3. Now we test both denormal/normal computation which will not cause us // to go across binade boundaries. Specifically we test: // * nextUp(+Denormal) -> +Denormal. // * nextDown(+Denormal) -> +Denormal. // * nextUp(-Denormal) -> -Denormal. // * nextDown(-Denormal) -> -Denormal. // * nextUp(+Normal) -> +Normal. // * nextDown(+Normal) -> +Normal. // * nextUp(-Normal) -> -Normal. // * nextDown(-Normal) -> -Normal. // nextUp(+Denormal) -> +Denormal. test = APFloat(APFloat::IEEEquad(), "0x0.ffffffffffffffffffffffff000cp-16382"); expected = APFloat(APFloat::IEEEquad(), "0x0.ffffffffffffffffffffffff000dp-16382"); EXPECT_EQ(test.next(false), APFloat::opOK); EXPECT_TRUE(test.isDenormal()); EXPECT_TRUE(!test.isNegative()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextDown(+Denormal) -> +Denormal. test = APFloat(APFloat::IEEEquad(), "0x0.ffffffffffffffffffffffff000cp-16382"); expected = APFloat(APFloat::IEEEquad(), "0x0.ffffffffffffffffffffffff000bp-16382"); EXPECT_EQ(test.next(true), APFloat::opOK); EXPECT_TRUE(test.isDenormal()); EXPECT_TRUE(!test.isNegative()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextUp(-Denormal) -> -Denormal. test = APFloat(APFloat::IEEEquad(), "-0x0.ffffffffffffffffffffffff000cp-16382"); expected = APFloat(APFloat::IEEEquad(), "-0x0.ffffffffffffffffffffffff000bp-16382"); EXPECT_EQ(test.next(false), APFloat::opOK); EXPECT_TRUE(test.isDenormal()); EXPECT_TRUE(test.isNegative()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextDown(-Denormal) -> -Denormal test = APFloat(APFloat::IEEEquad(), "-0x0.ffffffffffffffffffffffff000cp-16382"); expected = APFloat(APFloat::IEEEquad(), "-0x0.ffffffffffffffffffffffff000dp-16382"); EXPECT_EQ(test.next(true), APFloat::opOK); EXPECT_TRUE(test.isDenormal()); EXPECT_TRUE(test.isNegative()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextUp(+Normal) -> +Normal. test = APFloat(APFloat::IEEEquad(), "0x1.ffffffffffffffffffffffff000cp-16000"); expected = APFloat(APFloat::IEEEquad(), "0x1.ffffffffffffffffffffffff000dp-16000"); EXPECT_EQ(test.next(false), APFloat::opOK); EXPECT_TRUE(!test.isDenormal()); EXPECT_TRUE(!test.isNegative()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextDown(+Normal) -> +Normal. test = APFloat(APFloat::IEEEquad(), "0x1.ffffffffffffffffffffffff000cp-16000"); expected = APFloat(APFloat::IEEEquad(), "0x1.ffffffffffffffffffffffff000bp-16000"); EXPECT_EQ(test.next(true), APFloat::opOK); EXPECT_TRUE(!test.isDenormal()); EXPECT_TRUE(!test.isNegative()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextUp(-Normal) -> -Normal. test = APFloat(APFloat::IEEEquad(), "-0x1.ffffffffffffffffffffffff000cp-16000"); expected = APFloat(APFloat::IEEEquad(), "-0x1.ffffffffffffffffffffffff000bp-16000"); EXPECT_EQ(test.next(false), APFloat::opOK); EXPECT_TRUE(!test.isDenormal()); EXPECT_TRUE(test.isNegative()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); // nextDown(-Normal) -> -Normal. test = APFloat(APFloat::IEEEquad(), "-0x1.ffffffffffffffffffffffff000cp-16000"); expected = APFloat(APFloat::IEEEquad(), "-0x1.ffffffffffffffffffffffff000dp-16000"); EXPECT_EQ(test.next(true), APFloat::opOK); EXPECT_TRUE(!test.isDenormal()); EXPECT_TRUE(test.isNegative()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); } TEST(APFloatTest, FMA) { APFloat::roundingMode rdmd = APFloat::rmNearestTiesToEven; { APFloat f1(14.5f); APFloat f2(-14.5f); APFloat f3(225.0f); f1.fusedMultiplyAdd(f2, f3, APFloat::rmNearestTiesToEven); EXPECT_EQ(14.75f, f1.convertToFloat()); } { APFloat Val2(2.0f); APFloat f1((float)1.17549435e-38F); APFloat f2((float)1.17549435e-38F); f1.divide(Val2, rdmd); f2.divide(Val2, rdmd); APFloat f3(12.0f); f1.fusedMultiplyAdd(f2, f3, APFloat::rmNearestTiesToEven); EXPECT_EQ(12.0f, f1.convertToFloat()); } // Test for correct zero sign when answer is exactly zero. // fma(1.0, -1.0, 1.0) -> +ve 0. { APFloat f1(1.0); APFloat f2(-1.0); APFloat f3(1.0); f1.fusedMultiplyAdd(f2, f3, APFloat::rmNearestTiesToEven); EXPECT_TRUE(!f1.isNegative() && f1.isZero()); } // Test for correct zero sign when answer is exactly zero and rounding towards // negative. // fma(1.0, -1.0, 1.0) -> +ve 0. { APFloat f1(1.0); APFloat f2(-1.0); APFloat f3(1.0); f1.fusedMultiplyAdd(f2, f3, APFloat::rmTowardNegative); EXPECT_TRUE(f1.isNegative() && f1.isZero()); } // Test for correct (in this case -ve) sign when adding like signed zeros. // Test fma(0.0, -0.0, -0.0) -> -ve 0. { APFloat f1(0.0); APFloat f2(-0.0); APFloat f3(-0.0); f1.fusedMultiplyAdd(f2, f3, APFloat::rmNearestTiesToEven); EXPECT_TRUE(f1.isNegative() && f1.isZero()); } // Test -ve sign preservation when small negative results underflow. { APFloat f1(APFloat::IEEEdouble(), "-0x1p-1074"); APFloat f2(APFloat::IEEEdouble(), "+0x1p-1074"); APFloat f3(0.0); f1.fusedMultiplyAdd(f2, f3, APFloat::rmNearestTiesToEven); EXPECT_TRUE(f1.isNegative() && f1.isZero()); } // Test x87 extended precision case from http://llvm.org/PR20728. { APFloat M1(APFloat::x87DoubleExtended(), 1); APFloat M2(APFloat::x87DoubleExtended(), 1); APFloat A(APFloat::x87DoubleExtended(), 3); bool losesInfo = false; M1.fusedMultiplyAdd(M1, A, APFloat::rmNearestTiesToEven); M1.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo); EXPECT_FALSE(losesInfo); EXPECT_EQ(4.0f, M1.convertToFloat()); } // Regression test that failed an assertion. { APFloat f1(-8.85242279E-41f); APFloat f2(2.0f); APFloat f3(8.85242279E-41f); f1.fusedMultiplyAdd(f2, f3, APFloat::rmNearestTiesToEven); EXPECT_EQ(-8.85242279E-41f, f1.convertToFloat()); } // Test using only a single instance of APFloat. { APFloat F(1.5); F.fusedMultiplyAdd(F, F, APFloat::rmNearestTiesToEven); EXPECT_EQ(3.75, F.convertToDouble()); } } TEST(APFloatTest, MinNum) { APFloat f1(1.0); APFloat f2(2.0); APFloat nan = APFloat::getNaN(APFloat::IEEEdouble()); EXPECT_EQ(1.0, minnum(f1, f2).convertToDouble()); EXPECT_EQ(1.0, minnum(f2, f1).convertToDouble()); EXPECT_EQ(1.0, minnum(f1, nan).convertToDouble()); EXPECT_EQ(1.0, minnum(nan, f1).convertToDouble()); } TEST(APFloatTest, MaxNum) { APFloat f1(1.0); APFloat f2(2.0); APFloat nan = APFloat::getNaN(APFloat::IEEEdouble()); EXPECT_EQ(2.0, maxnum(f1, f2).convertToDouble()); EXPECT_EQ(2.0, maxnum(f2, f1).convertToDouble()); EXPECT_EQ(1.0, maxnum(f1, nan).convertToDouble()); EXPECT_EQ(1.0, maxnum(nan, f1).convertToDouble()); } TEST(APFloatTest, Minimum) { APFloat f1(1.0); APFloat f2(2.0); APFloat zp(0.0); APFloat zn(-0.0); APFloat nan = APFloat::getNaN(APFloat::IEEEdouble()); EXPECT_EQ(1.0, minimum(f1, f2).convertToDouble()); EXPECT_EQ(1.0, minimum(f2, f1).convertToDouble()); EXPECT_EQ(-0.0, minimum(zp, zn).convertToDouble()); EXPECT_EQ(-0.0, minimum(zn, zp).convertToDouble()); EXPECT_TRUE(std::isnan(minimum(f1, nan).convertToDouble())); EXPECT_TRUE(std::isnan(minimum(nan, f1).convertToDouble())); } TEST(APFloatTest, Maximum) { APFloat f1(1.0); APFloat f2(2.0); APFloat zp(0.0); APFloat zn(-0.0); APFloat nan = APFloat::getNaN(APFloat::IEEEdouble()); EXPECT_EQ(2.0, maximum(f1, f2).convertToDouble()); EXPECT_EQ(2.0, maximum(f2, f1).convertToDouble()); EXPECT_EQ(0.0, maximum(zp, zn).convertToDouble()); EXPECT_EQ(0.0, maximum(zn, zp).convertToDouble()); EXPECT_TRUE(std::isnan(maximum(f1, nan).convertToDouble())); EXPECT_TRUE(std::isnan(maximum(nan, f1).convertToDouble())); } TEST(APFloatTest, Denormal) { APFloat::roundingMode rdmd = APFloat::rmNearestTiesToEven; // Test single precision { const char *MinNormalStr = "1.17549435082228750797e-38"; EXPECT_FALSE(APFloat(APFloat::IEEEsingle(), MinNormalStr).isDenormal()); EXPECT_FALSE(APFloat(APFloat::IEEEsingle(), 0).isDenormal()); APFloat Val2(APFloat::IEEEsingle(), 2); APFloat T(APFloat::IEEEsingle(), MinNormalStr); T.divide(Val2, rdmd); EXPECT_TRUE(T.isDenormal()); } // Test double precision { const char *MinNormalStr = "2.22507385850720138309e-308"; EXPECT_FALSE(APFloat(APFloat::IEEEdouble(), MinNormalStr).isDenormal()); EXPECT_FALSE(APFloat(APFloat::IEEEdouble(), 0).isDenormal()); APFloat Val2(APFloat::IEEEdouble(), 2); APFloat T(APFloat::IEEEdouble(), MinNormalStr); T.divide(Val2, rdmd); EXPECT_TRUE(T.isDenormal()); } // Test Intel double-ext { const char *MinNormalStr = "3.36210314311209350626e-4932"; EXPECT_FALSE(APFloat(APFloat::x87DoubleExtended(), MinNormalStr).isDenormal()); EXPECT_FALSE(APFloat(APFloat::x87DoubleExtended(), 0).isDenormal()); APFloat Val2(APFloat::x87DoubleExtended(), 2); APFloat T(APFloat::x87DoubleExtended(), MinNormalStr); T.divide(Val2, rdmd); EXPECT_TRUE(T.isDenormal()); } // Test quadruple precision { const char *MinNormalStr = "3.36210314311209350626267781732175260e-4932"; EXPECT_FALSE(APFloat(APFloat::IEEEquad(), MinNormalStr).isDenormal()); EXPECT_FALSE(APFloat(APFloat::IEEEquad(), 0).isDenormal()); APFloat Val2(APFloat::IEEEquad(), 2); APFloat T(APFloat::IEEEquad(), MinNormalStr); T.divide(Val2, rdmd); EXPECT_TRUE(T.isDenormal()); } } TEST(APFloatTest, Zero) { EXPECT_EQ(0.0f, APFloat(0.0f).convertToFloat()); EXPECT_EQ(-0.0f, APFloat(-0.0f).convertToFloat()); EXPECT_TRUE(APFloat(-0.0f).isNegative()); EXPECT_EQ(0.0, APFloat(0.0).convertToDouble()); EXPECT_EQ(-0.0, APFloat(-0.0).convertToDouble()); EXPECT_TRUE(APFloat(-0.0).isNegative()); } TEST(APFloatTest, DecimalStringsWithoutNullTerminators) { // Make sure that we can parse strings without null terminators. // rdar://14323230. EXPECT_EQ(convertToDoubleFromString(StringRef("0.00", 3)), 0.0); EXPECT_EQ(convertToDoubleFromString(StringRef("0.01", 3)), 0.0); EXPECT_EQ(convertToDoubleFromString(StringRef("0.09", 3)), 0.0); EXPECT_EQ(convertToDoubleFromString(StringRef("0.095", 4)), 0.09); EXPECT_EQ(convertToDoubleFromString(StringRef("0.00e+3", 7)), 0.00); EXPECT_EQ(convertToDoubleFromString(StringRef("0e+3", 4)), 0.00); } TEST(APFloatTest, fromZeroDecimalString) { EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0.").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0.").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0.").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), ".0").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+.0").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-.0").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0.0").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0.0").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0.0").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "00000.").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+00000.").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-00000.").convertToDouble()); EXPECT_EQ(0.0, APFloat(APFloat::IEEEdouble(), ".00000").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+.00000").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-.00000").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0000.00000").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0000.00000").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0000.00000").convertToDouble()); } TEST(APFloatTest, fromZeroDecimalSingleExponentString) { EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0e1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0e1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0e1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0e+1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0e+1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0e+1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0e-1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0e-1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0e-1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0.e1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0.e1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0.e1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0.e+1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0.e+1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0.e+1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0.e-1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0.e-1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0.e-1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), ".0e1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+.0e1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-.0e1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), ".0e+1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+.0e+1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-.0e+1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), ".0e-1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+.0e-1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-.0e-1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0.0e1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0.0e1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0.0e1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0.0e+1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0.0e+1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0.0e+1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0.0e-1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0.0e-1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0.0e-1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "000.0000e1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+000.0000e+1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-000.0000e+1").convertToDouble()); } TEST(APFloatTest, fromZeroDecimalLargeExponentString) { EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0e1234").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0e1234").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0e1234").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0e+1234").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0e+1234").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0e+1234").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0e-1234").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0e-1234").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0e-1234").convertToDouble()); EXPECT_EQ(0.0, APFloat(APFloat::IEEEdouble(), "000.0000e1234").convertToDouble()); EXPECT_EQ(0.0, APFloat(APFloat::IEEEdouble(), "000.0000e-1234").convertToDouble()); EXPECT_EQ(0.0, APFloat(APFloat::IEEEdouble(), StringRef("0e1234" "\0" "2", 6)).convertToDouble()); } TEST(APFloatTest, fromZeroHexadecimalString) { EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0p1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0x0p1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x0p1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0p+1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0x0p+1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x0p+1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0p-1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0x0p-1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x0p-1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0.p1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0x0.p1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x0.p1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0.p+1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0x0.p+1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x0.p+1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0.p-1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0x0.p-1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x0.p-1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x.0p1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0x.0p1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x.0p1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x.0p+1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0x.0p+1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x.0p+1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x.0p-1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0x.0p-1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x.0p-1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0.0p1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0x0.0p1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x0.0p1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0.0p+1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0x0.0p+1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x0.0p+1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0.0p-1").convertToDouble()); EXPECT_EQ(+0.0, APFloat(APFloat::IEEEdouble(), "+0x0.0p-1").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x0.0p-1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x00000.p1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0000.00000p1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x.00000p1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0.p1").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0p1234").convertToDouble()); EXPECT_EQ(-0.0, APFloat(APFloat::IEEEdouble(), "-0x0p1234").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x00000.p1234").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0000.00000p1234").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x.00000p1234").convertToDouble()); EXPECT_EQ( 0.0, APFloat(APFloat::IEEEdouble(), "0x0.p1234").convertToDouble()); } TEST(APFloatTest, fromDecimalString) { EXPECT_EQ(1.0, APFloat(APFloat::IEEEdouble(), "1").convertToDouble()); EXPECT_EQ(2.0, APFloat(APFloat::IEEEdouble(), "2.").convertToDouble()); EXPECT_EQ(0.5, APFloat(APFloat::IEEEdouble(), ".5").convertToDouble()); EXPECT_EQ(1.0, APFloat(APFloat::IEEEdouble(), "1.0").convertToDouble()); EXPECT_EQ(-2.0, APFloat(APFloat::IEEEdouble(), "-2").convertToDouble()); EXPECT_EQ(-4.0, APFloat(APFloat::IEEEdouble(), "-4.").convertToDouble()); EXPECT_EQ(-0.5, APFloat(APFloat::IEEEdouble(), "-.5").convertToDouble()); EXPECT_EQ(-1.5, APFloat(APFloat::IEEEdouble(), "-1.5").convertToDouble()); EXPECT_EQ(1.25e12, APFloat(APFloat::IEEEdouble(), "1.25e12").convertToDouble()); EXPECT_EQ(1.25e+12, APFloat(APFloat::IEEEdouble(), "1.25e+12").convertToDouble()); EXPECT_EQ(1.25e-12, APFloat(APFloat::IEEEdouble(), "1.25e-12").convertToDouble()); EXPECT_EQ(1024.0, APFloat(APFloat::IEEEdouble(), "1024.").convertToDouble()); EXPECT_EQ(1024.05, APFloat(APFloat::IEEEdouble(), "1024.05000").convertToDouble()); EXPECT_EQ(0.05, APFloat(APFloat::IEEEdouble(), ".05000").convertToDouble()); EXPECT_EQ(2.0, APFloat(APFloat::IEEEdouble(), "2.").convertToDouble()); EXPECT_EQ(2.0e2, APFloat(APFloat::IEEEdouble(), "2.e2").convertToDouble()); EXPECT_EQ(2.0e+2, APFloat(APFloat::IEEEdouble(), "2.e+2").convertToDouble()); EXPECT_EQ(2.0e-2, APFloat(APFloat::IEEEdouble(), "2.e-2").convertToDouble()); EXPECT_EQ(2.05e2, APFloat(APFloat::IEEEdouble(), "002.05000e2").convertToDouble()); EXPECT_EQ(2.05e+2, APFloat(APFloat::IEEEdouble(), "002.05000e+2").convertToDouble()); EXPECT_EQ(2.05e-2, APFloat(APFloat::IEEEdouble(), "002.05000e-2").convertToDouble()); EXPECT_EQ(2.05e12, APFloat(APFloat::IEEEdouble(), "002.05000e12").convertToDouble()); EXPECT_EQ(2.05e+12, APFloat(APFloat::IEEEdouble(), "002.05000e+12").convertToDouble()); EXPECT_EQ(2.05e-12, APFloat(APFloat::IEEEdouble(), "002.05000e-12").convertToDouble()); EXPECT_EQ(1.0, APFloat(APFloat::IEEEdouble(), "1e").convertToDouble()); EXPECT_EQ(1.0, APFloat(APFloat::IEEEdouble(), "+1e").convertToDouble()); EXPECT_EQ(-1.0, APFloat(APFloat::IEEEdouble(), "-1e").convertToDouble()); EXPECT_EQ(1.0, APFloat(APFloat::IEEEdouble(), "1.e").convertToDouble()); EXPECT_EQ(1.0, APFloat(APFloat::IEEEdouble(), "+1.e").convertToDouble()); EXPECT_EQ(-1.0, APFloat(APFloat::IEEEdouble(), "-1.e").convertToDouble()); EXPECT_EQ(0.1, APFloat(APFloat::IEEEdouble(), ".1e").convertToDouble()); EXPECT_EQ(0.1, APFloat(APFloat::IEEEdouble(), "+.1e").convertToDouble()); EXPECT_EQ(-0.1, APFloat(APFloat::IEEEdouble(), "-.1e").convertToDouble()); EXPECT_EQ(1.1, APFloat(APFloat::IEEEdouble(), "1.1e").convertToDouble()); EXPECT_EQ(1.1, APFloat(APFloat::IEEEdouble(), "+1.1e").convertToDouble()); EXPECT_EQ(-1.1, APFloat(APFloat::IEEEdouble(), "-1.1e").convertToDouble()); EXPECT_EQ(1.0, APFloat(APFloat::IEEEdouble(), "1e+").convertToDouble()); EXPECT_EQ(1.0, APFloat(APFloat::IEEEdouble(), "1e-").convertToDouble()); EXPECT_EQ(0.1, APFloat(APFloat::IEEEdouble(), ".1e").convertToDouble()); EXPECT_EQ(0.1, APFloat(APFloat::IEEEdouble(), ".1e+").convertToDouble()); EXPECT_EQ(0.1, APFloat(APFloat::IEEEdouble(), ".1e-").convertToDouble()); EXPECT_EQ(1.0, APFloat(APFloat::IEEEdouble(), "1.0e").convertToDouble()); EXPECT_EQ(1.0, APFloat(APFloat::IEEEdouble(), "1.0e+").convertToDouble()); EXPECT_EQ(1.0, APFloat(APFloat::IEEEdouble(), "1.0e-").convertToDouble()); // These are "carefully selected" to overflow the fast log-base // calculations in APFloat.cpp EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "99e99999").isInfinity()); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "-99e99999").isInfinity()); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "1e-99999").isPosZero()); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "-1e-99999").isNegZero()); EXPECT_EQ(2.71828, convertToDoubleFromString("2.71828")); } TEST(APFloatTest, fromToStringSpecials) { auto expects = [] (const char *first, const char *second) { std::string roundtrip = convertToString(convertToDoubleFromString(second), 0, 3); EXPECT_STREQ(first, roundtrip.c_str()); }; expects("+Inf", "+Inf"); expects("+Inf", "INFINITY"); expects("+Inf", "inf"); expects("-Inf", "-Inf"); expects("-Inf", "-INFINITY"); expects("-Inf", "-inf"); expects("NaN", "NaN"); expects("NaN", "nan"); expects("NaN", "-NaN"); expects("NaN", "-nan"); } TEST(APFloatTest, fromHexadecimalString) { EXPECT_EQ( 1.0, APFloat(APFloat::IEEEdouble(), "0x1p0").convertToDouble()); EXPECT_EQ(+1.0, APFloat(APFloat::IEEEdouble(), "+0x1p0").convertToDouble()); EXPECT_EQ(-1.0, APFloat(APFloat::IEEEdouble(), "-0x1p0").convertToDouble()); EXPECT_EQ( 1.0, APFloat(APFloat::IEEEdouble(), "0x1p+0").convertToDouble()); EXPECT_EQ(+1.0, APFloat(APFloat::IEEEdouble(), "+0x1p+0").convertToDouble()); EXPECT_EQ(-1.0, APFloat(APFloat::IEEEdouble(), "-0x1p+0").convertToDouble()); EXPECT_EQ( 1.0, APFloat(APFloat::IEEEdouble(), "0x1p-0").convertToDouble()); EXPECT_EQ(+1.0, APFloat(APFloat::IEEEdouble(), "+0x1p-0").convertToDouble()); EXPECT_EQ(-1.0, APFloat(APFloat::IEEEdouble(), "-0x1p-0").convertToDouble()); EXPECT_EQ( 2.0, APFloat(APFloat::IEEEdouble(), "0x1p1").convertToDouble()); EXPECT_EQ(+2.0, APFloat(APFloat::IEEEdouble(), "+0x1p1").convertToDouble()); EXPECT_EQ(-2.0, APFloat(APFloat::IEEEdouble(), "-0x1p1").convertToDouble()); EXPECT_EQ( 2.0, APFloat(APFloat::IEEEdouble(), "0x1p+1").convertToDouble()); EXPECT_EQ(+2.0, APFloat(APFloat::IEEEdouble(), "+0x1p+1").convertToDouble()); EXPECT_EQ(-2.0, APFloat(APFloat::IEEEdouble(), "-0x1p+1").convertToDouble()); EXPECT_EQ( 0.5, APFloat(APFloat::IEEEdouble(), "0x1p-1").convertToDouble()); EXPECT_EQ(+0.5, APFloat(APFloat::IEEEdouble(), "+0x1p-1").convertToDouble()); EXPECT_EQ(-0.5, APFloat(APFloat::IEEEdouble(), "-0x1p-1").convertToDouble()); EXPECT_EQ( 3.0, APFloat(APFloat::IEEEdouble(), "0x1.8p1").convertToDouble()); EXPECT_EQ(+3.0, APFloat(APFloat::IEEEdouble(), "+0x1.8p1").convertToDouble()); EXPECT_EQ(-3.0, APFloat(APFloat::IEEEdouble(), "-0x1.8p1").convertToDouble()); EXPECT_EQ( 3.0, APFloat(APFloat::IEEEdouble(), "0x1.8p+1").convertToDouble()); EXPECT_EQ(+3.0, APFloat(APFloat::IEEEdouble(), "+0x1.8p+1").convertToDouble()); EXPECT_EQ(-3.0, APFloat(APFloat::IEEEdouble(), "-0x1.8p+1").convertToDouble()); EXPECT_EQ( 0.75, APFloat(APFloat::IEEEdouble(), "0x1.8p-1").convertToDouble()); EXPECT_EQ(+0.75, APFloat(APFloat::IEEEdouble(), "+0x1.8p-1").convertToDouble()); EXPECT_EQ(-0.75, APFloat(APFloat::IEEEdouble(), "-0x1.8p-1").convertToDouble()); EXPECT_EQ( 8192.0, APFloat(APFloat::IEEEdouble(), "0x1000.000p1").convertToDouble()); EXPECT_EQ(+8192.0, APFloat(APFloat::IEEEdouble(), "+0x1000.000p1").convertToDouble()); EXPECT_EQ(-8192.0, APFloat(APFloat::IEEEdouble(), "-0x1000.000p1").convertToDouble()); EXPECT_EQ( 8192.0, APFloat(APFloat::IEEEdouble(), "0x1000.000p+1").convertToDouble()); EXPECT_EQ(+8192.0, APFloat(APFloat::IEEEdouble(), "+0x1000.000p+1").convertToDouble()); EXPECT_EQ(-8192.0, APFloat(APFloat::IEEEdouble(), "-0x1000.000p+1").convertToDouble()); EXPECT_EQ( 2048.0, APFloat(APFloat::IEEEdouble(), "0x1000.000p-1").convertToDouble()); EXPECT_EQ(+2048.0, APFloat(APFloat::IEEEdouble(), "+0x1000.000p-1").convertToDouble()); EXPECT_EQ(-2048.0, APFloat(APFloat::IEEEdouble(), "-0x1000.000p-1").convertToDouble()); EXPECT_EQ( 8192.0, APFloat(APFloat::IEEEdouble(), "0x1000p1").convertToDouble()); EXPECT_EQ(+8192.0, APFloat(APFloat::IEEEdouble(), "+0x1000p1").convertToDouble()); EXPECT_EQ(-8192.0, APFloat(APFloat::IEEEdouble(), "-0x1000p1").convertToDouble()); EXPECT_EQ( 8192.0, APFloat(APFloat::IEEEdouble(), "0x1000p+1").convertToDouble()); EXPECT_EQ(+8192.0, APFloat(APFloat::IEEEdouble(), "+0x1000p+1").convertToDouble()); EXPECT_EQ(-8192.0, APFloat(APFloat::IEEEdouble(), "-0x1000p+1").convertToDouble()); EXPECT_EQ( 2048.0, APFloat(APFloat::IEEEdouble(), "0x1000p-1").convertToDouble()); EXPECT_EQ(+2048.0, APFloat(APFloat::IEEEdouble(), "+0x1000p-1").convertToDouble()); EXPECT_EQ(-2048.0, APFloat(APFloat::IEEEdouble(), "-0x1000p-1").convertToDouble()); EXPECT_EQ( 16384.0, APFloat(APFloat::IEEEdouble(), "0x10p10").convertToDouble()); EXPECT_EQ(+16384.0, APFloat(APFloat::IEEEdouble(), "+0x10p10").convertToDouble()); EXPECT_EQ(-16384.0, APFloat(APFloat::IEEEdouble(), "-0x10p10").convertToDouble()); EXPECT_EQ( 16384.0, APFloat(APFloat::IEEEdouble(), "0x10p+10").convertToDouble()); EXPECT_EQ(+16384.0, APFloat(APFloat::IEEEdouble(), "+0x10p+10").convertToDouble()); EXPECT_EQ(-16384.0, APFloat(APFloat::IEEEdouble(), "-0x10p+10").convertToDouble()); EXPECT_EQ( 0.015625, APFloat(APFloat::IEEEdouble(), "0x10p-10").convertToDouble()); EXPECT_EQ(+0.015625, APFloat(APFloat::IEEEdouble(), "+0x10p-10").convertToDouble()); EXPECT_EQ(-0.015625, APFloat(APFloat::IEEEdouble(), "-0x10p-10").convertToDouble()); EXPECT_EQ(1.0625, APFloat(APFloat::IEEEdouble(), "0x1.1p0").convertToDouble()); EXPECT_EQ(1.0, APFloat(APFloat::IEEEdouble(), "0x1p0").convertToDouble()); EXPECT_EQ(convertToDoubleFromString("0x1p-150"), convertToDoubleFromString("+0x800000000000000001.p-221")); EXPECT_EQ(2251799813685248.5, convertToDoubleFromString("0x80000000000004000000.010p-28")); } TEST(APFloatTest, toString) { ASSERT_EQ("10", convertToString(10.0, 6, 3)); ASSERT_EQ("1.0E+1", convertToString(10.0, 6, 0)); ASSERT_EQ("10100", convertToString(1.01E+4, 5, 2)); ASSERT_EQ("1.01E+4", convertToString(1.01E+4, 4, 2)); ASSERT_EQ("1.01E+4", convertToString(1.01E+4, 5, 1)); ASSERT_EQ("0.0101", convertToString(1.01E-2, 5, 2)); ASSERT_EQ("0.0101", convertToString(1.01E-2, 4, 2)); ASSERT_EQ("1.01E-2", convertToString(1.01E-2, 5, 1)); ASSERT_EQ("0.78539816339744828", convertToString(0.78539816339744830961, 0, 3)); ASSERT_EQ("4.9406564584124654E-324", convertToString(4.9406564584124654e-324, 0, 3)); ASSERT_EQ("873.18340000000001", convertToString(873.1834, 0, 1)); ASSERT_EQ("8.7318340000000001E+2", convertToString(873.1834, 0, 0)); ASSERT_EQ("1.7976931348623157E+308", convertToString(1.7976931348623157E+308, 0, 0)); ASSERT_EQ("10", convertToString(10.0, 6, 3, false)); ASSERT_EQ("1.000000e+01", convertToString(10.0, 6, 0, false)); ASSERT_EQ("10100", convertToString(1.01E+4, 5, 2, false)); ASSERT_EQ("1.0100e+04", convertToString(1.01E+4, 4, 2, false)); ASSERT_EQ("1.01000e+04", convertToString(1.01E+4, 5, 1, false)); ASSERT_EQ("0.0101", convertToString(1.01E-2, 5, 2, false)); ASSERT_EQ("0.0101", convertToString(1.01E-2, 4, 2, false)); ASSERT_EQ("1.01000e-02", convertToString(1.01E-2, 5, 1, false)); ASSERT_EQ("0.78539816339744828", convertToString(0.78539816339744830961, 0, 3, false)); ASSERT_EQ("4.94065645841246540e-324", convertToString(4.9406564584124654e-324, 0, 3, false)); ASSERT_EQ("873.18340000000001", convertToString(873.1834, 0, 1, false)); ASSERT_EQ("8.73183400000000010e+02", convertToString(873.1834, 0, 0, false)); ASSERT_EQ("1.79769313486231570e+308", convertToString(1.7976931348623157E+308, 0, 0, false)); { SmallString<64> Str; APFloat UnnormalZero(APFloat::x87DoubleExtended(), APInt(80, {0, 1})); UnnormalZero.toString(Str); ASSERT_EQ("NaN", Str); } } TEST(APFloatTest, toInteger) { bool isExact = false; APSInt result(5, /*isUnsigned=*/true); EXPECT_EQ(APFloat::opOK, APFloat(APFloat::IEEEdouble(), "10") .convertToInteger(result, APFloat::rmTowardZero, &isExact)); EXPECT_TRUE(isExact); EXPECT_EQ(APSInt(APInt(5, 10), true), result); EXPECT_EQ(APFloat::opInvalidOp, APFloat(APFloat::IEEEdouble(), "-10") .convertToInteger(result, APFloat::rmTowardZero, &isExact)); EXPECT_FALSE(isExact); EXPECT_EQ(APSInt::getMinValue(5, true), result); EXPECT_EQ(APFloat::opInvalidOp, APFloat(APFloat::IEEEdouble(), "32") .convertToInteger(result, APFloat::rmTowardZero, &isExact)); EXPECT_FALSE(isExact); EXPECT_EQ(APSInt::getMaxValue(5, true), result); EXPECT_EQ(APFloat::opInexact, APFloat(APFloat::IEEEdouble(), "7.9") .convertToInteger(result, APFloat::rmTowardZero, &isExact)); EXPECT_FALSE(isExact); EXPECT_EQ(APSInt(APInt(5, 7), true), result); result.setIsUnsigned(false); EXPECT_EQ(APFloat::opOK, APFloat(APFloat::IEEEdouble(), "-10") .convertToInteger(result, APFloat::rmTowardZero, &isExact)); EXPECT_TRUE(isExact); EXPECT_EQ(APSInt(APInt(5, -10, true), false), result); EXPECT_EQ(APFloat::opInvalidOp, APFloat(APFloat::IEEEdouble(), "-17") .convertToInteger(result, APFloat::rmTowardZero, &isExact)); EXPECT_FALSE(isExact); EXPECT_EQ(APSInt::getMinValue(5, false), result); EXPECT_EQ(APFloat::opInvalidOp, APFloat(APFloat::IEEEdouble(), "16") .convertToInteger(result, APFloat::rmTowardZero, &isExact)); EXPECT_FALSE(isExact); EXPECT_EQ(APSInt::getMaxValue(5, false), result); } static APInt nanbitsFromAPInt(const fltSemantics &Sem, bool SNaN, bool Negative, uint64_t payload) { APInt appayload(64, payload); if (SNaN) return APFloat::getSNaN(Sem, Negative, &appayload).bitcastToAPInt(); else return APFloat::getQNaN(Sem, Negative, &appayload).bitcastToAPInt(); } TEST(APFloatTest, makeNaN) { const struct { uint64_t expected; const fltSemantics &semantics; bool SNaN; bool Negative; uint64_t payload; } tests[] = { /* expected semantics SNaN Neg payload */ { 0x7fc00000ULL, APFloat::IEEEsingle(), false, false, 0x00000000ULL }, { 0xffc00000ULL, APFloat::IEEEsingle(), false, true, 0x00000000ULL }, { 0x7fc0ae72ULL, APFloat::IEEEsingle(), false, false, 0x0000ae72ULL }, { 0x7fffae72ULL, APFloat::IEEEsingle(), false, false, 0xffffae72ULL }, { 0x7fdaae72ULL, APFloat::IEEEsingle(), false, false, 0x00daae72ULL }, { 0x7fa00000ULL, APFloat::IEEEsingle(), true, false, 0x00000000ULL }, { 0xffa00000ULL, APFloat::IEEEsingle(), true, true, 0x00000000ULL }, { 0x7f80ae72ULL, APFloat::IEEEsingle(), true, false, 0x0000ae72ULL }, { 0x7fbfae72ULL, APFloat::IEEEsingle(), true, false, 0xffffae72ULL }, { 0x7f9aae72ULL, APFloat::IEEEsingle(), true, false, 0x001aae72ULL }, { 0x7ff8000000000000ULL, APFloat::IEEEdouble(), false, false, 0x0000000000000000ULL }, { 0xfff8000000000000ULL, APFloat::IEEEdouble(), false, true, 0x0000000000000000ULL }, { 0x7ff800000000ae72ULL, APFloat::IEEEdouble(), false, false, 0x000000000000ae72ULL }, { 0x7fffffffffffae72ULL, APFloat::IEEEdouble(), false, false, 0xffffffffffffae72ULL }, { 0x7ffdaaaaaaaaae72ULL, APFloat::IEEEdouble(), false, false, 0x000daaaaaaaaae72ULL }, { 0x7ff4000000000000ULL, APFloat::IEEEdouble(), true, false, 0x0000000000000000ULL }, { 0xfff4000000000000ULL, APFloat::IEEEdouble(), true, true, 0x0000000000000000ULL }, { 0x7ff000000000ae72ULL, APFloat::IEEEdouble(), true, false, 0x000000000000ae72ULL }, { 0x7ff7ffffffffae72ULL, APFloat::IEEEdouble(), true, false, 0xffffffffffffae72ULL }, { 0x7ff1aaaaaaaaae72ULL, APFloat::IEEEdouble(), true, false, 0x0001aaaaaaaaae72ULL }, }; for (const auto &t : tests) { ASSERT_EQ(t.expected, nanbitsFromAPInt(t.semantics, t.SNaN, t.Negative, t.payload)); } } #ifdef GTEST_HAS_DEATH_TEST #ifndef NDEBUG TEST(APFloatTest, SemanticsDeath) { EXPECT_DEATH(APFloat(APFloat::IEEEsingle(), 0).convertToDouble(), "Float semantics are not IEEEdouble"); EXPECT_DEATH(APFloat(APFloat::IEEEdouble(), 0).convertToFloat(), "Float semantics are not IEEEsingle"); } #endif #endif TEST(APFloatTest, StringDecimalError) { EXPECT_EQ("Invalid string length", convertToErrorFromString("")); EXPECT_EQ("String has no digits", convertToErrorFromString("+")); EXPECT_EQ("String has no digits", convertToErrorFromString("-")); EXPECT_EQ("Invalid character in significand", convertToErrorFromString(StringRef("\0", 1))); EXPECT_EQ("Invalid character in significand", convertToErrorFromString(StringRef("1\0", 2))); EXPECT_EQ("Invalid character in significand", convertToErrorFromString(StringRef("1" "\0" "2", 3))); EXPECT_EQ("Invalid character in significand", convertToErrorFromString(StringRef("1" "\0" "2e1", 5))); EXPECT_EQ("Invalid character in exponent", convertToErrorFromString(StringRef("1e\0", 3))); EXPECT_EQ("Invalid character in exponent", convertToErrorFromString(StringRef("1e1\0", 4))); EXPECT_EQ("Invalid character in exponent", convertToErrorFromString(StringRef("1e1" "\0" "2", 5))); EXPECT_EQ("Invalid character in significand", convertToErrorFromString("1.0f")); EXPECT_EQ("String contains multiple dots", convertToErrorFromString("..")); EXPECT_EQ("String contains multiple dots", convertToErrorFromString("..0")); EXPECT_EQ("String contains multiple dots", convertToErrorFromString("1.0.0")); } TEST(APFloatTest, StringDecimalSignificandError) { EXPECT_EQ("Significand has no digits", convertToErrorFromString( ".")); EXPECT_EQ("Significand has no digits", convertToErrorFromString("+.")); EXPECT_EQ("Significand has no digits", convertToErrorFromString("-.")); EXPECT_EQ("Significand has no digits", convertToErrorFromString( "e")); EXPECT_EQ("Significand has no digits", convertToErrorFromString("+e")); EXPECT_EQ("Significand has no digits", convertToErrorFromString("-e")); EXPECT_EQ("Significand has no digits", convertToErrorFromString( "e1")); EXPECT_EQ("Significand has no digits", convertToErrorFromString("+e1")); EXPECT_EQ("Significand has no digits", convertToErrorFromString("-e1")); EXPECT_EQ("Significand has no digits", convertToErrorFromString( ".e1")); EXPECT_EQ("Significand has no digits", convertToErrorFromString("+.e1")); EXPECT_EQ("Significand has no digits", convertToErrorFromString("-.e1")); EXPECT_EQ("Significand has no digits", convertToErrorFromString( ".e")); EXPECT_EQ("Significand has no digits", convertToErrorFromString("+.e")); EXPECT_EQ("Significand has no digits", convertToErrorFromString("-.e")); } TEST(APFloatTest, StringHexadecimalError) { EXPECT_EQ("Invalid string", convertToErrorFromString( "0x")); EXPECT_EQ("Invalid string", convertToErrorFromString("+0x")); EXPECT_EQ("Invalid string", convertToErrorFromString("-0x")); EXPECT_EQ("Hex strings require an exponent", convertToErrorFromString( "0x0")); EXPECT_EQ("Hex strings require an exponent", convertToErrorFromString("+0x0")); EXPECT_EQ("Hex strings require an exponent", convertToErrorFromString("-0x0")); EXPECT_EQ("Hex strings require an exponent", convertToErrorFromString( "0x0.")); EXPECT_EQ("Hex strings require an exponent", convertToErrorFromString("+0x0.")); EXPECT_EQ("Hex strings require an exponent", convertToErrorFromString("-0x0.")); EXPECT_EQ("Hex strings require an exponent", convertToErrorFromString( "0x.0")); EXPECT_EQ("Hex strings require an exponent", convertToErrorFromString("+0x.0")); EXPECT_EQ("Hex strings require an exponent", convertToErrorFromString("-0x.0")); EXPECT_EQ("Hex strings require an exponent", convertToErrorFromString( "0x0.0")); EXPECT_EQ("Hex strings require an exponent", convertToErrorFromString("+0x0.0")); EXPECT_EQ("Hex strings require an exponent", convertToErrorFromString("-0x0.0")); EXPECT_EQ("Invalid character in significand", convertToErrorFromString(StringRef("0x\0", 3))); EXPECT_EQ("Invalid character in significand", convertToErrorFromString(StringRef("0x1\0", 4))); EXPECT_EQ("Invalid character in significand", convertToErrorFromString(StringRef("0x1" "\0" "2", 5))); EXPECT_EQ("Invalid character in significand", convertToErrorFromString(StringRef("0x1" "\0" "2p1", 7))); EXPECT_EQ("Invalid character in exponent", convertToErrorFromString(StringRef("0x1p\0", 5))); EXPECT_EQ("Invalid character in exponent", convertToErrorFromString(StringRef("0x1p1\0", 6))); EXPECT_EQ("Invalid character in exponent", convertToErrorFromString(StringRef("0x1p1" "\0" "2", 7))); EXPECT_EQ("Invalid character in exponent", convertToErrorFromString("0x1p0f")); EXPECT_EQ("String contains multiple dots", convertToErrorFromString("0x..p1")); EXPECT_EQ("String contains multiple dots", convertToErrorFromString("0x..0p1")); EXPECT_EQ("String contains multiple dots", convertToErrorFromString("0x1.0.0p1")); } TEST(APFloatTest, StringHexadecimalSignificandError) { EXPECT_EQ("Significand has no digits", convertToErrorFromString( "0x.")); EXPECT_EQ("Significand has no digits", convertToErrorFromString("+0x.")); EXPECT_EQ("Significand has no digits", convertToErrorFromString("-0x.")); EXPECT_EQ("Significand has no digits", convertToErrorFromString( "0xp")); EXPECT_EQ("Significand has no digits", convertToErrorFromString("+0xp")); EXPECT_EQ("Significand has no digits", convertToErrorFromString("-0xp")); EXPECT_EQ("Significand has no digits", convertToErrorFromString( "0xp+")); EXPECT_EQ("Significand has no digits", convertToErrorFromString("+0xp+")); EXPECT_EQ("Significand has no digits", convertToErrorFromString("-0xp+")); EXPECT_EQ("Significand has no digits", convertToErrorFromString( "0xp-")); EXPECT_EQ("Significand has no digits", convertToErrorFromString("+0xp-")); EXPECT_EQ("Significand has no digits", convertToErrorFromString("-0xp-")); EXPECT_EQ("Significand has no digits", convertToErrorFromString( "0x.p")); EXPECT_EQ("Significand has no digits", convertToErrorFromString("+0x.p")); EXPECT_EQ("Significand has no digits", convertToErrorFromString("-0x.p")); EXPECT_EQ("Significand has no digits", convertToErrorFromString( "0x.p+")); EXPECT_EQ("Significand has no digits", convertToErrorFromString("+0x.p+")); EXPECT_EQ("Significand has no digits", convertToErrorFromString("-0x.p+")); EXPECT_EQ("Significand has no digits", convertToErrorFromString( "0x.p-")); EXPECT_EQ("Significand has no digits", convertToErrorFromString("+0x.p-")); EXPECT_EQ("Significand has no digits", convertToErrorFromString("-0x.p-")); } TEST(APFloatTest, StringHexadecimalExponentError) { EXPECT_EQ("Exponent has no digits", convertToErrorFromString( "0x1p")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString("+0x1p")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString("-0x1p")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString( "0x1p+")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString("+0x1p+")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString("-0x1p+")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString( "0x1p-")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString("+0x1p-")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString("-0x1p-")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString( "0x1.p")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString("+0x1.p")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString("-0x1.p")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString( "0x1.p+")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString("+0x1.p+")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString("-0x1.p+")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString( "0x1.p-")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString("+0x1.p-")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString("-0x1.p-")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString( "0x.1p")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString("+0x.1p")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString("-0x.1p")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString( "0x.1p+")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString("+0x.1p+")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString("-0x.1p+")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString( "0x.1p-")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString("+0x.1p-")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString("-0x.1p-")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString( "0x1.1p")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString("+0x1.1p")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString("-0x1.1p")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString( "0x1.1p+")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString("+0x1.1p+")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString("-0x1.1p+")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString( "0x1.1p-")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString("+0x1.1p-")); EXPECT_EQ("Exponent has no digits", convertToErrorFromString("-0x1.1p-")); } TEST(APFloatTest, exactInverse) { APFloat inv(0.0f); // Trivial operation. EXPECT_TRUE(APFloat(2.0).getExactInverse(&inv)); EXPECT_TRUE(inv.bitwiseIsEqual(APFloat(0.5))); EXPECT_TRUE(APFloat(2.0f).getExactInverse(&inv)); EXPECT_TRUE(inv.bitwiseIsEqual(APFloat(0.5f))); EXPECT_TRUE(APFloat(APFloat::IEEEquad(), "2.0").getExactInverse(&inv)); EXPECT_TRUE(inv.bitwiseIsEqual(APFloat(APFloat::IEEEquad(), "0.5"))); EXPECT_TRUE(APFloat(APFloat::PPCDoubleDouble(), "2.0").getExactInverse(&inv)); EXPECT_TRUE(inv.bitwiseIsEqual(APFloat(APFloat::PPCDoubleDouble(), "0.5"))); EXPECT_TRUE(APFloat(APFloat::x87DoubleExtended(), "2.0").getExactInverse(&inv)); EXPECT_TRUE(inv.bitwiseIsEqual(APFloat(APFloat::x87DoubleExtended(), "0.5"))); // FLT_MIN EXPECT_TRUE(APFloat(1.17549435e-38f).getExactInverse(&inv)); EXPECT_TRUE(inv.bitwiseIsEqual(APFloat(8.5070592e+37f))); // Large float, inverse is a denormal. EXPECT_FALSE(APFloat(1.7014118e38f).getExactInverse(nullptr)); // Zero EXPECT_FALSE(APFloat(0.0).getExactInverse(nullptr)); // Denormalized float EXPECT_FALSE(APFloat(1.40129846e-45f).getExactInverse(nullptr)); } TEST(APFloatTest, roundToIntegral) { APFloat T(-0.5), S(3.14), R(APFloat::getLargest(APFloat::IEEEdouble())), P(0.0); P = T; P.roundToIntegral(APFloat::rmTowardZero); EXPECT_EQ(-0.0, P.convertToDouble()); P = T; P.roundToIntegral(APFloat::rmTowardNegative); EXPECT_EQ(-1.0, P.convertToDouble()); P = T; P.roundToIntegral(APFloat::rmTowardPositive); EXPECT_EQ(-0.0, P.convertToDouble()); P = T; P.roundToIntegral(APFloat::rmNearestTiesToEven); EXPECT_EQ(-0.0, P.convertToDouble()); P = S; P.roundToIntegral(APFloat::rmTowardZero); EXPECT_EQ(3.0, P.convertToDouble()); P = S; P.roundToIntegral(APFloat::rmTowardNegative); EXPECT_EQ(3.0, P.convertToDouble()); P = S; P.roundToIntegral(APFloat::rmTowardPositive); EXPECT_EQ(4.0, P.convertToDouble()); P = S; P.roundToIntegral(APFloat::rmNearestTiesToEven); EXPECT_EQ(3.0, P.convertToDouble()); P = R; P.roundToIntegral(APFloat::rmTowardZero); EXPECT_EQ(R.convertToDouble(), P.convertToDouble()); P = R; P.roundToIntegral(APFloat::rmTowardNegative); EXPECT_EQ(R.convertToDouble(), P.convertToDouble()); P = R; P.roundToIntegral(APFloat::rmTowardPositive); EXPECT_EQ(R.convertToDouble(), P.convertToDouble()); P = R; P.roundToIntegral(APFloat::rmNearestTiesToEven); EXPECT_EQ(R.convertToDouble(), P.convertToDouble()); P = APFloat::getZero(APFloat::IEEEdouble()); P.roundToIntegral(APFloat::rmTowardZero); EXPECT_EQ(0.0, P.convertToDouble()); P = APFloat::getZero(APFloat::IEEEdouble(), true); P.roundToIntegral(APFloat::rmTowardZero); EXPECT_EQ(-0.0, P.convertToDouble()); P = APFloat::getNaN(APFloat::IEEEdouble()); P.roundToIntegral(APFloat::rmTowardZero); EXPECT_TRUE(std::isnan(P.convertToDouble())); P = APFloat::getInf(APFloat::IEEEdouble()); P.roundToIntegral(APFloat::rmTowardZero); EXPECT_TRUE(std::isinf(P.convertToDouble()) && P.convertToDouble() > 0.0); P = APFloat::getInf(APFloat::IEEEdouble(), true); P.roundToIntegral(APFloat::rmTowardZero); EXPECT_TRUE(std::isinf(P.convertToDouble()) && P.convertToDouble() < 0.0); } TEST(APFloatTest, isInteger) { APFloat T(-0.0); EXPECT_TRUE(T.isInteger()); T = APFloat(3.14159); EXPECT_FALSE(T.isInteger()); T = APFloat::getNaN(APFloat::IEEEdouble()); EXPECT_FALSE(T.isInteger()); T = APFloat::getInf(APFloat::IEEEdouble()); EXPECT_FALSE(T.isInteger()); T = APFloat::getInf(APFloat::IEEEdouble(), true); EXPECT_FALSE(T.isInteger()); T = APFloat::getLargest(APFloat::IEEEdouble()); EXPECT_TRUE(T.isInteger()); } TEST(DoubleAPFloatTest, isInteger) { APFloat F1(-0.0); APFloat F2(-0.0); llvm::detail::DoubleAPFloat T(APFloat::PPCDoubleDouble(), std::move(F1), std::move(F2)); EXPECT_TRUE(T.isInteger()); APFloat F3(3.14159); APFloat F4(-0.0); llvm::detail::DoubleAPFloat T2(APFloat::PPCDoubleDouble(), std::move(F3), std::move(F4)); EXPECT_FALSE(T2.isInteger()); APFloat F5(-0.0); APFloat F6(3.14159); llvm::detail::DoubleAPFloat T3(APFloat::PPCDoubleDouble(), std::move(F5), std::move(F6)); EXPECT_FALSE(T3.isInteger()); } TEST(APFloatTest, getLargest) { EXPECT_EQ(3.402823466e+38f, APFloat::getLargest(APFloat::IEEEsingle()).convertToFloat()); EXPECT_EQ(1.7976931348623158e+308, APFloat::getLargest(APFloat::IEEEdouble()).convertToDouble()); } TEST(APFloatTest, getSmallest) { APFloat test = APFloat::getSmallest(APFloat::IEEEsingle(), false); APFloat expected = APFloat(APFloat::IEEEsingle(), "0x0.000002p-126"); EXPECT_FALSE(test.isNegative()); EXPECT_TRUE(test.isFiniteNonZero()); EXPECT_TRUE(test.isDenormal()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); test = APFloat::getSmallest(APFloat::IEEEsingle(), true); expected = APFloat(APFloat::IEEEsingle(), "-0x0.000002p-126"); EXPECT_TRUE(test.isNegative()); EXPECT_TRUE(test.isFiniteNonZero()); EXPECT_TRUE(test.isDenormal()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); test = APFloat::getSmallest(APFloat::IEEEquad(), false); expected = APFloat(APFloat::IEEEquad(), "0x0.0000000000000000000000000001p-16382"); EXPECT_FALSE(test.isNegative()); EXPECT_TRUE(test.isFiniteNonZero()); EXPECT_TRUE(test.isDenormal()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); test = APFloat::getSmallest(APFloat::IEEEquad(), true); expected = APFloat(APFloat::IEEEquad(), "-0x0.0000000000000000000000000001p-16382"); EXPECT_TRUE(test.isNegative()); EXPECT_TRUE(test.isFiniteNonZero()); EXPECT_TRUE(test.isDenormal()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); } TEST(APFloatTest, getSmallestNormalized) { APFloat test = APFloat::getSmallestNormalized(APFloat::IEEEsingle(), false); APFloat expected = APFloat(APFloat::IEEEsingle(), "0x1p-126"); EXPECT_FALSE(test.isNegative()); EXPECT_TRUE(test.isFiniteNonZero()); EXPECT_FALSE(test.isDenormal()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); test = APFloat::getSmallestNormalized(APFloat::IEEEsingle(), true); expected = APFloat(APFloat::IEEEsingle(), "-0x1p-126"); EXPECT_TRUE(test.isNegative()); EXPECT_TRUE(test.isFiniteNonZero()); EXPECT_FALSE(test.isDenormal()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); test = APFloat::getSmallestNormalized(APFloat::IEEEquad(), false); expected = APFloat(APFloat::IEEEquad(), "0x1p-16382"); EXPECT_FALSE(test.isNegative()); EXPECT_TRUE(test.isFiniteNonZero()); EXPECT_FALSE(test.isDenormal()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); test = APFloat::getSmallestNormalized(APFloat::IEEEquad(), true); expected = APFloat(APFloat::IEEEquad(), "-0x1p-16382"); EXPECT_TRUE(test.isNegative()); EXPECT_TRUE(test.isFiniteNonZero()); EXPECT_FALSE(test.isDenormal()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); } TEST(APFloatTest, getZero) { struct { const fltSemantics *semantics; const bool sign; const unsigned long long bitPattern[2]; const unsigned bitPatternLength; } const GetZeroTest[] = { { &APFloat::IEEEhalf(), false, {0, 0}, 1}, { &APFloat::IEEEhalf(), true, {0x8000ULL, 0}, 1}, { &APFloat::IEEEsingle(), false, {0, 0}, 1}, { &APFloat::IEEEsingle(), true, {0x80000000ULL, 0}, 1}, { &APFloat::IEEEdouble(), false, {0, 0}, 1}, { &APFloat::IEEEdouble(), true, {0x8000000000000000ULL, 0}, 1}, { &APFloat::IEEEquad(), false, {0, 0}, 2}, { &APFloat::IEEEquad(), true, {0, 0x8000000000000000ULL}, 2}, { &APFloat::PPCDoubleDouble(), false, {0, 0}, 2}, { &APFloat::PPCDoubleDouble(), true, {0x8000000000000000ULL, 0}, 2}, { &APFloat::x87DoubleExtended(), false, {0, 0}, 2}, { &APFloat::x87DoubleExtended(), true, {0, 0x8000ULL}, 2}, }; const unsigned NumGetZeroTests = 12; for (unsigned i = 0; i < NumGetZeroTests; ++i) { APFloat test = APFloat::getZero(*GetZeroTest[i].semantics, GetZeroTest[i].sign); const char *pattern = GetZeroTest[i].sign? "-0x0p+0" : "0x0p+0"; APFloat expected = APFloat(*GetZeroTest[i].semantics, pattern); EXPECT_TRUE(test.isZero()); EXPECT_TRUE(GetZeroTest[i].sign? test.isNegative() : !test.isNegative()); EXPECT_TRUE(test.bitwiseIsEqual(expected)); for (unsigned j = 0, je = GetZeroTest[i].bitPatternLength; j < je; ++j) { EXPECT_EQ(GetZeroTest[i].bitPattern[j], test.bitcastToAPInt().getRawData()[j]); } } } TEST(APFloatTest, copySign) { EXPECT_TRUE(APFloat(-42.0).bitwiseIsEqual( APFloat::copySign(APFloat(42.0), APFloat(-1.0)))); EXPECT_TRUE(APFloat(42.0).bitwiseIsEqual( APFloat::copySign(APFloat(-42.0), APFloat(1.0)))); EXPECT_TRUE(APFloat(-42.0).bitwiseIsEqual( APFloat::copySign(APFloat(-42.0), APFloat(-1.0)))); EXPECT_TRUE(APFloat(42.0).bitwiseIsEqual( APFloat::copySign(APFloat(42.0), APFloat(1.0)))); } TEST(APFloatTest, convert) { bool losesInfo; APFloat test(APFloat::IEEEdouble(), "1.0"); test.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo); EXPECT_EQ(1.0f, test.convertToFloat()); EXPECT_FALSE(losesInfo); test = APFloat(APFloat::x87DoubleExtended(), "0x1p-53"); test.add(APFloat(APFloat::x87DoubleExtended(), "1.0"), APFloat::rmNearestTiesToEven); test.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo); EXPECT_EQ(1.0, test.convertToDouble()); EXPECT_TRUE(losesInfo); test = APFloat(APFloat::IEEEquad(), "0x1p-53"); test.add(APFloat(APFloat::IEEEquad(), "1.0"), APFloat::rmNearestTiesToEven); test.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo); EXPECT_EQ(1.0, test.convertToDouble()); EXPECT_TRUE(losesInfo); test = APFloat(APFloat::x87DoubleExtended(), "0xf.fffffffp+28"); test.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo); EXPECT_EQ(4294967295.0, test.convertToDouble()); EXPECT_FALSE(losesInfo); test = APFloat::getSNaN(APFloat::IEEEsingle()); APFloat X87SNaN = APFloat::getSNaN(APFloat::x87DoubleExtended()); test.convert(APFloat::x87DoubleExtended(), APFloat::rmNearestTiesToEven, &losesInfo); EXPECT_TRUE(test.bitwiseIsEqual(X87SNaN)); EXPECT_FALSE(losesInfo); test = APFloat::getQNaN(APFloat::IEEEsingle()); APFloat X87QNaN = APFloat::getQNaN(APFloat::x87DoubleExtended()); test.convert(APFloat::x87DoubleExtended(), APFloat::rmNearestTiesToEven, &losesInfo); EXPECT_TRUE(test.bitwiseIsEqual(X87QNaN)); EXPECT_FALSE(losesInfo); test = APFloat::getSNaN(APFloat::x87DoubleExtended()); test.convert(APFloat::x87DoubleExtended(), APFloat::rmNearestTiesToEven, &losesInfo); EXPECT_TRUE(test.bitwiseIsEqual(X87SNaN)); EXPECT_FALSE(losesInfo); test = APFloat::getQNaN(APFloat::x87DoubleExtended()); test.convert(APFloat::x87DoubleExtended(), APFloat::rmNearestTiesToEven, &losesInfo); EXPECT_TRUE(test.bitwiseIsEqual(X87QNaN)); EXPECT_FALSE(losesInfo); } TEST(APFloatTest, PPCDoubleDouble) { APFloat test(APFloat::PPCDoubleDouble(), "1.0"); EXPECT_EQ(0x3ff0000000000000ull, test.bitcastToAPInt().getRawData()[0]); EXPECT_EQ(0x0000000000000000ull, test.bitcastToAPInt().getRawData()[1]); // LDBL_MAX test = APFloat(APFloat::PPCDoubleDouble(), "1.79769313486231580793728971405301e+308"); EXPECT_EQ(0x7fefffffffffffffull, test.bitcastToAPInt().getRawData()[0]); EXPECT_EQ(0x7c8ffffffffffffeull, test.bitcastToAPInt().getRawData()[1]); // LDBL_MIN test = APFloat(APFloat::PPCDoubleDouble(), "2.00416836000897277799610805135016e-292"); EXPECT_EQ(0x0360000000000000ull, test.bitcastToAPInt().getRawData()[0]); EXPECT_EQ(0x0000000000000000ull, test.bitcastToAPInt().getRawData()[1]); // PR30869 { auto Result = APFloat(APFloat::PPCDoubleDouble(), "1.0") + APFloat(APFloat::PPCDoubleDouble(), "1.0"); EXPECT_EQ(&APFloat::PPCDoubleDouble(), &Result.getSemantics()); Result = APFloat(APFloat::PPCDoubleDouble(), "1.0") - APFloat(APFloat::PPCDoubleDouble(), "1.0"); EXPECT_EQ(&APFloat::PPCDoubleDouble(), &Result.getSemantics()); Result = APFloat(APFloat::PPCDoubleDouble(), "1.0") * APFloat(APFloat::PPCDoubleDouble(), "1.0"); EXPECT_EQ(&APFloat::PPCDoubleDouble(), &Result.getSemantics()); Result = APFloat(APFloat::PPCDoubleDouble(), "1.0") / APFloat(APFloat::PPCDoubleDouble(), "1.0"); EXPECT_EQ(&APFloat::PPCDoubleDouble(), &Result.getSemantics()); int Exp; Result = frexp(APFloat(APFloat::PPCDoubleDouble(), "1.0"), Exp, APFloat::rmNearestTiesToEven); EXPECT_EQ(&APFloat::PPCDoubleDouble(), &Result.getSemantics()); Result = scalbn(APFloat(APFloat::PPCDoubleDouble(), "1.0"), 1, APFloat::rmNearestTiesToEven); EXPECT_EQ(&APFloat::PPCDoubleDouble(), &Result.getSemantics()); } } TEST(APFloatTest, isNegative) { APFloat t(APFloat::IEEEsingle(), "0x1p+0"); EXPECT_FALSE(t.isNegative()); t = APFloat(APFloat::IEEEsingle(), "-0x1p+0"); EXPECT_TRUE(t.isNegative()); EXPECT_FALSE(APFloat::getInf(APFloat::IEEEsingle(), false).isNegative()); EXPECT_TRUE(APFloat::getInf(APFloat::IEEEsingle(), true).isNegative()); EXPECT_FALSE(APFloat::getZero(APFloat::IEEEsingle(), false).isNegative()); EXPECT_TRUE(APFloat::getZero(APFloat::IEEEsingle(), true).isNegative()); EXPECT_FALSE(APFloat::getNaN(APFloat::IEEEsingle(), false).isNegative()); EXPECT_TRUE(APFloat::getNaN(APFloat::IEEEsingle(), true).isNegative()); EXPECT_FALSE(APFloat::getSNaN(APFloat::IEEEsingle(), false).isNegative()); EXPECT_TRUE(APFloat::getSNaN(APFloat::IEEEsingle(), true).isNegative()); } TEST(APFloatTest, isNormal) { APFloat t(APFloat::IEEEsingle(), "0x1p+0"); EXPECT_TRUE(t.isNormal()); EXPECT_FALSE(APFloat::getInf(APFloat::IEEEsingle(), false).isNormal()); EXPECT_FALSE(APFloat::getZero(APFloat::IEEEsingle(), false).isNormal()); EXPECT_FALSE(APFloat::getNaN(APFloat::IEEEsingle(), false).isNormal()); EXPECT_FALSE(APFloat::getSNaN(APFloat::IEEEsingle(), false).isNormal()); EXPECT_FALSE(APFloat(APFloat::IEEEsingle(), "0x1p-149").isNormal()); } TEST(APFloatTest, isFinite) { APFloat t(APFloat::IEEEsingle(), "0x1p+0"); EXPECT_TRUE(t.isFinite()); EXPECT_FALSE(APFloat::getInf(APFloat::IEEEsingle(), false).isFinite()); EXPECT_TRUE(APFloat::getZero(APFloat::IEEEsingle(), false).isFinite()); EXPECT_FALSE(APFloat::getNaN(APFloat::IEEEsingle(), false).isFinite()); EXPECT_FALSE(APFloat::getSNaN(APFloat::IEEEsingle(), false).isFinite()); EXPECT_TRUE(APFloat(APFloat::IEEEsingle(), "0x1p-149").isFinite()); } TEST(APFloatTest, isInfinity) { APFloat t(APFloat::IEEEsingle(), "0x1p+0"); EXPECT_FALSE(t.isInfinity()); EXPECT_TRUE(APFloat::getInf(APFloat::IEEEsingle(), false).isInfinity()); EXPECT_FALSE(APFloat::getZero(APFloat::IEEEsingle(), false).isInfinity()); EXPECT_FALSE(APFloat::getNaN(APFloat::IEEEsingle(), false).isInfinity()); EXPECT_FALSE(APFloat::getSNaN(APFloat::IEEEsingle(), false).isInfinity()); EXPECT_FALSE(APFloat(APFloat::IEEEsingle(), "0x1p-149").isInfinity()); } TEST(APFloatTest, isNaN) { APFloat t(APFloat::IEEEsingle(), "0x1p+0"); EXPECT_FALSE(t.isNaN()); EXPECT_FALSE(APFloat::getInf(APFloat::IEEEsingle(), false).isNaN()); EXPECT_FALSE(APFloat::getZero(APFloat::IEEEsingle(), false).isNaN()); EXPECT_TRUE(APFloat::getNaN(APFloat::IEEEsingle(), false).isNaN()); EXPECT_TRUE(APFloat::getSNaN(APFloat::IEEEsingle(), false).isNaN()); EXPECT_FALSE(APFloat(APFloat::IEEEsingle(), "0x1p-149").isNaN()); } TEST(APFloatTest, isFiniteNonZero) { // Test positive/negative normal value. EXPECT_TRUE(APFloat(APFloat::IEEEsingle(), "0x1p+0").isFiniteNonZero()); EXPECT_TRUE(APFloat(APFloat::IEEEsingle(), "-0x1p+0").isFiniteNonZero()); // Test positive/negative denormal value. EXPECT_TRUE(APFloat(APFloat::IEEEsingle(), "0x1p-149").isFiniteNonZero()); EXPECT_TRUE(APFloat(APFloat::IEEEsingle(), "-0x1p-149").isFiniteNonZero()); // Test +/- Infinity. EXPECT_FALSE(APFloat::getInf(APFloat::IEEEsingle(), false).isFiniteNonZero()); EXPECT_FALSE(APFloat::getInf(APFloat::IEEEsingle(), true).isFiniteNonZero()); // Test +/- Zero. EXPECT_FALSE(APFloat::getZero(APFloat::IEEEsingle(), false).isFiniteNonZero()); EXPECT_FALSE(APFloat::getZero(APFloat::IEEEsingle(), true).isFiniteNonZero()); // Test +/- qNaN. +/- dont mean anything with qNaN but paranoia can't hurt in // this instance. EXPECT_FALSE(APFloat::getNaN(APFloat::IEEEsingle(), false).isFiniteNonZero()); EXPECT_FALSE(APFloat::getNaN(APFloat::IEEEsingle(), true).isFiniteNonZero()); // Test +/- sNaN. +/- dont mean anything with sNaN but paranoia can't hurt in // this instance. EXPECT_FALSE(APFloat::getSNaN(APFloat::IEEEsingle(), false).isFiniteNonZero()); EXPECT_FALSE(APFloat::getSNaN(APFloat::IEEEsingle(), true).isFiniteNonZero()); } TEST(APFloatTest, add) { // Test Special Cases against each other and normal values. // TODOS/NOTES: // 1. Since we perform only default exception handling all operations with // signaling NaNs should have a result that is a quiet NaN. Currently they // return sNaN. APFloat PInf = APFloat::getInf(APFloat::IEEEsingle(), false); APFloat MInf = APFloat::getInf(APFloat::IEEEsingle(), true); APFloat PZero = APFloat::getZero(APFloat::IEEEsingle(), false); APFloat MZero = APFloat::getZero(APFloat::IEEEsingle(), true); APFloat QNaN = APFloat::getNaN(APFloat::IEEEsingle(), false); APFloat SNaN = APFloat::getSNaN(APFloat::IEEEsingle(), false); APFloat PNormalValue = APFloat(APFloat::IEEEsingle(), "0x1p+0"); APFloat MNormalValue = APFloat(APFloat::IEEEsingle(), "-0x1p+0"); APFloat PLargestValue = APFloat::getLargest(APFloat::IEEEsingle(), false); APFloat MLargestValue = APFloat::getLargest(APFloat::IEEEsingle(), true); APFloat PSmallestValue = APFloat::getSmallest(APFloat::IEEEsingle(), false); APFloat MSmallestValue = APFloat::getSmallest(APFloat::IEEEsingle(), true); APFloat PSmallestNormalized = APFloat::getSmallestNormalized(APFloat::IEEEsingle(), false); APFloat MSmallestNormalized = APFloat::getSmallestNormalized(APFloat::IEEEsingle(), true); const int OverflowStatus = APFloat::opOverflow | APFloat::opInexact; const unsigned NumTests = 169; struct { APFloat x; APFloat y; const char *result; int status; int category; } SpecialCaseTests[NumTests] = { { PInf, PInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, MInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { PInf, PZero, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, MZero, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { PInf, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PInf, PNormalValue, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, MNormalValue, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, PLargestValue, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, MLargestValue, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, PSmallestValue, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, MSmallestValue, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, PSmallestNormalized, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, MSmallestNormalized, "inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, PInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { MInf, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, PZero, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, MZero, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { MInf, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { MInf, PNormalValue, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, MNormalValue, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, PLargestValue, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, MLargestValue, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, PSmallestValue, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, MSmallestValue, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, PSmallestNormalized, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, MSmallestNormalized, "-inf", APFloat::opOK, APFloat::fcInfinity }, { PZero, PInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { PZero, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { PZero, PZero, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PZero, MZero, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PZero, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { PZero, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PZero, PNormalValue, "0x1p+0", APFloat::opOK, APFloat::fcNormal }, { PZero, MNormalValue, "-0x1p+0", APFloat::opOK, APFloat::fcNormal }, { PZero, PLargestValue, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { PZero, MLargestValue, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { PZero, PSmallestValue, "0x1p-149", APFloat::opOK, APFloat::fcNormal }, { PZero, MSmallestValue, "-0x1p-149", APFloat::opOK, APFloat::fcNormal }, { PZero, PSmallestNormalized, "0x1p-126", APFloat::opOK, APFloat::fcNormal }, { PZero, MSmallestNormalized, "-0x1p-126", APFloat::opOK, APFloat::fcNormal }, { MZero, PInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { MZero, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MZero, PZero, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MZero, MZero, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { MZero, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { MZero, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { MZero, PNormalValue, "0x1p+0", APFloat::opOK, APFloat::fcNormal }, { MZero, MNormalValue, "-0x1p+0", APFloat::opOK, APFloat::fcNormal }, { MZero, PLargestValue, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { MZero, MLargestValue, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { MZero, PSmallestValue, "0x1p-149", APFloat::opOK, APFloat::fcNormal }, { MZero, MSmallestValue, "-0x1p-149", APFloat::opOK, APFloat::fcNormal }, { MZero, PSmallestNormalized, "0x1p-126", APFloat::opOK, APFloat::fcNormal }, { MZero, MSmallestNormalized, "-0x1p-126", APFloat::opOK, APFloat::fcNormal }, { QNaN, PInf, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, MInf, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, PZero, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, MZero, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { QNaN, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { QNaN, PNormalValue, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, MNormalValue, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, PLargestValue, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, MLargestValue, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, PSmallestValue, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, MSmallestValue, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, PSmallestNormalized, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, MSmallestNormalized, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { SNaN, PInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, MInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, PZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, MZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, QNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, PNormalValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, MNormalValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, PLargestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, MLargestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, PSmallestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, MSmallestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, PSmallestNormalized, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, MSmallestNormalized, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PNormalValue, PInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { PNormalValue, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { PNormalValue, PZero, "0x1p+0", APFloat::opOK, APFloat::fcNormal }, { PNormalValue, MZero, "0x1p+0", APFloat::opOK, APFloat::fcNormal }, { PNormalValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { PNormalValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PNormalValue, PNormalValue, "0x1p+1", APFloat::opOK, APFloat::fcNormal }, { PNormalValue, MNormalValue, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PNormalValue, PLargestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { PNormalValue, MLargestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { PNormalValue, PSmallestValue, "0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { PNormalValue, MSmallestValue, "0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { PNormalValue, PSmallestNormalized, "0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { PNormalValue, MSmallestNormalized, "0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { MNormalValue, PInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { MNormalValue, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MNormalValue, PZero, "-0x1p+0", APFloat::opOK, APFloat::fcNormal }, { MNormalValue, MZero, "-0x1p+0", APFloat::opOK, APFloat::fcNormal }, { MNormalValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { MNormalValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { MNormalValue, PNormalValue, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MNormalValue, MNormalValue, "-0x1p+1", APFloat::opOK, APFloat::fcNormal }, { MNormalValue, PLargestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { MNormalValue, MLargestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { MNormalValue, PSmallestValue, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { MNormalValue, MSmallestValue, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { MNormalValue, PSmallestNormalized, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { MNormalValue, MSmallestNormalized, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { PLargestValue, PInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { PLargestValue, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { PLargestValue, PZero, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { PLargestValue, MZero, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { PLargestValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { PLargestValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PLargestValue, PNormalValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { PLargestValue, MNormalValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { PLargestValue, PLargestValue, "inf", OverflowStatus, APFloat::fcInfinity }, { PLargestValue, MLargestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PLargestValue, PSmallestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { PLargestValue, MSmallestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { PLargestValue, PSmallestNormalized, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { PLargestValue, MSmallestNormalized, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { MLargestValue, PInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { MLargestValue, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MLargestValue, PZero, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { MLargestValue, MZero, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { MLargestValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { MLargestValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { MLargestValue, PNormalValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { MLargestValue, MNormalValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { MLargestValue, PLargestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MLargestValue, MLargestValue, "-inf", OverflowStatus, APFloat::fcInfinity }, { MLargestValue, PSmallestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { MLargestValue, MSmallestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { MLargestValue, PSmallestNormalized, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { MLargestValue, MSmallestNormalized, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { PSmallestValue, PInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { PSmallestValue, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { PSmallestValue, PZero, "0x1p-149", APFloat::opOK, APFloat::fcNormal }, { PSmallestValue, MZero, "0x1p-149", APFloat::opOK, APFloat::fcNormal }, { PSmallestValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { PSmallestValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PSmallestValue, PNormalValue, "0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { PSmallestValue, MNormalValue, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { PSmallestValue, PLargestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { PSmallestValue, MLargestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { PSmallestValue, PSmallestValue, "0x1p-148", APFloat::opOK, APFloat::fcNormal }, { PSmallestValue, MSmallestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PSmallestValue, PSmallestNormalized, "0x1.000002p-126", APFloat::opOK, APFloat::fcNormal }, { PSmallestValue, MSmallestNormalized, "-0x1.fffffcp-127", APFloat::opOK, APFloat::fcNormal }, { MSmallestValue, PInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { MSmallestValue, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MSmallestValue, PZero, "-0x1p-149", APFloat::opOK, APFloat::fcNormal }, { MSmallestValue, MZero, "-0x1p-149", APFloat::opOK, APFloat::fcNormal }, { MSmallestValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { MSmallestValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { MSmallestValue, PNormalValue, "0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { MSmallestValue, MNormalValue, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { MSmallestValue, PLargestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { MSmallestValue, MLargestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { MSmallestValue, PSmallestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MSmallestValue, MSmallestValue, "-0x1p-148", APFloat::opOK, APFloat::fcNormal }, { MSmallestValue, PSmallestNormalized, "0x1.fffffcp-127", APFloat::opOK, APFloat::fcNormal }, { MSmallestValue, MSmallestNormalized, "-0x1.000002p-126", APFloat::opOK, APFloat::fcNormal }, { PSmallestNormalized, PInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { PSmallestNormalized, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { PSmallestNormalized, PZero, "0x1p-126", APFloat::opOK, APFloat::fcNormal }, { PSmallestNormalized, MZero, "0x1p-126", APFloat::opOK, APFloat::fcNormal }, { PSmallestNormalized, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { PSmallestNormalized, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PSmallestNormalized, PNormalValue, "0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { PSmallestNormalized, MNormalValue, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { PSmallestNormalized, PLargestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { PSmallestNormalized, MLargestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { PSmallestNormalized, PSmallestValue, "0x1.000002p-126", APFloat::opOK, APFloat::fcNormal }, { PSmallestNormalized, MSmallestValue, "0x1.fffffcp-127", APFloat::opOK, APFloat::fcNormal }, { PSmallestNormalized, PSmallestNormalized, "0x1p-125", APFloat::opOK, APFloat::fcNormal }, { PSmallestNormalized, MSmallestNormalized, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MSmallestNormalized, PInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { MSmallestNormalized, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MSmallestNormalized, PZero, "-0x1p-126", APFloat::opOK, APFloat::fcNormal }, { MSmallestNormalized, MZero, "-0x1p-126", APFloat::opOK, APFloat::fcNormal }, { MSmallestNormalized, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { MSmallestNormalized, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { MSmallestNormalized, PNormalValue, "0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { MSmallestNormalized, MNormalValue, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { MSmallestNormalized, PLargestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { MSmallestNormalized, MLargestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { MSmallestNormalized, PSmallestValue, "-0x1.fffffcp-127", APFloat::opOK, APFloat::fcNormal }, { MSmallestNormalized, MSmallestValue, "-0x1.000002p-126", APFloat::opOK, APFloat::fcNormal }, { MSmallestNormalized, PSmallestNormalized, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MSmallestNormalized, MSmallestNormalized, "-0x1p-125", APFloat::opOK, APFloat::fcNormal } }; for (size_t i = 0; i < NumTests; ++i) { APFloat x(SpecialCaseTests[i].x); APFloat y(SpecialCaseTests[i].y); APFloat::opStatus status = x.add(y, APFloat::rmNearestTiesToEven); APFloat result(APFloat::IEEEsingle(), SpecialCaseTests[i].result); EXPECT_TRUE(result.bitwiseIsEqual(x)); EXPECT_TRUE((int)status == SpecialCaseTests[i].status); EXPECT_TRUE((int)x.getCategory() == SpecialCaseTests[i].category); } } TEST(APFloatTest, subtract) { // Test Special Cases against each other and normal values. // TODOS/NOTES: // 1. Since we perform only default exception handling all operations with // signaling NaNs should have a result that is a quiet NaN. Currently they // return sNaN. APFloat PInf = APFloat::getInf(APFloat::IEEEsingle(), false); APFloat MInf = APFloat::getInf(APFloat::IEEEsingle(), true); APFloat PZero = APFloat::getZero(APFloat::IEEEsingle(), false); APFloat MZero = APFloat::getZero(APFloat::IEEEsingle(), true); APFloat QNaN = APFloat::getNaN(APFloat::IEEEsingle(), false); APFloat SNaN = APFloat::getSNaN(APFloat::IEEEsingle(), false); APFloat PNormalValue = APFloat(APFloat::IEEEsingle(), "0x1p+0"); APFloat MNormalValue = APFloat(APFloat::IEEEsingle(), "-0x1p+0"); APFloat PLargestValue = APFloat::getLargest(APFloat::IEEEsingle(), false); APFloat MLargestValue = APFloat::getLargest(APFloat::IEEEsingle(), true); APFloat PSmallestValue = APFloat::getSmallest(APFloat::IEEEsingle(), false); APFloat MSmallestValue = APFloat::getSmallest(APFloat::IEEEsingle(), true); APFloat PSmallestNormalized = APFloat::getSmallestNormalized(APFloat::IEEEsingle(), false); APFloat MSmallestNormalized = APFloat::getSmallestNormalized(APFloat::IEEEsingle(), true); const int OverflowStatus = APFloat::opOverflow | APFloat::opInexact; const unsigned NumTests = 169; struct { APFloat x; APFloat y; const char *result; int status; int category; } SpecialCaseTests[NumTests] = { { PInf, PInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { PInf, MInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, PZero, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, MZero, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, QNaN, "-nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { PInf, SNaN, "-nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PInf, PNormalValue, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, MNormalValue, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, PLargestValue, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, MLargestValue, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, PSmallestValue, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, MSmallestValue, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, PSmallestNormalized, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, MSmallestNormalized, "inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, MInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { MInf, PZero, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, MZero, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, QNaN, "-nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { MInf, SNaN, "-nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { MInf, PNormalValue, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, MNormalValue, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, PLargestValue, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, MLargestValue, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, PSmallestValue, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, MSmallestValue, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, PSmallestNormalized, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, MSmallestNormalized, "-inf", APFloat::opOK, APFloat::fcInfinity }, { PZero, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { PZero, MInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { PZero, PZero, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PZero, MZero, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PZero, QNaN, "-nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { PZero, SNaN, "-nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PZero, PNormalValue, "-0x1p+0", APFloat::opOK, APFloat::fcNormal }, { PZero, MNormalValue, "0x1p+0", APFloat::opOK, APFloat::fcNormal }, { PZero, PLargestValue, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { PZero, MLargestValue, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { PZero, PSmallestValue, "-0x1p-149", APFloat::opOK, APFloat::fcNormal }, { PZero, MSmallestValue, "0x1p-149", APFloat::opOK, APFloat::fcNormal }, { PZero, PSmallestNormalized, "-0x1p-126", APFloat::opOK, APFloat::fcNormal }, { PZero, MSmallestNormalized, "0x1p-126", APFloat::opOK, APFloat::fcNormal }, { MZero, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MZero, MInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { MZero, PZero, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { MZero, MZero, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MZero, QNaN, "-nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { MZero, SNaN, "-nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { MZero, PNormalValue, "-0x1p+0", APFloat::opOK, APFloat::fcNormal }, { MZero, MNormalValue, "0x1p+0", APFloat::opOK, APFloat::fcNormal }, { MZero, PLargestValue, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { MZero, MLargestValue, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { MZero, PSmallestValue, "-0x1p-149", APFloat::opOK, APFloat::fcNormal }, { MZero, MSmallestValue, "0x1p-149", APFloat::opOK, APFloat::fcNormal }, { MZero, PSmallestNormalized, "-0x1p-126", APFloat::opOK, APFloat::fcNormal }, { MZero, MSmallestNormalized, "0x1p-126", APFloat::opOK, APFloat::fcNormal }, { QNaN, PInf, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, MInf, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, PZero, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, MZero, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { QNaN, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { QNaN, PNormalValue, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, MNormalValue, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, PLargestValue, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, MLargestValue, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, PSmallestValue, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, MSmallestValue, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, PSmallestNormalized, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, MSmallestNormalized, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { SNaN, PInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, MInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, PZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, MZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, QNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, PNormalValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, MNormalValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, PLargestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, MLargestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, PSmallestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, MSmallestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, PSmallestNormalized, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, MSmallestNormalized, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PNormalValue, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { PNormalValue, MInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { PNormalValue, PZero, "0x1p+0", APFloat::opOK, APFloat::fcNormal }, { PNormalValue, MZero, "0x1p+0", APFloat::opOK, APFloat::fcNormal }, { PNormalValue, QNaN, "-nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { PNormalValue, SNaN, "-nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PNormalValue, PNormalValue, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PNormalValue, MNormalValue, "0x1p+1", APFloat::opOK, APFloat::fcNormal }, { PNormalValue, PLargestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { PNormalValue, MLargestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { PNormalValue, PSmallestValue, "0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { PNormalValue, MSmallestValue, "0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { PNormalValue, PSmallestNormalized, "0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { PNormalValue, MSmallestNormalized, "0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { MNormalValue, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MNormalValue, MInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { MNormalValue, PZero, "-0x1p+0", APFloat::opOK, APFloat::fcNormal }, { MNormalValue, MZero, "-0x1p+0", APFloat::opOK, APFloat::fcNormal }, { MNormalValue, QNaN, "-nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { MNormalValue, SNaN, "-nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { MNormalValue, PNormalValue, "-0x1p+1", APFloat::opOK, APFloat::fcNormal }, { MNormalValue, MNormalValue, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MNormalValue, PLargestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { MNormalValue, MLargestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { MNormalValue, PSmallestValue, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { MNormalValue, MSmallestValue, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { MNormalValue, PSmallestNormalized, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { MNormalValue, MSmallestNormalized, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { PLargestValue, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { PLargestValue, MInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { PLargestValue, PZero, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { PLargestValue, MZero, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { PLargestValue, QNaN, "-nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { PLargestValue, SNaN, "-nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PLargestValue, PNormalValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { PLargestValue, MNormalValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { PLargestValue, PLargestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PLargestValue, MLargestValue, "inf", OverflowStatus, APFloat::fcInfinity }, { PLargestValue, PSmallestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { PLargestValue, MSmallestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { PLargestValue, PSmallestNormalized, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { PLargestValue, MSmallestNormalized, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { MLargestValue, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MLargestValue, MInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { MLargestValue, PZero, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { MLargestValue, MZero, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { MLargestValue, QNaN, "-nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { MLargestValue, SNaN, "-nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { MLargestValue, PNormalValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { MLargestValue, MNormalValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { MLargestValue, PLargestValue, "-inf", OverflowStatus, APFloat::fcInfinity }, { MLargestValue, MLargestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MLargestValue, PSmallestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { MLargestValue, MSmallestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { MLargestValue, PSmallestNormalized, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { MLargestValue, MSmallestNormalized, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { PSmallestValue, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { PSmallestValue, MInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { PSmallestValue, PZero, "0x1p-149", APFloat::opOK, APFloat::fcNormal }, { PSmallestValue, MZero, "0x1p-149", APFloat::opOK, APFloat::fcNormal }, { PSmallestValue, QNaN, "-nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { PSmallestValue, SNaN, "-nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PSmallestValue, PNormalValue, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { PSmallestValue, MNormalValue, "0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { PSmallestValue, PLargestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { PSmallestValue, MLargestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { PSmallestValue, PSmallestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PSmallestValue, MSmallestValue, "0x1p-148", APFloat::opOK, APFloat::fcNormal }, { PSmallestValue, PSmallestNormalized, "-0x1.fffffcp-127", APFloat::opOK, APFloat::fcNormal }, { PSmallestValue, MSmallestNormalized, "0x1.000002p-126", APFloat::opOK, APFloat::fcNormal }, { MSmallestValue, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MSmallestValue, MInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { MSmallestValue, PZero, "-0x1p-149", APFloat::opOK, APFloat::fcNormal }, { MSmallestValue, MZero, "-0x1p-149", APFloat::opOK, APFloat::fcNormal }, { MSmallestValue, QNaN, "-nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { MSmallestValue, SNaN, "-nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { MSmallestValue, PNormalValue, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { MSmallestValue, MNormalValue, "0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { MSmallestValue, PLargestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { MSmallestValue, MLargestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { MSmallestValue, PSmallestValue, "-0x1p-148", APFloat::opOK, APFloat::fcNormal }, { MSmallestValue, MSmallestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MSmallestValue, PSmallestNormalized, "-0x1.000002p-126", APFloat::opOK, APFloat::fcNormal }, { MSmallestValue, MSmallestNormalized, "0x1.fffffcp-127", APFloat::opOK, APFloat::fcNormal }, { PSmallestNormalized, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { PSmallestNormalized, MInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { PSmallestNormalized, PZero, "0x1p-126", APFloat::opOK, APFloat::fcNormal }, { PSmallestNormalized, MZero, "0x1p-126", APFloat::opOK, APFloat::fcNormal }, { PSmallestNormalized, QNaN, "-nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { PSmallestNormalized, SNaN, "-nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PSmallestNormalized, PNormalValue, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { PSmallestNormalized, MNormalValue, "0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { PSmallestNormalized, PLargestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { PSmallestNormalized, MLargestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { PSmallestNormalized, PSmallestValue, "0x1.fffffcp-127", APFloat::opOK, APFloat::fcNormal }, { PSmallestNormalized, MSmallestValue, "0x1.000002p-126", APFloat::opOK, APFloat::fcNormal }, { PSmallestNormalized, PSmallestNormalized, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PSmallestNormalized, MSmallestNormalized, "0x1p-125", APFloat::opOK, APFloat::fcNormal }, { MSmallestNormalized, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MSmallestNormalized, MInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { MSmallestNormalized, PZero, "-0x1p-126", APFloat::opOK, APFloat::fcNormal }, { MSmallestNormalized, MZero, "-0x1p-126", APFloat::opOK, APFloat::fcNormal }, { MSmallestNormalized, QNaN, "-nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { MSmallestNormalized, SNaN, "-nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { MSmallestNormalized, PNormalValue, "-0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { MSmallestNormalized, MNormalValue, "0x1p+0", APFloat::opInexact, APFloat::fcNormal }, { MSmallestNormalized, PLargestValue, "-0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { MSmallestNormalized, MLargestValue, "0x1.fffffep+127", APFloat::opInexact, APFloat::fcNormal }, { MSmallestNormalized, PSmallestValue, "-0x1.000002p-126", APFloat::opOK, APFloat::fcNormal }, { MSmallestNormalized, MSmallestValue, "-0x1.fffffcp-127", APFloat::opOK, APFloat::fcNormal }, { MSmallestNormalized, PSmallestNormalized, "-0x1p-125", APFloat::opOK, APFloat::fcNormal }, { MSmallestNormalized, MSmallestNormalized, "0x0p+0", APFloat::opOK, APFloat::fcZero } }; for (size_t i = 0; i < NumTests; ++i) { APFloat x(SpecialCaseTests[i].x); APFloat y(SpecialCaseTests[i].y); APFloat::opStatus status = x.subtract(y, APFloat::rmNearestTiesToEven); APFloat result(APFloat::IEEEsingle(), SpecialCaseTests[i].result); EXPECT_TRUE(result.bitwiseIsEqual(x)); EXPECT_TRUE((int)status == SpecialCaseTests[i].status); EXPECT_TRUE((int)x.getCategory() == SpecialCaseTests[i].category); } } TEST(APFloatTest, multiply) { // Test Special Cases against each other and normal values. // TODOS/NOTES: // 1. Since we perform only default exception handling all operations with // signaling NaNs should have a result that is a quiet NaN. Currently they // return sNaN. APFloat PInf = APFloat::getInf(APFloat::IEEEsingle(), false); APFloat MInf = APFloat::getInf(APFloat::IEEEsingle(), true); APFloat PZero = APFloat::getZero(APFloat::IEEEsingle(), false); APFloat MZero = APFloat::getZero(APFloat::IEEEsingle(), true); APFloat QNaN = APFloat::getNaN(APFloat::IEEEsingle(), false); APFloat SNaN = APFloat::getSNaN(APFloat::IEEEsingle(), false); APFloat PNormalValue = APFloat(APFloat::IEEEsingle(), "0x1p+0"); APFloat MNormalValue = APFloat(APFloat::IEEEsingle(), "-0x1p+0"); APFloat PLargestValue = APFloat::getLargest(APFloat::IEEEsingle(), false); APFloat MLargestValue = APFloat::getLargest(APFloat::IEEEsingle(), true); APFloat PSmallestValue = APFloat::getSmallest(APFloat::IEEEsingle(), false); APFloat MSmallestValue = APFloat::getSmallest(APFloat::IEEEsingle(), true); APFloat PSmallestNormalized = APFloat::getSmallestNormalized(APFloat::IEEEsingle(), false); APFloat MSmallestNormalized = APFloat::getSmallestNormalized(APFloat::IEEEsingle(), true); APFloat MaxQuad(APFloat::IEEEquad(), "0x1.ffffffffffffffffffffffffffffp+16383"); APFloat MinQuad(APFloat::IEEEquad(), "0x0.0000000000000000000000000001p-16382"); APFloat NMinQuad(APFloat::IEEEquad(), "-0x0.0000000000000000000000000001p-16382"); const int OverflowStatus = APFloat::opOverflow | APFloat::opInexact; const int UnderflowStatus = APFloat::opUnderflow | APFloat::opInexact; struct { APFloat x; APFloat y; const char *result; int status; int category; APFloat::roundingMode roundingMode = APFloat::rmNearestTiesToEven; } SpecialCaseTests[] = { { PInf, PInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, PZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { PInf, MZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { PInf, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { PInf, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PInf, PNormalValue, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, MNormalValue, "-inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, PLargestValue, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, MLargestValue, "-inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, PSmallestValue, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, MSmallestValue, "-inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, PSmallestNormalized, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, MSmallestNormalized, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, MInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, PZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { MInf, MZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { MInf, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { MInf, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { MInf, PNormalValue, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, MNormalValue, "inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, PLargestValue, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, MLargestValue, "inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, PSmallestValue, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, MSmallestValue, "inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, PSmallestNormalized, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, MSmallestNormalized, "inf", APFloat::opOK, APFloat::fcInfinity }, { PZero, PInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { PZero, MInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { PZero, PZero, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PZero, MZero, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { PZero, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { PZero, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PZero, PNormalValue, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PZero, MNormalValue, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { PZero, PLargestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PZero, MLargestValue, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { PZero, PSmallestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PZero, MSmallestValue, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { PZero, PSmallestNormalized, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PZero, MSmallestNormalized, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { MZero, PInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { MZero, MInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { MZero, PZero, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { MZero, MZero, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MZero, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { MZero, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { MZero, PNormalValue, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { MZero, MNormalValue, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MZero, PLargestValue, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { MZero, MLargestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MZero, PSmallestValue, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { MZero, MSmallestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MZero, PSmallestNormalized, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { MZero, MSmallestNormalized, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { QNaN, PInf, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, MInf, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, PZero, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, MZero, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { QNaN, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { QNaN, PNormalValue, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, MNormalValue, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, PLargestValue, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, MLargestValue, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, PSmallestValue, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, MSmallestValue, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, PSmallestNormalized, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, MSmallestNormalized, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { SNaN, PInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, MInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, PZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, MZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, QNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, PNormalValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, MNormalValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, PLargestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, MLargestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, PSmallestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, MSmallestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, PSmallestNormalized, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, MSmallestNormalized, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PNormalValue, PInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { PNormalValue, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { PNormalValue, PZero, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PNormalValue, MZero, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { PNormalValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { PNormalValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PNormalValue, PNormalValue, "0x1p+0", APFloat::opOK, APFloat::fcNormal }, { PNormalValue, MNormalValue, "-0x1p+0", APFloat::opOK, APFloat::fcNormal }, { PNormalValue, PLargestValue, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { PNormalValue, MLargestValue, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { PNormalValue, PSmallestValue, "0x1p-149", APFloat::opOK, APFloat::fcNormal }, { PNormalValue, MSmallestValue, "-0x1p-149", APFloat::opOK, APFloat::fcNormal }, { PNormalValue, PSmallestNormalized, "0x1p-126", APFloat::opOK, APFloat::fcNormal }, { PNormalValue, MSmallestNormalized, "-0x1p-126", APFloat::opOK, APFloat::fcNormal }, { MNormalValue, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MNormalValue, MInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { MNormalValue, PZero, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { MNormalValue, MZero, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MNormalValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { MNormalValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { MNormalValue, PNormalValue, "-0x1p+0", APFloat::opOK, APFloat::fcNormal }, { MNormalValue, MNormalValue, "0x1p+0", APFloat::opOK, APFloat::fcNormal }, { MNormalValue, PLargestValue, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { MNormalValue, MLargestValue, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { MNormalValue, PSmallestValue, "-0x1p-149", APFloat::opOK, APFloat::fcNormal }, { MNormalValue, MSmallestValue, "0x1p-149", APFloat::opOK, APFloat::fcNormal }, { MNormalValue, PSmallestNormalized, "-0x1p-126", APFloat::opOK, APFloat::fcNormal }, { MNormalValue, MSmallestNormalized, "0x1p-126", APFloat::opOK, APFloat::fcNormal }, { PLargestValue, PInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { PLargestValue, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { PLargestValue, PZero, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PLargestValue, MZero, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { PLargestValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { PLargestValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PLargestValue, PNormalValue, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { PLargestValue, MNormalValue, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { PLargestValue, PLargestValue, "inf", OverflowStatus, APFloat::fcInfinity }, { PLargestValue, MLargestValue, "-inf", OverflowStatus, APFloat::fcInfinity }, { PLargestValue, PSmallestValue, "0x1.fffffep-22", APFloat::opOK, APFloat::fcNormal }, { PLargestValue, MSmallestValue, "-0x1.fffffep-22", APFloat::opOK, APFloat::fcNormal }, { PLargestValue, PSmallestNormalized, "0x1.fffffep+1", APFloat::opOK, APFloat::fcNormal }, { PLargestValue, MSmallestNormalized, "-0x1.fffffep+1", APFloat::opOK, APFloat::fcNormal }, { MLargestValue, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MLargestValue, MInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { MLargestValue, PZero, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { MLargestValue, MZero, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MLargestValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { MLargestValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { MLargestValue, PNormalValue, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { MLargestValue, MNormalValue, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { MLargestValue, PLargestValue, "-inf", OverflowStatus, APFloat::fcInfinity }, { MLargestValue, MLargestValue, "inf", OverflowStatus, APFloat::fcInfinity }, { MLargestValue, PSmallestValue, "-0x1.fffffep-22", APFloat::opOK, APFloat::fcNormal }, { MLargestValue, MSmallestValue, "0x1.fffffep-22", APFloat::opOK, APFloat::fcNormal }, { MLargestValue, PSmallestNormalized, "-0x1.fffffep+1", APFloat::opOK, APFloat::fcNormal }, { MLargestValue, MSmallestNormalized, "0x1.fffffep+1", APFloat::opOK, APFloat::fcNormal }, { PSmallestValue, PInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { PSmallestValue, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { PSmallestValue, PZero, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PSmallestValue, MZero, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { PSmallestValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { PSmallestValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PSmallestValue, PNormalValue, "0x1p-149", APFloat::opOK, APFloat::fcNormal }, { PSmallestValue, MNormalValue, "-0x1p-149", APFloat::opOK, APFloat::fcNormal }, { PSmallestValue, PLargestValue, "0x1.fffffep-22", APFloat::opOK, APFloat::fcNormal }, { PSmallestValue, MLargestValue, "-0x1.fffffep-22", APFloat::opOK, APFloat::fcNormal }, { PSmallestValue, PSmallestValue, "0x0p+0", UnderflowStatus, APFloat::fcZero }, { PSmallestValue, MSmallestValue, "-0x0p+0", UnderflowStatus, APFloat::fcZero }, { PSmallestValue, PSmallestNormalized, "0x0p+0", UnderflowStatus, APFloat::fcZero }, { PSmallestValue, MSmallestNormalized, "-0x0p+0", UnderflowStatus, APFloat::fcZero }, { MSmallestValue, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MSmallestValue, MInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { MSmallestValue, PZero, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { MSmallestValue, MZero, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MSmallestValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { MSmallestValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { MSmallestValue, PNormalValue, "-0x1p-149", APFloat::opOK, APFloat::fcNormal }, { MSmallestValue, MNormalValue, "0x1p-149", APFloat::opOK, APFloat::fcNormal }, { MSmallestValue, PLargestValue, "-0x1.fffffep-22", APFloat::opOK, APFloat::fcNormal }, { MSmallestValue, MLargestValue, "0x1.fffffep-22", APFloat::opOK, APFloat::fcNormal }, { MSmallestValue, PSmallestValue, "-0x0p+0", UnderflowStatus, APFloat::fcZero }, { MSmallestValue, MSmallestValue, "0x0p+0", UnderflowStatus, APFloat::fcZero }, { MSmallestValue, PSmallestNormalized, "-0x0p+0", UnderflowStatus, APFloat::fcZero }, { MSmallestValue, MSmallestNormalized, "0x0p+0", UnderflowStatus, APFloat::fcZero }, { PSmallestNormalized, PInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { PSmallestNormalized, MInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { PSmallestNormalized, PZero, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PSmallestNormalized, MZero, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { PSmallestNormalized, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { PSmallestNormalized, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PSmallestNormalized, PNormalValue, "0x1p-126", APFloat::opOK, APFloat::fcNormal }, { PSmallestNormalized, MNormalValue, "-0x1p-126", APFloat::opOK, APFloat::fcNormal }, { PSmallestNormalized, PLargestValue, "0x1.fffffep+1", APFloat::opOK, APFloat::fcNormal }, { PSmallestNormalized, MLargestValue, "-0x1.fffffep+1", APFloat::opOK, APFloat::fcNormal }, { PSmallestNormalized, PSmallestValue, "0x0p+0", UnderflowStatus, APFloat::fcZero }, { PSmallestNormalized, MSmallestValue, "-0x0p+0", UnderflowStatus, APFloat::fcZero }, { PSmallestNormalized, PSmallestNormalized, "0x0p+0", UnderflowStatus, APFloat::fcZero }, { PSmallestNormalized, MSmallestNormalized, "-0x0p+0", UnderflowStatus, APFloat::fcZero }, { MSmallestNormalized, PInf, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MSmallestNormalized, MInf, "inf", APFloat::opOK, APFloat::fcInfinity }, { MSmallestNormalized, PZero, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { MSmallestNormalized, MZero, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MSmallestNormalized, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { MSmallestNormalized, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { MSmallestNormalized, PNormalValue, "-0x1p-126", APFloat::opOK, APFloat::fcNormal }, { MSmallestNormalized, MNormalValue, "0x1p-126", APFloat::opOK, APFloat::fcNormal }, { MSmallestNormalized, PLargestValue, "-0x1.fffffep+1", APFloat::opOK, APFloat::fcNormal }, { MSmallestNormalized, MLargestValue, "0x1.fffffep+1", APFloat::opOK, APFloat::fcNormal }, { MSmallestNormalized, PSmallestValue, "-0x0p+0", UnderflowStatus, APFloat::fcZero }, { MSmallestNormalized, MSmallestValue, "0x0p+0", UnderflowStatus, APFloat::fcZero }, { MSmallestNormalized, PSmallestNormalized, "-0x0p+0", UnderflowStatus, APFloat::fcZero }, { MSmallestNormalized, MSmallestNormalized, "0x0p+0", UnderflowStatus, APFloat::fcZero }, {MaxQuad, MinQuad, "0x1.ffffffffffffffffffffffffffffp-111", APFloat::opOK, APFloat::fcNormal, APFloat::rmNearestTiesToEven}, {MaxQuad, MinQuad, "0x1.ffffffffffffffffffffffffffffp-111", APFloat::opOK, APFloat::fcNormal, APFloat::rmTowardPositive}, {MaxQuad, MinQuad, "0x1.ffffffffffffffffffffffffffffp-111", APFloat::opOK, APFloat::fcNormal, APFloat::rmTowardNegative}, {MaxQuad, MinQuad, "0x1.ffffffffffffffffffffffffffffp-111", APFloat::opOK, APFloat::fcNormal, APFloat::rmTowardZero}, {MaxQuad, MinQuad, "0x1.ffffffffffffffffffffffffffffp-111", APFloat::opOK, APFloat::fcNormal, APFloat::rmNearestTiesToAway}, {MaxQuad, NMinQuad, "-0x1.ffffffffffffffffffffffffffffp-111", APFloat::opOK, APFloat::fcNormal, APFloat::rmNearestTiesToEven}, {MaxQuad, NMinQuad, "-0x1.ffffffffffffffffffffffffffffp-111", APFloat::opOK, APFloat::fcNormal, APFloat::rmTowardPositive}, {MaxQuad, NMinQuad, "-0x1.ffffffffffffffffffffffffffffp-111", APFloat::opOK, APFloat::fcNormal, APFloat::rmTowardNegative}, {MaxQuad, NMinQuad, "-0x1.ffffffffffffffffffffffffffffp-111", APFloat::opOK, APFloat::fcNormal, APFloat::rmTowardZero}, {MaxQuad, NMinQuad, "-0x1.ffffffffffffffffffffffffffffp-111", APFloat::opOK, APFloat::fcNormal, APFloat::rmNearestTiesToAway}, {MaxQuad, MaxQuad, "inf", OverflowStatus, APFloat::fcInfinity, APFloat::rmNearestTiesToEven}, {MaxQuad, MaxQuad, "inf", OverflowStatus, APFloat::fcInfinity, APFloat::rmTowardPositive}, {MaxQuad, MaxQuad, "0x1.ffffffffffffffffffffffffffffp+16383", APFloat::opInexact, APFloat::fcNormal, APFloat::rmTowardNegative}, {MaxQuad, MaxQuad, "0x1.ffffffffffffffffffffffffffffp+16383", APFloat::opInexact, APFloat::fcNormal, APFloat::rmTowardZero}, {MaxQuad, MaxQuad, "inf", OverflowStatus, APFloat::fcInfinity, APFloat::rmNearestTiesToAway}, {MinQuad, MinQuad, "0", UnderflowStatus, APFloat::fcZero, APFloat::rmNearestTiesToEven}, {MinQuad, MinQuad, "0x0.0000000000000000000000000001p-16382", UnderflowStatus, APFloat::fcNormal, APFloat::rmTowardPositive}, {MinQuad, MinQuad, "0", UnderflowStatus, APFloat::fcZero, APFloat::rmTowardNegative}, {MinQuad, MinQuad, "0", UnderflowStatus, APFloat::fcZero, APFloat::rmTowardZero}, {MinQuad, MinQuad, "0", UnderflowStatus, APFloat::fcZero, APFloat::rmNearestTiesToAway}, {MinQuad, NMinQuad, "-0", UnderflowStatus, APFloat::fcZero, APFloat::rmNearestTiesToEven}, {MinQuad, NMinQuad, "-0", UnderflowStatus, APFloat::fcZero, APFloat::rmTowardPositive}, {MinQuad, NMinQuad, "-0x0.0000000000000000000000000001p-16382", UnderflowStatus, APFloat::fcNormal, APFloat::rmTowardNegative}, {MinQuad, NMinQuad, "-0", UnderflowStatus, APFloat::fcZero, APFloat::rmTowardZero}, {MinQuad, NMinQuad, "-0", UnderflowStatus, APFloat::fcZero, APFloat::rmNearestTiesToAway}, }; for (size_t i = 0; i < array_lengthof(SpecialCaseTests); ++i) { APFloat x(SpecialCaseTests[i].x); APFloat y(SpecialCaseTests[i].y); APFloat::opStatus status = x.multiply(y, SpecialCaseTests[i].roundingMode); APFloat result(x.getSemantics(), SpecialCaseTests[i].result); EXPECT_TRUE(result.bitwiseIsEqual(x)); EXPECT_TRUE((int)status == SpecialCaseTests[i].status); EXPECT_TRUE((int)x.getCategory() == SpecialCaseTests[i].category); } } TEST(APFloatTest, divide) { // Test Special Cases against each other and normal values. // TODOS/NOTES: // 1. Since we perform only default exception handling all operations with // signaling NaNs should have a result that is a quiet NaN. Currently they // return sNaN. APFloat PInf = APFloat::getInf(APFloat::IEEEsingle(), false); APFloat MInf = APFloat::getInf(APFloat::IEEEsingle(), true); APFloat PZero = APFloat::getZero(APFloat::IEEEsingle(), false); APFloat MZero = APFloat::getZero(APFloat::IEEEsingle(), true); APFloat QNaN = APFloat::getNaN(APFloat::IEEEsingle(), false); APFloat SNaN = APFloat::getSNaN(APFloat::IEEEsingle(), false); APFloat PNormalValue = APFloat(APFloat::IEEEsingle(), "0x1p+0"); APFloat MNormalValue = APFloat(APFloat::IEEEsingle(), "-0x1p+0"); APFloat PLargestValue = APFloat::getLargest(APFloat::IEEEsingle(), false); APFloat MLargestValue = APFloat::getLargest(APFloat::IEEEsingle(), true); APFloat PSmallestValue = APFloat::getSmallest(APFloat::IEEEsingle(), false); APFloat MSmallestValue = APFloat::getSmallest(APFloat::IEEEsingle(), true); APFloat PSmallestNormalized = APFloat::getSmallestNormalized(APFloat::IEEEsingle(), false); APFloat MSmallestNormalized = APFloat::getSmallestNormalized(APFloat::IEEEsingle(), true); APFloat MaxQuad(APFloat::IEEEquad(), "0x1.ffffffffffffffffffffffffffffp+16383"); APFloat MinQuad(APFloat::IEEEquad(), "0x0.0000000000000000000000000001p-16382"); APFloat NMinQuad(APFloat::IEEEquad(), "-0x0.0000000000000000000000000001p-16382"); const int OverflowStatus = APFloat::opOverflow | APFloat::opInexact; const int UnderflowStatus = APFloat::opUnderflow | APFloat::opInexact; struct { APFloat x; APFloat y; const char *result; int status; int category; APFloat::roundingMode roundingMode = APFloat::rmNearestTiesToEven; } SpecialCaseTests[] = { { PInf, PInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { PInf, MInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { PInf, PZero, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, MZero, "-inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { PInf, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PInf, PNormalValue, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, MNormalValue, "-inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, PLargestValue, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, MLargestValue, "-inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, PSmallestValue, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, MSmallestValue, "-inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, PSmallestNormalized, "inf", APFloat::opOK, APFloat::fcInfinity }, { PInf, MSmallestNormalized, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, PInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { MInf, MInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { MInf, PZero, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, MZero, "inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { MInf, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { MInf, PNormalValue, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, MNormalValue, "inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, PLargestValue, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, MLargestValue, "inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, PSmallestValue, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, MSmallestValue, "inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, PSmallestNormalized, "-inf", APFloat::opOK, APFloat::fcInfinity }, { MInf, MSmallestNormalized, "inf", APFloat::opOK, APFloat::fcInfinity }, { PZero, PInf, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PZero, MInf, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { PZero, PZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { PZero, MZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { PZero, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { PZero, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PZero, PNormalValue, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PZero, MNormalValue, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { PZero, PLargestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PZero, MLargestValue, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { PZero, PSmallestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PZero, MSmallestValue, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { PZero, PSmallestNormalized, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PZero, MSmallestNormalized, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { MZero, PInf, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { MZero, MInf, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MZero, PZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { MZero, MZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { MZero, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { MZero, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { MZero, PNormalValue, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { MZero, MNormalValue, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MZero, PLargestValue, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { MZero, MLargestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MZero, PSmallestValue, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { MZero, MSmallestValue, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MZero, PSmallestNormalized, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { MZero, MSmallestNormalized, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { QNaN, PInf, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, MInf, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, PZero, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, MZero, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { QNaN, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { QNaN, PNormalValue, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, MNormalValue, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, PLargestValue, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, MLargestValue, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, PSmallestValue, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, MSmallestValue, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, PSmallestNormalized, "nan", APFloat::opOK, APFloat::fcNaN }, { QNaN, MSmallestNormalized, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { SNaN, PInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, MInf, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, PZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, MZero, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, QNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, PNormalValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, MNormalValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, PLargestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, MLargestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, PSmallestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, MSmallestValue, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, PSmallestNormalized, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, { SNaN, MSmallestNormalized, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PNormalValue, PInf, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PNormalValue, MInf, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { PNormalValue, PZero, "inf", APFloat::opDivByZero, APFloat::fcInfinity }, { PNormalValue, MZero, "-inf", APFloat::opDivByZero, APFloat::fcInfinity }, { PNormalValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { PNormalValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PNormalValue, PNormalValue, "0x1p+0", APFloat::opOK, APFloat::fcNormal }, { PNormalValue, MNormalValue, "-0x1p+0", APFloat::opOK, APFloat::fcNormal }, { PNormalValue, PLargestValue, "0x1p-128", UnderflowStatus, APFloat::fcNormal }, { PNormalValue, MLargestValue, "-0x1p-128", UnderflowStatus, APFloat::fcNormal }, { PNormalValue, PSmallestValue, "inf", OverflowStatus, APFloat::fcInfinity }, { PNormalValue, MSmallestValue, "-inf", OverflowStatus, APFloat::fcInfinity }, { PNormalValue, PSmallestNormalized, "0x1p+126", APFloat::opOK, APFloat::fcNormal }, { PNormalValue, MSmallestNormalized, "-0x1p+126", APFloat::opOK, APFloat::fcNormal }, { MNormalValue, PInf, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { MNormalValue, MInf, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MNormalValue, PZero, "-inf", APFloat::opDivByZero, APFloat::fcInfinity }, { MNormalValue, MZero, "inf", APFloat::opDivByZero, APFloat::fcInfinity }, { MNormalValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { MNormalValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { MNormalValue, PNormalValue, "-0x1p+0", APFloat::opOK, APFloat::fcNormal }, { MNormalValue, MNormalValue, "0x1p+0", APFloat::opOK, APFloat::fcNormal }, { MNormalValue, PLargestValue, "-0x1p-128", UnderflowStatus, APFloat::fcNormal }, { MNormalValue, MLargestValue, "0x1p-128", UnderflowStatus, APFloat::fcNormal }, { MNormalValue, PSmallestValue, "-inf", OverflowStatus, APFloat::fcInfinity }, { MNormalValue, MSmallestValue, "inf", OverflowStatus, APFloat::fcInfinity }, { MNormalValue, PSmallestNormalized, "-0x1p+126", APFloat::opOK, APFloat::fcNormal }, { MNormalValue, MSmallestNormalized, "0x1p+126", APFloat::opOK, APFloat::fcNormal }, { PLargestValue, PInf, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PLargestValue, MInf, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { PLargestValue, PZero, "inf", APFloat::opDivByZero, APFloat::fcInfinity }, { PLargestValue, MZero, "-inf", APFloat::opDivByZero, APFloat::fcInfinity }, { PLargestValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { PLargestValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PLargestValue, PNormalValue, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { PLargestValue, MNormalValue, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { PLargestValue, PLargestValue, "0x1p+0", APFloat::opOK, APFloat::fcNormal }, { PLargestValue, MLargestValue, "-0x1p+0", APFloat::opOK, APFloat::fcNormal }, { PLargestValue, PSmallestValue, "inf", OverflowStatus, APFloat::fcInfinity }, { PLargestValue, MSmallestValue, "-inf", OverflowStatus, APFloat::fcInfinity }, { PLargestValue, PSmallestNormalized, "inf", OverflowStatus, APFloat::fcInfinity }, { PLargestValue, MSmallestNormalized, "-inf", OverflowStatus, APFloat::fcInfinity }, { MLargestValue, PInf, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { MLargestValue, MInf, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MLargestValue, PZero, "-inf", APFloat::opDivByZero, APFloat::fcInfinity }, { MLargestValue, MZero, "inf", APFloat::opDivByZero, APFloat::fcInfinity }, { MLargestValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { MLargestValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { MLargestValue, PNormalValue, "-0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { MLargestValue, MNormalValue, "0x1.fffffep+127", APFloat::opOK, APFloat::fcNormal }, { MLargestValue, PLargestValue, "-0x1p+0", APFloat::opOK, APFloat::fcNormal }, { MLargestValue, MLargestValue, "0x1p+0", APFloat::opOK, APFloat::fcNormal }, { MLargestValue, PSmallestValue, "-inf", OverflowStatus, APFloat::fcInfinity }, { MLargestValue, MSmallestValue, "inf", OverflowStatus, APFloat::fcInfinity }, { MLargestValue, PSmallestNormalized, "-inf", OverflowStatus, APFloat::fcInfinity }, { MLargestValue, MSmallestNormalized, "inf", OverflowStatus, APFloat::fcInfinity }, { PSmallestValue, PInf, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PSmallestValue, MInf, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { PSmallestValue, PZero, "inf", APFloat::opDivByZero, APFloat::fcInfinity }, { PSmallestValue, MZero, "-inf", APFloat::opDivByZero, APFloat::fcInfinity }, { PSmallestValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { PSmallestValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PSmallestValue, PNormalValue, "0x1p-149", APFloat::opOK, APFloat::fcNormal }, { PSmallestValue, MNormalValue, "-0x1p-149", APFloat::opOK, APFloat::fcNormal }, { PSmallestValue, PLargestValue, "0x0p+0", UnderflowStatus, APFloat::fcZero }, { PSmallestValue, MLargestValue, "-0x0p+0", UnderflowStatus, APFloat::fcZero }, { PSmallestValue, PSmallestValue, "0x1p+0", APFloat::opOK, APFloat::fcNormal }, { PSmallestValue, MSmallestValue, "-0x1p+0", APFloat::opOK, APFloat::fcNormal }, { PSmallestValue, PSmallestNormalized, "0x1p-23", APFloat::opOK, APFloat::fcNormal }, { PSmallestValue, MSmallestNormalized, "-0x1p-23", APFloat::opOK, APFloat::fcNormal }, { MSmallestValue, PInf, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { MSmallestValue, MInf, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MSmallestValue, PZero, "-inf", APFloat::opDivByZero, APFloat::fcInfinity }, { MSmallestValue, MZero, "inf", APFloat::opDivByZero, APFloat::fcInfinity }, { MSmallestValue, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { MSmallestValue, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { MSmallestValue, PNormalValue, "-0x1p-149", APFloat::opOK, APFloat::fcNormal }, { MSmallestValue, MNormalValue, "0x1p-149", APFloat::opOK, APFloat::fcNormal }, { MSmallestValue, PLargestValue, "-0x0p+0", UnderflowStatus, APFloat::fcZero }, { MSmallestValue, MLargestValue, "0x0p+0", UnderflowStatus, APFloat::fcZero }, { MSmallestValue, PSmallestValue, "-0x1p+0", APFloat::opOK, APFloat::fcNormal }, { MSmallestValue, MSmallestValue, "0x1p+0", APFloat::opOK, APFloat::fcNormal }, { MSmallestValue, PSmallestNormalized, "-0x1p-23", APFloat::opOK, APFloat::fcNormal }, { MSmallestValue, MSmallestNormalized, "0x1p-23", APFloat::opOK, APFloat::fcNormal }, { PSmallestNormalized, PInf, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { PSmallestNormalized, MInf, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { PSmallestNormalized, PZero, "inf", APFloat::opDivByZero, APFloat::fcInfinity }, { PSmallestNormalized, MZero, "-inf", APFloat::opDivByZero, APFloat::fcInfinity }, { PSmallestNormalized, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { PSmallestNormalized, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { PSmallestNormalized, PNormalValue, "0x1p-126", APFloat::opOK, APFloat::fcNormal }, { PSmallestNormalized, MNormalValue, "-0x1p-126", APFloat::opOK, APFloat::fcNormal }, { PSmallestNormalized, PLargestValue, "0x0p+0", UnderflowStatus, APFloat::fcZero }, { PSmallestNormalized, MLargestValue, "-0x0p+0", UnderflowStatus, APFloat::fcZero }, { PSmallestNormalized, PSmallestValue, "0x1p+23", APFloat::opOK, APFloat::fcNormal }, { PSmallestNormalized, MSmallestValue, "-0x1p+23", APFloat::opOK, APFloat::fcNormal }, { PSmallestNormalized, PSmallestNormalized, "0x1p+0", APFloat::opOK, APFloat::fcNormal }, { PSmallestNormalized, MSmallestNormalized, "-0x1p+0", APFloat::opOK, APFloat::fcNormal }, { MSmallestNormalized, PInf, "-0x0p+0", APFloat::opOK, APFloat::fcZero }, { MSmallestNormalized, MInf, "0x0p+0", APFloat::opOK, APFloat::fcZero }, { MSmallestNormalized, PZero, "-inf", APFloat::opDivByZero, APFloat::fcInfinity }, { MSmallestNormalized, MZero, "inf", APFloat::opDivByZero, APFloat::fcInfinity }, { MSmallestNormalized, QNaN, "nan", APFloat::opOK, APFloat::fcNaN }, #if 0 // See Note 1. { MSmallestNormalized, SNaN, "nan", APFloat::opInvalidOp, APFloat::fcNaN }, #endif { MSmallestNormalized, PNormalValue, "-0x1p-126", APFloat::opOK, APFloat::fcNormal }, { MSmallestNormalized, MNormalValue, "0x1p-126", APFloat::opOK, APFloat::fcNormal }, { MSmallestNormalized, PLargestValue, "-0x0p+0", UnderflowStatus, APFloat::fcZero }, { MSmallestNormalized, MLargestValue, "0x0p+0", UnderflowStatus, APFloat::fcZero }, { MSmallestNormalized, PSmallestValue, "-0x1p+23", APFloat::opOK, APFloat::fcNormal }, { MSmallestNormalized, MSmallestValue, "0x1p+23", APFloat::opOK, APFloat::fcNormal }, { MSmallestNormalized, PSmallestNormalized, "-0x1p+0", APFloat::opOK, APFloat::fcNormal }, { MSmallestNormalized, MSmallestNormalized, "0x1p+0", APFloat::opOK, APFloat::fcNormal }, {MaxQuad, NMinQuad, "-inf", OverflowStatus, APFloat::fcInfinity, APFloat::rmNearestTiesToEven}, {MaxQuad, NMinQuad, "-0x1.ffffffffffffffffffffffffffffp+16383", APFloat::opInexact, APFloat::fcNormal, APFloat::rmTowardPositive}, {MaxQuad, NMinQuad, "-inf", OverflowStatus, APFloat::fcInfinity, APFloat::rmTowardNegative}, {MaxQuad, NMinQuad, "-0x1.ffffffffffffffffffffffffffffp+16383", APFloat::opInexact, APFloat::fcNormal, APFloat::rmTowardZero}, {MaxQuad, NMinQuad, "-inf", OverflowStatus, APFloat::fcInfinity, APFloat::rmNearestTiesToAway}, {MinQuad, MaxQuad, "0", UnderflowStatus, APFloat::fcZero, APFloat::rmNearestTiesToEven}, {MinQuad, MaxQuad, "0x0.0000000000000000000000000001p-16382", UnderflowStatus, APFloat::fcNormal, APFloat::rmTowardPositive}, {MinQuad, MaxQuad, "0", UnderflowStatus, APFloat::fcZero, APFloat::rmTowardNegative}, {MinQuad, MaxQuad, "0", UnderflowStatus, APFloat::fcZero, APFloat::rmTowardZero}, {MinQuad, MaxQuad, "0", UnderflowStatus, APFloat::fcZero, APFloat::rmNearestTiesToAway}, {NMinQuad, MaxQuad, "-0", UnderflowStatus, APFloat::fcZero, APFloat::rmNearestTiesToEven}, {NMinQuad, MaxQuad, "-0", UnderflowStatus, APFloat::fcZero, APFloat::rmTowardPositive}, {NMinQuad, MaxQuad, "-0x0.0000000000000000000000000001p-16382", UnderflowStatus, APFloat::fcNormal, APFloat::rmTowardNegative}, {NMinQuad, MaxQuad, "-0", UnderflowStatus, APFloat::fcZero, APFloat::rmTowardZero}, {NMinQuad, MaxQuad, "-0", UnderflowStatus, APFloat::fcZero, APFloat::rmNearestTiesToAway}, }; for (size_t i = 0; i < array_lengthof(SpecialCaseTests); ++i) { APFloat x(SpecialCaseTests[i].x); APFloat y(SpecialCaseTests[i].y); APFloat::opStatus status = x.divide(y, SpecialCaseTests[i].roundingMode); APFloat result(x.getSemantics(), SpecialCaseTests[i].result); EXPECT_TRUE(result.bitwiseIsEqual(x)); EXPECT_TRUE((int)status == SpecialCaseTests[i].status); EXPECT_TRUE((int)x.getCategory() == SpecialCaseTests[i].category); } } TEST(APFloatTest, operatorOverloads) { // This is mostly testing that these operator overloads compile. APFloat One = APFloat(APFloat::IEEEsingle(), "0x1p+0"); APFloat Two = APFloat(APFloat::IEEEsingle(), "0x2p+0"); EXPECT_TRUE(Two.bitwiseIsEqual(One + One)); EXPECT_TRUE(One.bitwiseIsEqual(Two - One)); EXPECT_TRUE(Two.bitwiseIsEqual(One * Two)); EXPECT_TRUE(One.bitwiseIsEqual(Two / Two)); } TEST(APFloatTest, abs) { APFloat PInf = APFloat::getInf(APFloat::IEEEsingle(), false); APFloat MInf = APFloat::getInf(APFloat::IEEEsingle(), true); APFloat PZero = APFloat::getZero(APFloat::IEEEsingle(), false); APFloat MZero = APFloat::getZero(APFloat::IEEEsingle(), true); APFloat PQNaN = APFloat::getNaN(APFloat::IEEEsingle(), false); APFloat MQNaN = APFloat::getNaN(APFloat::IEEEsingle(), true); APFloat PSNaN = APFloat::getSNaN(APFloat::IEEEsingle(), false); APFloat MSNaN = APFloat::getSNaN(APFloat::IEEEsingle(), true); APFloat PNormalValue = APFloat(APFloat::IEEEsingle(), "0x1p+0"); APFloat MNormalValue = APFloat(APFloat::IEEEsingle(), "-0x1p+0"); APFloat PLargestValue = APFloat::getLargest(APFloat::IEEEsingle(), false); APFloat MLargestValue = APFloat::getLargest(APFloat::IEEEsingle(), true); APFloat PSmallestValue = APFloat::getSmallest(APFloat::IEEEsingle(), false); APFloat MSmallestValue = APFloat::getSmallest(APFloat::IEEEsingle(), true); APFloat PSmallestNormalized = APFloat::getSmallestNormalized(APFloat::IEEEsingle(), false); APFloat MSmallestNormalized = APFloat::getSmallestNormalized(APFloat::IEEEsingle(), true); EXPECT_TRUE(PInf.bitwiseIsEqual(abs(PInf))); EXPECT_TRUE(PInf.bitwiseIsEqual(abs(MInf))); EXPECT_TRUE(PZero.bitwiseIsEqual(abs(PZero))); EXPECT_TRUE(PZero.bitwiseIsEqual(abs(MZero))); EXPECT_TRUE(PQNaN.bitwiseIsEqual(abs(PQNaN))); EXPECT_TRUE(PQNaN.bitwiseIsEqual(abs(MQNaN))); EXPECT_TRUE(PSNaN.bitwiseIsEqual(abs(PSNaN))); EXPECT_TRUE(PSNaN.bitwiseIsEqual(abs(MSNaN))); EXPECT_TRUE(PNormalValue.bitwiseIsEqual(abs(PNormalValue))); EXPECT_TRUE(PNormalValue.bitwiseIsEqual(abs(MNormalValue))); EXPECT_TRUE(PLargestValue.bitwiseIsEqual(abs(PLargestValue))); EXPECT_TRUE(PLargestValue.bitwiseIsEqual(abs(MLargestValue))); EXPECT_TRUE(PSmallestValue.bitwiseIsEqual(abs(PSmallestValue))); EXPECT_TRUE(PSmallestValue.bitwiseIsEqual(abs(MSmallestValue))); EXPECT_TRUE(PSmallestNormalized.bitwiseIsEqual(abs(PSmallestNormalized))); EXPECT_TRUE(PSmallestNormalized.bitwiseIsEqual(abs(MSmallestNormalized))); } TEST(APFloatTest, neg) { APFloat One = APFloat(APFloat::IEEEsingle(), "1.0"); APFloat NegOne = APFloat(APFloat::IEEEsingle(), "-1.0"); APFloat Zero = APFloat::getZero(APFloat::IEEEsingle(), false); APFloat NegZero = APFloat::getZero(APFloat::IEEEsingle(), true); APFloat Inf = APFloat::getInf(APFloat::IEEEsingle(), false); APFloat NegInf = APFloat::getInf(APFloat::IEEEsingle(), true); APFloat QNaN = APFloat::getNaN(APFloat::IEEEsingle(), false); APFloat NegQNaN = APFloat::getNaN(APFloat::IEEEsingle(), true); EXPECT_TRUE(NegOne.bitwiseIsEqual(neg(One))); EXPECT_TRUE(One.bitwiseIsEqual(neg(NegOne))); EXPECT_TRUE(NegZero.bitwiseIsEqual(neg(Zero))); EXPECT_TRUE(Zero.bitwiseIsEqual(neg(NegZero))); EXPECT_TRUE(NegInf.bitwiseIsEqual(neg(Inf))); EXPECT_TRUE(Inf.bitwiseIsEqual(neg(NegInf))); EXPECT_TRUE(NegInf.bitwiseIsEqual(neg(Inf))); EXPECT_TRUE(Inf.bitwiseIsEqual(neg(NegInf))); EXPECT_TRUE(NegQNaN.bitwiseIsEqual(neg(QNaN))); EXPECT_TRUE(QNaN.bitwiseIsEqual(neg(NegQNaN))); } TEST(APFloatTest, ilogb) { EXPECT_EQ(-1074, ilogb(APFloat::getSmallest(APFloat::IEEEdouble(), false))); EXPECT_EQ(-1074, ilogb(APFloat::getSmallest(APFloat::IEEEdouble(), true))); EXPECT_EQ(-1023, ilogb(APFloat(APFloat::IEEEdouble(), "0x1.ffffffffffffep-1024"))); EXPECT_EQ(-1023, ilogb(APFloat(APFloat::IEEEdouble(), "0x1.ffffffffffffep-1023"))); EXPECT_EQ(-1023, ilogb(APFloat(APFloat::IEEEdouble(), "-0x1.ffffffffffffep-1023"))); EXPECT_EQ(-51, ilogb(APFloat(APFloat::IEEEdouble(), "0x1p-51"))); EXPECT_EQ(-1023, ilogb(APFloat(APFloat::IEEEdouble(), "0x1.c60f120d9f87cp-1023"))); EXPECT_EQ(-2, ilogb(APFloat(APFloat::IEEEdouble(), "0x0.ffffp-1"))); EXPECT_EQ(-1023, ilogb(APFloat(APFloat::IEEEdouble(), "0x1.fffep-1023"))); EXPECT_EQ(1023, ilogb(APFloat::getLargest(APFloat::IEEEdouble(), false))); EXPECT_EQ(1023, ilogb(APFloat::getLargest(APFloat::IEEEdouble(), true))); EXPECT_EQ(0, ilogb(APFloat(APFloat::IEEEsingle(), "0x1p+0"))); EXPECT_EQ(0, ilogb(APFloat(APFloat::IEEEsingle(), "-0x1p+0"))); EXPECT_EQ(42, ilogb(APFloat(APFloat::IEEEsingle(), "0x1p+42"))); EXPECT_EQ(-42, ilogb(APFloat(APFloat::IEEEsingle(), "0x1p-42"))); EXPECT_EQ(APFloat::IEK_Inf, ilogb(APFloat::getInf(APFloat::IEEEsingle(), false))); EXPECT_EQ(APFloat::IEK_Inf, ilogb(APFloat::getInf(APFloat::IEEEsingle(), true))); EXPECT_EQ(APFloat::IEK_Zero, ilogb(APFloat::getZero(APFloat::IEEEsingle(), false))); EXPECT_EQ(APFloat::IEK_Zero, ilogb(APFloat::getZero(APFloat::IEEEsingle(), true))); EXPECT_EQ(APFloat::IEK_NaN, ilogb(APFloat::getNaN(APFloat::IEEEsingle(), false))); EXPECT_EQ(APFloat::IEK_NaN, ilogb(APFloat::getSNaN(APFloat::IEEEsingle(), false))); EXPECT_EQ(127, ilogb(APFloat::getLargest(APFloat::IEEEsingle(), false))); EXPECT_EQ(127, ilogb(APFloat::getLargest(APFloat::IEEEsingle(), true))); EXPECT_EQ(-149, ilogb(APFloat::getSmallest(APFloat::IEEEsingle(), false))); EXPECT_EQ(-149, ilogb(APFloat::getSmallest(APFloat::IEEEsingle(), true))); EXPECT_EQ(-126, ilogb(APFloat::getSmallestNormalized(APFloat::IEEEsingle(), false))); EXPECT_EQ(-126, ilogb(APFloat::getSmallestNormalized(APFloat::IEEEsingle(), true))); } TEST(APFloatTest, scalbn) { const APFloat::roundingMode RM = APFloat::rmNearestTiesToEven; EXPECT_TRUE( APFloat(APFloat::IEEEsingle(), "0x1p+0") .bitwiseIsEqual(scalbn(APFloat(APFloat::IEEEsingle(), "0x1p+0"), 0, RM))); EXPECT_TRUE( APFloat(APFloat::IEEEsingle(), "0x1p+42") .bitwiseIsEqual(scalbn(APFloat(APFloat::IEEEsingle(), "0x1p+0"), 42, RM))); EXPECT_TRUE( APFloat(APFloat::IEEEsingle(), "0x1p-42") .bitwiseIsEqual(scalbn(APFloat(APFloat::IEEEsingle(), "0x1p+0"), -42, RM))); APFloat PInf = APFloat::getInf(APFloat::IEEEsingle(), false); APFloat MInf = APFloat::getInf(APFloat::IEEEsingle(), true); APFloat PZero = APFloat::getZero(APFloat::IEEEsingle(), false); APFloat MZero = APFloat::getZero(APFloat::IEEEsingle(), true); APFloat QPNaN = APFloat::getNaN(APFloat::IEEEsingle(), false); APFloat QMNaN = APFloat::getNaN(APFloat::IEEEsingle(), true); APFloat SNaN = APFloat::getSNaN(APFloat::IEEEsingle(), false); EXPECT_TRUE(PInf.bitwiseIsEqual(scalbn(PInf, 0, RM))); EXPECT_TRUE(MInf.bitwiseIsEqual(scalbn(MInf, 0, RM))); EXPECT_TRUE(PZero.bitwiseIsEqual(scalbn(PZero, 0, RM))); EXPECT_TRUE(MZero.bitwiseIsEqual(scalbn(MZero, 0, RM))); EXPECT_TRUE(QPNaN.bitwiseIsEqual(scalbn(QPNaN, 0, RM))); EXPECT_TRUE(QMNaN.bitwiseIsEqual(scalbn(QMNaN, 0, RM))); EXPECT_FALSE(scalbn(SNaN, 0, RM).isSignaling()); APFloat ScalbnSNaN = scalbn(SNaN, 1, RM); EXPECT_TRUE(ScalbnSNaN.isNaN() && !ScalbnSNaN.isSignaling()); // Make sure highest bit of payload is preserved. const APInt Payload(64, (UINT64_C(1) << 50) | (UINT64_C(1) << 49) | (UINT64_C(1234) << 32) | 1); APFloat SNaNWithPayload = APFloat::getSNaN(APFloat::IEEEdouble(), false, &Payload); APFloat QuietPayload = scalbn(SNaNWithPayload, 1, RM); EXPECT_TRUE(QuietPayload.isNaN() && !QuietPayload.isSignaling()); EXPECT_EQ(Payload, QuietPayload.bitcastToAPInt().getLoBits(51)); EXPECT_TRUE(PInf.bitwiseIsEqual( scalbn(APFloat(APFloat::IEEEsingle(), "0x1p+0"), 128, RM))); EXPECT_TRUE(MInf.bitwiseIsEqual( scalbn(APFloat(APFloat::IEEEsingle(), "-0x1p+0"), 128, RM))); EXPECT_TRUE(PInf.bitwiseIsEqual( scalbn(APFloat(APFloat::IEEEsingle(), "0x1p+127"), 1, RM))); EXPECT_TRUE(PZero.bitwiseIsEqual( scalbn(APFloat(APFloat::IEEEsingle(), "0x1p-127"), -127, RM))); EXPECT_TRUE(MZero.bitwiseIsEqual( scalbn(APFloat(APFloat::IEEEsingle(), "-0x1p-127"), -127, RM))); EXPECT_TRUE(APFloat(APFloat::IEEEsingle(), "-0x1p-149").bitwiseIsEqual( scalbn(APFloat(APFloat::IEEEsingle(), "-0x1p-127"), -22, RM))); EXPECT_TRUE(PZero.bitwiseIsEqual( scalbn(APFloat(APFloat::IEEEsingle(), "0x1p-126"), -24, RM))); APFloat SmallestF64 = APFloat::getSmallest(APFloat::IEEEdouble(), false); APFloat NegSmallestF64 = APFloat::getSmallest(APFloat::IEEEdouble(), true); APFloat LargestF64 = APFloat::getLargest(APFloat::IEEEdouble(), false); APFloat NegLargestF64 = APFloat::getLargest(APFloat::IEEEdouble(), true); APFloat SmallestNormalizedF64 = APFloat::getSmallestNormalized(APFloat::IEEEdouble(), false); APFloat NegSmallestNormalizedF64 = APFloat::getSmallestNormalized(APFloat::IEEEdouble(), true); APFloat LargestDenormalF64(APFloat::IEEEdouble(), "0x1.ffffffffffffep-1023"); APFloat NegLargestDenormalF64(APFloat::IEEEdouble(), "-0x1.ffffffffffffep-1023"); EXPECT_TRUE(SmallestF64.bitwiseIsEqual( scalbn(APFloat(APFloat::IEEEdouble(), "0x1p-1074"), 0, RM))); EXPECT_TRUE(NegSmallestF64.bitwiseIsEqual( scalbn(APFloat(APFloat::IEEEdouble(), "-0x1p-1074"), 0, RM))); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1p+1023") .bitwiseIsEqual(scalbn(SmallestF64, 2097, RM))); EXPECT_TRUE(scalbn(SmallestF64, -2097, RM).isPosZero()); EXPECT_TRUE(scalbn(SmallestF64, -2098, RM).isPosZero()); EXPECT_TRUE(scalbn(SmallestF64, -2099, RM).isPosZero()); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1p+1022") .bitwiseIsEqual(scalbn(SmallestF64, 2096, RM))); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1p+1023") .bitwiseIsEqual(scalbn(SmallestF64, 2097, RM))); EXPECT_TRUE(scalbn(SmallestF64, 2098, RM).isInfinity()); EXPECT_TRUE(scalbn(SmallestF64, 2099, RM).isInfinity()); // Test for integer overflows when adding to exponent. EXPECT_TRUE(scalbn(SmallestF64, -INT_MAX, RM).isPosZero()); EXPECT_TRUE(scalbn(LargestF64, INT_MAX, RM).isInfinity()); EXPECT_TRUE(LargestDenormalF64 .bitwiseIsEqual(scalbn(LargestDenormalF64, 0, RM))); EXPECT_TRUE(NegLargestDenormalF64 .bitwiseIsEqual(scalbn(NegLargestDenormalF64, 0, RM))); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.ffffffffffffep-1022") .bitwiseIsEqual(scalbn(LargestDenormalF64, 1, RM))); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "-0x1.ffffffffffffep-1021") .bitwiseIsEqual(scalbn(NegLargestDenormalF64, 2, RM))); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.ffffffffffffep+1") .bitwiseIsEqual(scalbn(LargestDenormalF64, 1024, RM))); EXPECT_TRUE(scalbn(LargestDenormalF64, -1023, RM).isPosZero()); EXPECT_TRUE(scalbn(LargestDenormalF64, -1024, RM).isPosZero()); EXPECT_TRUE(scalbn(LargestDenormalF64, -2048, RM).isPosZero()); EXPECT_TRUE(scalbn(LargestDenormalF64, 2047, RM).isInfinity()); EXPECT_TRUE(scalbn(LargestDenormalF64, 2098, RM).isInfinity()); EXPECT_TRUE(scalbn(LargestDenormalF64, 2099, RM).isInfinity()); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.ffffffffffffep-2") .bitwiseIsEqual(scalbn(LargestDenormalF64, 1021, RM))); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.ffffffffffffep-1") .bitwiseIsEqual(scalbn(LargestDenormalF64, 1022, RM))); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.ffffffffffffep+0") .bitwiseIsEqual(scalbn(LargestDenormalF64, 1023, RM))); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.ffffffffffffep+1023") .bitwiseIsEqual(scalbn(LargestDenormalF64, 2046, RM))); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1p+974") .bitwiseIsEqual(scalbn(SmallestF64, 2048, RM))); APFloat RandomDenormalF64(APFloat::IEEEdouble(), "0x1.c60f120d9f87cp+51"); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.c60f120d9f87cp-972") .bitwiseIsEqual(scalbn(RandomDenormalF64, -1023, RM))); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.c60f120d9f87cp-1") .bitwiseIsEqual(scalbn(RandomDenormalF64, -52, RM))); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.c60f120d9f87cp-2") .bitwiseIsEqual(scalbn(RandomDenormalF64, -53, RM))); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.c60f120d9f87cp+0") .bitwiseIsEqual(scalbn(RandomDenormalF64, -51, RM))); EXPECT_TRUE(scalbn(RandomDenormalF64, -2097, RM).isPosZero()); EXPECT_TRUE(scalbn(RandomDenormalF64, -2090, RM).isPosZero()); EXPECT_TRUE( APFloat(APFloat::IEEEdouble(), "-0x1p-1073") .bitwiseIsEqual(scalbn(NegLargestF64, -2097, RM))); EXPECT_TRUE( APFloat(APFloat::IEEEdouble(), "-0x1p-1024") .bitwiseIsEqual(scalbn(NegLargestF64, -2048, RM))); EXPECT_TRUE( APFloat(APFloat::IEEEdouble(), "0x1p-1073") .bitwiseIsEqual(scalbn(LargestF64, -2097, RM))); EXPECT_TRUE( APFloat(APFloat::IEEEdouble(), "0x1p-1074") .bitwiseIsEqual(scalbn(LargestF64, -2098, RM))); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "-0x1p-1074") .bitwiseIsEqual(scalbn(NegLargestF64, -2098, RM))); EXPECT_TRUE(scalbn(NegLargestF64, -2099, RM).isNegZero()); EXPECT_TRUE(scalbn(LargestF64, 1, RM).isInfinity()); EXPECT_TRUE( APFloat(APFloat::IEEEdouble(), "0x1p+0") .bitwiseIsEqual(scalbn(APFloat(APFloat::IEEEdouble(), "0x1p+52"), -52, RM))); EXPECT_TRUE( APFloat(APFloat::IEEEdouble(), "0x1p-103") .bitwiseIsEqual(scalbn(APFloat(APFloat::IEEEdouble(), "0x1p-51"), -52, RM))); } TEST(APFloatTest, frexp) { const APFloat::roundingMode RM = APFloat::rmNearestTiesToEven; APFloat PZero = APFloat::getZero(APFloat::IEEEdouble(), false); APFloat MZero = APFloat::getZero(APFloat::IEEEdouble(), true); APFloat One(1.0); APFloat MOne(-1.0); APFloat Two(2.0); APFloat MTwo(-2.0); APFloat LargestDenormal(APFloat::IEEEdouble(), "0x1.ffffffffffffep-1023"); APFloat NegLargestDenormal(APFloat::IEEEdouble(), "-0x1.ffffffffffffep-1023"); APFloat Smallest = APFloat::getSmallest(APFloat::IEEEdouble(), false); APFloat NegSmallest = APFloat::getSmallest(APFloat::IEEEdouble(), true); APFloat Largest = APFloat::getLargest(APFloat::IEEEdouble(), false); APFloat NegLargest = APFloat::getLargest(APFloat::IEEEdouble(), true); APFloat PInf = APFloat::getInf(APFloat::IEEEdouble(), false); APFloat MInf = APFloat::getInf(APFloat::IEEEdouble(), true); APFloat QPNaN = APFloat::getNaN(APFloat::IEEEdouble(), false); APFloat QMNaN = APFloat::getNaN(APFloat::IEEEdouble(), true); APFloat SNaN = APFloat::getSNaN(APFloat::IEEEdouble(), false); // Make sure highest bit of payload is preserved. const APInt Payload(64, (UINT64_C(1) << 50) | (UINT64_C(1) << 49) | (UINT64_C(1234) << 32) | 1); APFloat SNaNWithPayload = APFloat::getSNaN(APFloat::IEEEdouble(), false, &Payload); APFloat SmallestNormalized = APFloat::getSmallestNormalized(APFloat::IEEEdouble(), false); APFloat NegSmallestNormalized = APFloat::getSmallestNormalized(APFloat::IEEEdouble(), true); int Exp; APFloat Frac(APFloat::IEEEdouble()); Frac = frexp(PZero, Exp, RM); EXPECT_EQ(0, Exp); EXPECT_TRUE(Frac.isPosZero()); Frac = frexp(MZero, Exp, RM); EXPECT_EQ(0, Exp); EXPECT_TRUE(Frac.isNegZero()); Frac = frexp(One, Exp, RM); EXPECT_EQ(1, Exp); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1p-1").bitwiseIsEqual(Frac)); Frac = frexp(MOne, Exp, RM); EXPECT_EQ(1, Exp); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "-0x1p-1").bitwiseIsEqual(Frac)); Frac = frexp(LargestDenormal, Exp, RM); EXPECT_EQ(-1022, Exp); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.ffffffffffffep-1").bitwiseIsEqual(Frac)); Frac = frexp(NegLargestDenormal, Exp, RM); EXPECT_EQ(-1022, Exp); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "-0x1.ffffffffffffep-1").bitwiseIsEqual(Frac)); Frac = frexp(Smallest, Exp, RM); EXPECT_EQ(-1073, Exp); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1p-1").bitwiseIsEqual(Frac)); Frac = frexp(NegSmallest, Exp, RM); EXPECT_EQ(-1073, Exp); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "-0x1p-1").bitwiseIsEqual(Frac)); Frac = frexp(Largest, Exp, RM); EXPECT_EQ(1024, Exp); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.fffffffffffffp-1").bitwiseIsEqual(Frac)); Frac = frexp(NegLargest, Exp, RM); EXPECT_EQ(1024, Exp); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "-0x1.fffffffffffffp-1").bitwiseIsEqual(Frac)); Frac = frexp(PInf, Exp, RM); EXPECT_EQ(INT_MAX, Exp); EXPECT_TRUE(Frac.isInfinity() && !Frac.isNegative()); Frac = frexp(MInf, Exp, RM); EXPECT_EQ(INT_MAX, Exp); EXPECT_TRUE(Frac.isInfinity() && Frac.isNegative()); Frac = frexp(QPNaN, Exp, RM); EXPECT_EQ(INT_MIN, Exp); EXPECT_TRUE(Frac.isNaN()); Frac = frexp(QMNaN, Exp, RM); EXPECT_EQ(INT_MIN, Exp); EXPECT_TRUE(Frac.isNaN()); Frac = frexp(SNaN, Exp, RM); EXPECT_EQ(INT_MIN, Exp); EXPECT_TRUE(Frac.isNaN() && !Frac.isSignaling()); Frac = frexp(SNaNWithPayload, Exp, RM); EXPECT_EQ(INT_MIN, Exp); EXPECT_TRUE(Frac.isNaN() && !Frac.isSignaling()); EXPECT_EQ(Payload, Frac.bitcastToAPInt().getLoBits(51)); Frac = frexp(APFloat(APFloat::IEEEdouble(), "0x0.ffffp-1"), Exp, RM); EXPECT_EQ(-1, Exp); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.fffep-1").bitwiseIsEqual(Frac)); Frac = frexp(APFloat(APFloat::IEEEdouble(), "0x1p-51"), Exp, RM); EXPECT_EQ(-50, Exp); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1p-1").bitwiseIsEqual(Frac)); Frac = frexp(APFloat(APFloat::IEEEdouble(), "0x1.c60f120d9f87cp+51"), Exp, RM); EXPECT_EQ(52, Exp); EXPECT_TRUE(APFloat(APFloat::IEEEdouble(), "0x1.c60f120d9f87cp-1").bitwiseIsEqual(Frac)); } TEST(APFloatTest, mod) { { APFloat f1(APFloat::IEEEdouble(), "1.5"); APFloat f2(APFloat::IEEEdouble(), "1.0"); APFloat expected(APFloat::IEEEdouble(), "0.5"); EXPECT_EQ(f1.mod(f2), APFloat::opOK); EXPECT_TRUE(f1.bitwiseIsEqual(expected)); } { APFloat f1(APFloat::IEEEdouble(), "0.5"); APFloat f2(APFloat::IEEEdouble(), "1.0"); APFloat expected(APFloat::IEEEdouble(), "0.5"); EXPECT_EQ(f1.mod(f2), APFloat::opOK); EXPECT_TRUE(f1.bitwiseIsEqual(expected)); } { APFloat f1(APFloat::IEEEdouble(), "0x1.3333333333333p-2"); // 0.3 APFloat f2(APFloat::IEEEdouble(), "0x1.47ae147ae147bp-7"); // 0.01 APFloat expected(APFloat::IEEEdouble(), "0x1.47ae147ae1471p-7"); // 0.009999999999999983 EXPECT_EQ(f1.mod(f2), APFloat::opOK); EXPECT_TRUE(f1.bitwiseIsEqual(expected)); } { APFloat f1(APFloat::IEEEdouble(), "0x1p64"); // 1.8446744073709552e19 APFloat f2(APFloat::IEEEdouble(), "1.5"); APFloat expected(APFloat::IEEEdouble(), "1.0"); EXPECT_EQ(f1.mod(f2), APFloat::opOK); EXPECT_TRUE(f1.bitwiseIsEqual(expected)); } { APFloat f1(APFloat::IEEEdouble(), "0x1p1000"); APFloat f2(APFloat::IEEEdouble(), "0x1p-1000"); APFloat expected(APFloat::IEEEdouble(), "0.0"); EXPECT_EQ(f1.mod(f2), APFloat::opOK); EXPECT_TRUE(f1.bitwiseIsEqual(expected)); } { APFloat f1(APFloat::IEEEdouble(), "0.0"); APFloat f2(APFloat::IEEEdouble(), "1.0"); APFloat expected(APFloat::IEEEdouble(), "0.0"); EXPECT_EQ(f1.mod(f2), APFloat::opOK); EXPECT_TRUE(f1.bitwiseIsEqual(expected)); } { APFloat f1(APFloat::IEEEdouble(), "1.0"); APFloat f2(APFloat::IEEEdouble(), "0.0"); EXPECT_EQ(f1.mod(f2), APFloat::opInvalidOp); EXPECT_TRUE(f1.isNaN()); } { APFloat f1(APFloat::IEEEdouble(), "0.0"); APFloat f2(APFloat::IEEEdouble(), "0.0"); EXPECT_EQ(f1.mod(f2), APFloat::opInvalidOp); EXPECT_TRUE(f1.isNaN()); } { APFloat f1 = APFloat::getInf(APFloat::IEEEdouble(), false); APFloat f2(APFloat::IEEEdouble(), "1.0"); EXPECT_EQ(f1.mod(f2), APFloat::opInvalidOp); EXPECT_TRUE(f1.isNaN()); } { APFloat f1(APFloat::IEEEdouble(), "-4.0"); APFloat f2(APFloat::IEEEdouble(), "-2.0"); APFloat expected(APFloat::IEEEdouble(), "-0.0"); EXPECT_EQ(f1.mod(f2), APFloat::opOK); EXPECT_TRUE(f1.bitwiseIsEqual(expected)); } { APFloat f1(APFloat::IEEEdouble(), "-4.0"); APFloat f2(APFloat::IEEEdouble(), "2.0"); APFloat expected(APFloat::IEEEdouble(), "-0.0"); EXPECT_EQ(f1.mod(f2), APFloat::opOK); EXPECT_TRUE(f1.bitwiseIsEqual(expected)); } } TEST(APFloatTest, PPCDoubleDoubleAddSpecial) { using DataType = std::tuple; DataType Data[] = { // (1 + 0) + (-1 + 0) = fcZero std::make_tuple(0x3ff0000000000000ull, 0, 0xbff0000000000000ull, 0, APFloat::fcZero, APFloat::rmNearestTiesToEven), // LDBL_MAX + (1.1 >> (1023 - 106) + 0)) = fcInfinity std::make_tuple(0x7fefffffffffffffull, 0x7c8ffffffffffffeull, 0x7948000000000000ull, 0ull, APFloat::fcInfinity, APFloat::rmNearestTiesToEven), // TODO: change the 4th 0x75effffffffffffe to 0x75efffffffffffff when // semPPCDoubleDoubleLegacy is gone. // LDBL_MAX + (1.011111... >> (1023 - 106) + (1.1111111...0 >> (1023 - // 160))) = fcNormal std::make_tuple(0x7fefffffffffffffull, 0x7c8ffffffffffffeull, 0x7947ffffffffffffull, 0x75effffffffffffeull, APFloat::fcNormal, APFloat::rmNearestTiesToEven), // LDBL_MAX + (1.1 >> (1023 - 106) + 0)) = fcInfinity std::make_tuple(0x7fefffffffffffffull, 0x7c8ffffffffffffeull, 0x7fefffffffffffffull, 0x7c8ffffffffffffeull, APFloat::fcInfinity, APFloat::rmNearestTiesToEven), // NaN + (1 + 0) = fcNaN std::make_tuple(0x7ff8000000000000ull, 0, 0x3ff0000000000000ull, 0, APFloat::fcNaN, APFloat::rmNearestTiesToEven), }; for (auto Tp : Data) { uint64_t Op1[2], Op2[2]; APFloat::fltCategory Expected; APFloat::roundingMode RM; std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected, RM) = Tp; { APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1)); APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2)); A1.add(A2, RM); EXPECT_EQ(Expected, A1.getCategory()) << formatv("({0:x} + {1:x}) + ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0], Op2[1]) .str(); } { APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1)); APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2)); A2.add(A1, RM); EXPECT_EQ(Expected, A2.getCategory()) << formatv("({0:x} + {1:x}) + ({2:x} + {3:x})", Op2[0], Op2[1], Op1[0], Op1[1]) .str(); } } } TEST(APFloatTest, PPCDoubleDoubleAdd) { using DataType = std::tuple; DataType Data[] = { // (1 + 0) + (1e-105 + 0) = (1 + 1e-105) std::make_tuple(0x3ff0000000000000ull, 0, 0x3960000000000000ull, 0, 0x3ff0000000000000ull, 0x3960000000000000ull, APFloat::rmNearestTiesToEven), // (1 + 0) + (1e-106 + 0) = (1 + 1e-106) std::make_tuple(0x3ff0000000000000ull, 0, 0x3950000000000000ull, 0, 0x3ff0000000000000ull, 0x3950000000000000ull, APFloat::rmNearestTiesToEven), // (1 + 1e-106) + (1e-106 + 0) = (1 + 1e-105) std::make_tuple(0x3ff0000000000000ull, 0x3950000000000000ull, 0x3950000000000000ull, 0, 0x3ff0000000000000ull, 0x3960000000000000ull, APFloat::rmNearestTiesToEven), // (1 + 0) + (epsilon + 0) = (1 + epsilon) std::make_tuple(0x3ff0000000000000ull, 0, 0x0000000000000001ull, 0, 0x3ff0000000000000ull, 0x0000000000000001ull, APFloat::rmNearestTiesToEven), // TODO: change 0xf950000000000000 to 0xf940000000000000, when // semPPCDoubleDoubleLegacy is gone. // (DBL_MAX - 1 << (1023 - 105)) + (1 << (1023 - 53) + 0) = DBL_MAX + // 1.11111... << (1023 - 52) std::make_tuple(0x7fefffffffffffffull, 0xf950000000000000ull, 0x7c90000000000000ull, 0, 0x7fefffffffffffffull, 0x7c8ffffffffffffeull, APFloat::rmNearestTiesToEven), // TODO: change 0xf950000000000000 to 0xf940000000000000, when // semPPCDoubleDoubleLegacy is gone. // (1 << (1023 - 53) + 0) + (DBL_MAX - 1 << (1023 - 105)) = DBL_MAX + // 1.11111... << (1023 - 52) std::make_tuple(0x7c90000000000000ull, 0, 0x7fefffffffffffffull, 0xf950000000000000ull, 0x7fefffffffffffffull, 0x7c8ffffffffffffeull, APFloat::rmNearestTiesToEven), }; for (auto Tp : Data) { uint64_t Op1[2], Op2[2], Expected[2]; APFloat::roundingMode RM; std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected[0], Expected[1], RM) = Tp; { APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1)); APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2)); A1.add(A2, RM); EXPECT_EQ(Expected[0], A1.bitcastToAPInt().getRawData()[0]) << formatv("({0:x} + {1:x}) + ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0], Op2[1]) .str(); EXPECT_EQ(Expected[1], A1.bitcastToAPInt().getRawData()[1]) << formatv("({0:x} + {1:x}) + ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0], Op2[1]) .str(); } { APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1)); APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2)); A2.add(A1, RM); EXPECT_EQ(Expected[0], A2.bitcastToAPInt().getRawData()[0]) << formatv("({0:x} + {1:x}) + ({2:x} + {3:x})", Op2[0], Op2[1], Op1[0], Op1[1]) .str(); EXPECT_EQ(Expected[1], A2.bitcastToAPInt().getRawData()[1]) << formatv("({0:x} + {1:x}) + ({2:x} + {3:x})", Op2[0], Op2[1], Op1[0], Op1[1]) .str(); } } } TEST(APFloatTest, PPCDoubleDoubleSubtract) { using DataType = std::tuple; DataType Data[] = { // (1 + 0) - (-1e-105 + 0) = (1 + 1e-105) std::make_tuple(0x3ff0000000000000ull, 0, 0xb960000000000000ull, 0, 0x3ff0000000000000ull, 0x3960000000000000ull, APFloat::rmNearestTiesToEven), // (1 + 0) - (-1e-106 + 0) = (1 + 1e-106) std::make_tuple(0x3ff0000000000000ull, 0, 0xb950000000000000ull, 0, 0x3ff0000000000000ull, 0x3950000000000000ull, APFloat::rmNearestTiesToEven), }; for (auto Tp : Data) { uint64_t Op1[2], Op2[2], Expected[2]; APFloat::roundingMode RM; std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected[0], Expected[1], RM) = Tp; APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1)); APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2)); A1.subtract(A2, RM); EXPECT_EQ(Expected[0], A1.bitcastToAPInt().getRawData()[0]) << formatv("({0:x} + {1:x}) - ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0], Op2[1]) .str(); EXPECT_EQ(Expected[1], A1.bitcastToAPInt().getRawData()[1]) << formatv("({0:x} + {1:x}) - ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0], Op2[1]) .str(); } } TEST(APFloatTest, PPCDoubleDoubleMultiplySpecial) { using DataType = std::tuple; DataType Data[] = { // fcNaN * fcNaN = fcNaN std::make_tuple(0x7ff8000000000000ull, 0, 0x7ff8000000000000ull, 0, APFloat::fcNaN, APFloat::rmNearestTiesToEven), // fcNaN * fcZero = fcNaN std::make_tuple(0x7ff8000000000000ull, 0, 0, 0, APFloat::fcNaN, APFloat::rmNearestTiesToEven), // fcNaN * fcInfinity = fcNaN std::make_tuple(0x7ff8000000000000ull, 0, 0x7ff0000000000000ull, 0, APFloat::fcNaN, APFloat::rmNearestTiesToEven), // fcNaN * fcNormal = fcNaN std::make_tuple(0x7ff8000000000000ull, 0, 0x3ff0000000000000ull, 0, APFloat::fcNaN, APFloat::rmNearestTiesToEven), // fcInfinity * fcInfinity = fcInfinity std::make_tuple(0x7ff0000000000000ull, 0, 0x7ff0000000000000ull, 0, APFloat::fcInfinity, APFloat::rmNearestTiesToEven), // fcInfinity * fcZero = fcNaN std::make_tuple(0x7ff0000000000000ull, 0, 0, 0, APFloat::fcNaN, APFloat::rmNearestTiesToEven), // fcInfinity * fcNormal = fcInfinity std::make_tuple(0x7ff0000000000000ull, 0, 0x3ff0000000000000ull, 0, APFloat::fcInfinity, APFloat::rmNearestTiesToEven), // fcZero * fcZero = fcZero std::make_tuple(0, 0, 0, 0, APFloat::fcZero, APFloat::rmNearestTiesToEven), // fcZero * fcNormal = fcZero std::make_tuple(0, 0, 0x3ff0000000000000ull, 0, APFloat::fcZero, APFloat::rmNearestTiesToEven), }; for (auto Tp : Data) { uint64_t Op1[2], Op2[2]; APFloat::fltCategory Expected; APFloat::roundingMode RM; std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected, RM) = Tp; { APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1)); APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2)); A1.multiply(A2, RM); EXPECT_EQ(Expected, A1.getCategory()) << formatv("({0:x} + {1:x}) * ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0], Op2[1]) .str(); } { APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1)); APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2)); A2.multiply(A1, RM); EXPECT_EQ(Expected, A2.getCategory()) << formatv("({0:x} + {1:x}) * ({2:x} + {3:x})", Op2[0], Op2[1], Op1[0], Op1[1]) .str(); } } } TEST(APFloatTest, PPCDoubleDoubleMultiply) { using DataType = std::tuple; DataType Data[] = { // 1/3 * 3 = 1.0 std::make_tuple(0x3fd5555555555555ull, 0x3c75555555555556ull, 0x4008000000000000ull, 0, 0x3ff0000000000000ull, 0, APFloat::rmNearestTiesToEven), // (1 + epsilon) * (1 + 0) = fcZero std::make_tuple(0x3ff0000000000000ull, 0x0000000000000001ull, 0x3ff0000000000000ull, 0, 0x3ff0000000000000ull, 0x0000000000000001ull, APFloat::rmNearestTiesToEven), // (1 + epsilon) * (1 + epsilon) = 1 + 2 * epsilon std::make_tuple(0x3ff0000000000000ull, 0x0000000000000001ull, 0x3ff0000000000000ull, 0x0000000000000001ull, 0x3ff0000000000000ull, 0x0000000000000002ull, APFloat::rmNearestTiesToEven), // -(1 + epsilon) * (1 + epsilon) = -1 std::make_tuple(0xbff0000000000000ull, 0x0000000000000001ull, 0x3ff0000000000000ull, 0x0000000000000001ull, 0xbff0000000000000ull, 0, APFloat::rmNearestTiesToEven), // (0.5 + 0) * (1 + 2 * epsilon) = 0.5 + epsilon std::make_tuple(0x3fe0000000000000ull, 0, 0x3ff0000000000000ull, 0x0000000000000002ull, 0x3fe0000000000000ull, 0x0000000000000001ull, APFloat::rmNearestTiesToEven), // (0.5 + 0) * (1 + epsilon) = 0.5 std::make_tuple(0x3fe0000000000000ull, 0, 0x3ff0000000000000ull, 0x0000000000000001ull, 0x3fe0000000000000ull, 0, APFloat::rmNearestTiesToEven), // __LDBL_MAX__ * (1 + 1 << 106) = inf std::make_tuple(0x7fefffffffffffffull, 0x7c8ffffffffffffeull, 0x3ff0000000000000ull, 0x3950000000000000ull, 0x7ff0000000000000ull, 0, APFloat::rmNearestTiesToEven), // __LDBL_MAX__ * (1 + 1 << 107) > __LDBL_MAX__, but not inf, yes =_=||| std::make_tuple(0x7fefffffffffffffull, 0x7c8ffffffffffffeull, 0x3ff0000000000000ull, 0x3940000000000000ull, 0x7fefffffffffffffull, 0x7c8fffffffffffffull, APFloat::rmNearestTiesToEven), // __LDBL_MAX__ * (1 + 1 << 108) = __LDBL_MAX__ std::make_tuple(0x7fefffffffffffffull, 0x7c8ffffffffffffeull, 0x3ff0000000000000ull, 0x3930000000000000ull, 0x7fefffffffffffffull, 0x7c8ffffffffffffeull, APFloat::rmNearestTiesToEven), }; for (auto Tp : Data) { uint64_t Op1[2], Op2[2], Expected[2]; APFloat::roundingMode RM; std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected[0], Expected[1], RM) = Tp; { APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1)); APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2)); A1.multiply(A2, RM); EXPECT_EQ(Expected[0], A1.bitcastToAPInt().getRawData()[0]) << formatv("({0:x} + {1:x}) * ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0], Op2[1]) .str(); EXPECT_EQ(Expected[1], A1.bitcastToAPInt().getRawData()[1]) << formatv("({0:x} + {1:x}) * ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0], Op2[1]) .str(); } { APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1)); APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2)); A2.multiply(A1, RM); EXPECT_EQ(Expected[0], A2.bitcastToAPInt().getRawData()[0]) << formatv("({0:x} + {1:x}) * ({2:x} + {3:x})", Op2[0], Op2[1], Op1[0], Op1[1]) .str(); EXPECT_EQ(Expected[1], A2.bitcastToAPInt().getRawData()[1]) << formatv("({0:x} + {1:x}) * ({2:x} + {3:x})", Op2[0], Op2[1], Op1[0], Op1[1]) .str(); } } } TEST(APFloatTest, PPCDoubleDoubleDivide) { using DataType = std::tuple; // TODO: Only a sanity check for now. Add more edge cases when the // double-double algorithm is implemented. DataType Data[] = { // 1 / 3 = 1/3 std::make_tuple(0x3ff0000000000000ull, 0, 0x4008000000000000ull, 0, 0x3fd5555555555555ull, 0x3c75555555555556ull, APFloat::rmNearestTiesToEven), }; for (auto Tp : Data) { uint64_t Op1[2], Op2[2], Expected[2]; APFloat::roundingMode RM; std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected[0], Expected[1], RM) = Tp; APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1)); APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2)); A1.divide(A2, RM); EXPECT_EQ(Expected[0], A1.bitcastToAPInt().getRawData()[0]) << formatv("({0:x} + {1:x}) / ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0], Op2[1]) .str(); EXPECT_EQ(Expected[1], A1.bitcastToAPInt().getRawData()[1]) << formatv("({0:x} + {1:x}) / ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0], Op2[1]) .str(); } } TEST(APFloatTest, PPCDoubleDoubleRemainder) { using DataType = std::tuple; DataType Data[] = { // remainder(3.0 + 3.0 << 53, 1.25 + 1.25 << 53) = (0.5 + 0.5 << 53) std::make_tuple(0x4008000000000000ull, 0x3cb8000000000000ull, 0x3ff4000000000000ull, 0x3ca4000000000000ull, 0x3fe0000000000000ull, 0x3c90000000000000ull), // remainder(3.0 + 3.0 << 53, 1.75 + 1.75 << 53) = (-0.5 - 0.5 << 53) std::make_tuple(0x4008000000000000ull, 0x3cb8000000000000ull, 0x3ffc000000000000ull, 0x3cac000000000000ull, 0xbfe0000000000000ull, 0xbc90000000000000ull), }; for (auto Tp : Data) { uint64_t Op1[2], Op2[2], Expected[2]; std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected[0], Expected[1]) = Tp; APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1)); APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2)); A1.remainder(A2); EXPECT_EQ(Expected[0], A1.bitcastToAPInt().getRawData()[0]) << formatv("remainder({0:x} + {1:x}), ({2:x} + {3:x}))", Op1[0], Op1[1], Op2[0], Op2[1]) .str(); EXPECT_EQ(Expected[1], A1.bitcastToAPInt().getRawData()[1]) << formatv("remainder(({0:x} + {1:x}), ({2:x} + {3:x}))", Op1[0], Op1[1], Op2[0], Op2[1]) .str(); } } TEST(APFloatTest, PPCDoubleDoubleMod) { using DataType = std::tuple; DataType Data[] = { // mod(3.0 + 3.0 << 53, 1.25 + 1.25 << 53) = (0.5 + 0.5 << 53) std::make_tuple(0x4008000000000000ull, 0x3cb8000000000000ull, 0x3ff4000000000000ull, 0x3ca4000000000000ull, 0x3fe0000000000000ull, 0x3c90000000000000ull), // mod(3.0 + 3.0 << 53, 1.75 + 1.75 << 53) = (1.25 + 1.25 << 53) // 0xbc98000000000000 doesn't seem right, but it's what we currently have. // TODO: investigate std::make_tuple(0x4008000000000000ull, 0x3cb8000000000000ull, 0x3ffc000000000000ull, 0x3cac000000000000ull, 0x3ff4000000000001ull, 0xbc98000000000000ull), }; for (auto Tp : Data) { uint64_t Op1[2], Op2[2], Expected[2]; std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected[0], Expected[1]) = Tp; APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1)); APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2)); A1.mod(A2); EXPECT_EQ(Expected[0], A1.bitcastToAPInt().getRawData()[0]) << formatv("fmod(({0:x} + {1:x}), ({2:x} + {3:x}))", Op1[0], Op1[1], Op2[0], Op2[1]) .str(); EXPECT_EQ(Expected[1], A1.bitcastToAPInt().getRawData()[1]) << formatv("fmod(({0:x} + {1:x}), ({2:x} + {3:x}))", Op1[0], Op1[1], Op2[0], Op2[1]) .str(); } } TEST(APFloatTest, PPCDoubleDoubleFMA) { // Sanity check for now. APFloat A(APFloat::PPCDoubleDouble(), "2"); A.fusedMultiplyAdd(APFloat(APFloat::PPCDoubleDouble(), "3"), APFloat(APFloat::PPCDoubleDouble(), "4"), APFloat::rmNearestTiesToEven); EXPECT_EQ(APFloat::cmpEqual, APFloat(APFloat::PPCDoubleDouble(), "10").compare(A)); } TEST(APFloatTest, PPCDoubleDoubleRoundToIntegral) { { APFloat A(APFloat::PPCDoubleDouble(), "1.5"); A.roundToIntegral(APFloat::rmNearestTiesToEven); EXPECT_EQ(APFloat::cmpEqual, APFloat(APFloat::PPCDoubleDouble(), "2").compare(A)); } { APFloat A(APFloat::PPCDoubleDouble(), "2.5"); A.roundToIntegral(APFloat::rmNearestTiesToEven); EXPECT_EQ(APFloat::cmpEqual, APFloat(APFloat::PPCDoubleDouble(), "2").compare(A)); } } TEST(APFloatTest, PPCDoubleDoubleCompare) { using DataType = std::tuple; DataType Data[] = { // (1 + 0) = (1 + 0) std::make_tuple(0x3ff0000000000000ull, 0, 0x3ff0000000000000ull, 0, APFloat::cmpEqual), // (1 + 0) < (1.00...1 + 0) std::make_tuple(0x3ff0000000000000ull, 0, 0x3ff0000000000001ull, 0, APFloat::cmpLessThan), // (1.00...1 + 0) > (1 + 0) std::make_tuple(0x3ff0000000000001ull, 0, 0x3ff0000000000000ull, 0, APFloat::cmpGreaterThan), // (1 + 0) < (1 + epsilon) std::make_tuple(0x3ff0000000000000ull, 0, 0x3ff0000000000001ull, 0x0000000000000001ull, APFloat::cmpLessThan), // NaN != NaN std::make_tuple(0x7ff8000000000000ull, 0, 0x7ff8000000000000ull, 0, APFloat::cmpUnordered), // (1 + 0) != NaN std::make_tuple(0x3ff0000000000000ull, 0, 0x7ff8000000000000ull, 0, APFloat::cmpUnordered), // Inf = Inf std::make_tuple(0x7ff0000000000000ull, 0, 0x7ff0000000000000ull, 0, APFloat::cmpEqual), }; for (auto Tp : Data) { uint64_t Op1[2], Op2[2]; APFloat::cmpResult Expected; std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected) = Tp; APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1)); APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2)); EXPECT_EQ(Expected, A1.compare(A2)) << formatv("compare(({0:x} + {1:x}), ({2:x} + {3:x}))", Op1[0], Op1[1], Op2[0], Op2[1]) .str(); } } TEST(APFloatTest, PPCDoubleDoubleBitwiseIsEqual) { using DataType = std::tuple; DataType Data[] = { // (1 + 0) = (1 + 0) std::make_tuple(0x3ff0000000000000ull, 0, 0x3ff0000000000000ull, 0, true), // (1 + 0) != (1.00...1 + 0) std::make_tuple(0x3ff0000000000000ull, 0, 0x3ff0000000000001ull, 0, false), // NaN = NaN std::make_tuple(0x7ff8000000000000ull, 0, 0x7ff8000000000000ull, 0, true), // NaN != NaN with a different bit pattern std::make_tuple(0x7ff8000000000000ull, 0, 0x7ff8000000000000ull, 0x3ff0000000000000ull, false), // Inf = Inf std::make_tuple(0x7ff0000000000000ull, 0, 0x7ff0000000000000ull, 0, true), }; for (auto Tp : Data) { uint64_t Op1[2], Op2[2]; bool Expected; std::tie(Op1[0], Op1[1], Op2[0], Op2[1], Expected) = Tp; APFloat A1(APFloat::PPCDoubleDouble(), APInt(128, 2, Op1)); APFloat A2(APFloat::PPCDoubleDouble(), APInt(128, 2, Op2)); EXPECT_EQ(Expected, A1.bitwiseIsEqual(A2)) << formatv("({0:x} + {1:x}) = ({2:x} + {3:x})", Op1[0], Op1[1], Op2[0], Op2[1]) .str(); } } TEST(APFloatTest, PPCDoubleDoubleHashValue) { uint64_t Data1[] = {0x3ff0000000000001ull, 0x0000000000000001ull}; uint64_t Data2[] = {0x3ff0000000000001ull, 0}; // The hash values are *hopefully* different. EXPECT_NE( hash_value(APFloat(APFloat::PPCDoubleDouble(), APInt(128, 2, Data1))), hash_value(APFloat(APFloat::PPCDoubleDouble(), APInt(128, 2, Data2)))); } TEST(APFloatTest, PPCDoubleDoubleChangeSign) { uint64_t Data[] = { 0x400f000000000000ull, 0xbcb0000000000000ull, }; APFloat Float(APFloat::PPCDoubleDouble(), APInt(128, 2, Data)); { APFloat Actual = APFloat::copySign(Float, APFloat(APFloat::IEEEdouble(), "1")); EXPECT_EQ(0x400f000000000000ull, Actual.bitcastToAPInt().getRawData()[0]); EXPECT_EQ(0xbcb0000000000000ull, Actual.bitcastToAPInt().getRawData()[1]); } { APFloat Actual = APFloat::copySign(Float, APFloat(APFloat::IEEEdouble(), "-1")); EXPECT_EQ(0xc00f000000000000ull, Actual.bitcastToAPInt().getRawData()[0]); EXPECT_EQ(0x3cb0000000000000ull, Actual.bitcastToAPInt().getRawData()[1]); } } TEST(APFloatTest, PPCDoubleDoubleFactories) { { uint64_t Data[] = { 0, 0, }; EXPECT_EQ(APInt(128, 2, Data), APFloat::getZero(APFloat::PPCDoubleDouble()).bitcastToAPInt()); } { uint64_t Data[] = { 0x7fefffffffffffffull, 0x7c8ffffffffffffeull, }; EXPECT_EQ(APInt(128, 2, Data), APFloat::getLargest(APFloat::PPCDoubleDouble()).bitcastToAPInt()); } { uint64_t Data[] = { 0x0000000000000001ull, 0, }; EXPECT_EQ( APInt(128, 2, Data), APFloat::getSmallest(APFloat::PPCDoubleDouble()).bitcastToAPInt()); } { uint64_t Data[] = {0x0360000000000000ull, 0}; EXPECT_EQ(APInt(128, 2, Data), APFloat::getSmallestNormalized(APFloat::PPCDoubleDouble()) .bitcastToAPInt()); } { uint64_t Data[] = { 0x8000000000000000ull, 0x0000000000000000ull, }; EXPECT_EQ( APInt(128, 2, Data), APFloat::getZero(APFloat::PPCDoubleDouble(), true).bitcastToAPInt()); } { uint64_t Data[] = { 0xffefffffffffffffull, 0xfc8ffffffffffffeull, }; EXPECT_EQ( APInt(128, 2, Data), APFloat::getLargest(APFloat::PPCDoubleDouble(), true).bitcastToAPInt()); } { uint64_t Data[] = { 0x8000000000000001ull, 0x0000000000000000ull, }; EXPECT_EQ(APInt(128, 2, Data), APFloat::getSmallest(APFloat::PPCDoubleDouble(), true) .bitcastToAPInt()); } { uint64_t Data[] = { 0x8360000000000000ull, 0x0000000000000000ull, }; EXPECT_EQ(APInt(128, 2, Data), APFloat::getSmallestNormalized(APFloat::PPCDoubleDouble(), true) .bitcastToAPInt()); } EXPECT_TRUE(APFloat::getSmallest(APFloat::PPCDoubleDouble()).isSmallest()); EXPECT_TRUE(APFloat::getLargest(APFloat::PPCDoubleDouble()).isLargest()); } TEST(APFloatTest, PPCDoubleDoubleIsDenormal) { EXPECT_TRUE(APFloat::getSmallest(APFloat::PPCDoubleDouble()).isDenormal()); EXPECT_FALSE(APFloat::getLargest(APFloat::PPCDoubleDouble()).isDenormal()); EXPECT_FALSE( APFloat::getSmallestNormalized(APFloat::PPCDoubleDouble()).isDenormal()); { // (4 + 3) is not normalized uint64_t Data[] = { 0x4010000000000000ull, 0x4008000000000000ull, }; EXPECT_TRUE( APFloat(APFloat::PPCDoubleDouble(), APInt(128, 2, Data)).isDenormal()); } } TEST(APFloatTest, PPCDoubleDoubleScalbn) { // 3.0 + 3.0 << 53 uint64_t Input[] = { 0x4008000000000000ull, 0x3cb8000000000000ull, }; APFloat Result = scalbn(APFloat(APFloat::PPCDoubleDouble(), APInt(128, 2, Input)), 1, APFloat::rmNearestTiesToEven); // 6.0 + 6.0 << 53 EXPECT_EQ(0x4018000000000000ull, Result.bitcastToAPInt().getRawData()[0]); EXPECT_EQ(0x3cc8000000000000ull, Result.bitcastToAPInt().getRawData()[1]); } TEST(APFloatTest, PPCDoubleDoubleFrexp) { // 3.0 + 3.0 << 53 uint64_t Input[] = { 0x4008000000000000ull, 0x3cb8000000000000ull, }; int Exp; // 0.75 + 0.75 << 53 APFloat Result = frexp(APFloat(APFloat::PPCDoubleDouble(), APInt(128, 2, Input)), Exp, APFloat::rmNearestTiesToEven); EXPECT_EQ(2, Exp); EXPECT_EQ(0x3fe8000000000000ull, Result.bitcastToAPInt().getRawData()[0]); EXPECT_EQ(0x3c98000000000000ull, Result.bitcastToAPInt().getRawData()[1]); } }