//===- Local.cpp - Unit tests for Local -----------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/Local.h" #include "llvm/Analysis/DomTreeUpdater.h" #include "llvm/Analysis/PostDominators.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/AsmParser/Parser.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/DIBuilder.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Verifier.h" #include "llvm/Support/SourceMgr.h" #include "gtest/gtest.h" using namespace llvm; TEST(Local, RecursivelyDeleteDeadPHINodes) { LLVMContext C; IRBuilder<> builder(C); // Make blocks BasicBlock *bb0 = BasicBlock::Create(C); BasicBlock *bb1 = BasicBlock::Create(C); builder.SetInsertPoint(bb0); PHINode *phi = builder.CreatePHI(Type::getInt32Ty(C), 2); BranchInst *br0 = builder.CreateCondBr(builder.getTrue(), bb0, bb1); builder.SetInsertPoint(bb1); BranchInst *br1 = builder.CreateBr(bb0); phi->addIncoming(phi, bb0); phi->addIncoming(phi, bb1); // The PHI will be removed EXPECT_TRUE(RecursivelyDeleteDeadPHINode(phi)); // Make sure the blocks only contain the branches EXPECT_EQ(&bb0->front(), br0); EXPECT_EQ(&bb1->front(), br1); builder.SetInsertPoint(bb0); phi = builder.CreatePHI(Type::getInt32Ty(C), 0); EXPECT_TRUE(RecursivelyDeleteDeadPHINode(phi)); builder.SetInsertPoint(bb0); phi = builder.CreatePHI(Type::getInt32Ty(C), 0); builder.CreateAdd(phi, phi); EXPECT_TRUE(RecursivelyDeleteDeadPHINode(phi)); bb0->dropAllReferences(); bb1->dropAllReferences(); delete bb0; delete bb1; } TEST(Local, RemoveDuplicatePHINodes) { LLVMContext C; IRBuilder<> B(C); std::unique_ptr F( Function::Create(FunctionType::get(B.getVoidTy(), false), GlobalValue::ExternalLinkage, "F")); BasicBlock *Entry(BasicBlock::Create(C, "", F.get())); BasicBlock *BB(BasicBlock::Create(C, "", F.get())); BranchInst::Create(BB, Entry); B.SetInsertPoint(BB); AssertingVH P1 = B.CreatePHI(Type::getInt32Ty(C), 2); P1->addIncoming(B.getInt32(42), Entry); PHINode *P2 = B.CreatePHI(Type::getInt32Ty(C), 2); P2->addIncoming(B.getInt32(42), Entry); AssertingVH P3 = B.CreatePHI(Type::getInt32Ty(C), 2); P3->addIncoming(B.getInt32(42), Entry); P3->addIncoming(B.getInt32(23), BB); PHINode *P4 = B.CreatePHI(Type::getInt32Ty(C), 2); P4->addIncoming(B.getInt32(42), Entry); P4->addIncoming(B.getInt32(23), BB); P1->addIncoming(P3, BB); P2->addIncoming(P4, BB); BranchInst::Create(BB, BB); // Verify that we can eliminate PHIs that become duplicates after chaning PHIs // downstream. EXPECT_TRUE(EliminateDuplicatePHINodes(BB)); EXPECT_EQ(3U, BB->size()); } static std::unique_ptr parseIR(LLVMContext &C, const char *IR) { SMDiagnostic Err; std::unique_ptr Mod = parseAssemblyString(IR, Err, C); if (!Mod) Err.print("UtilsTests", errs()); return Mod; } TEST(Local, ReplaceDbgDeclare) { LLVMContext C; // Original C source to get debug info for a local variable: // void f() { int x; } std::unique_ptr M = parseIR(C, R"( define void @f() !dbg !8 { entry: %x = alloca i32, align 4 call void @llvm.dbg.declare(metadata i32* %x, metadata !11, metadata !DIExpression()), !dbg !13 call void @llvm.dbg.declare(metadata i32* %x, metadata !11, metadata !DIExpression()), !dbg !13 ret void, !dbg !14 } declare void @llvm.dbg.declare(metadata, metadata, metadata) !llvm.dbg.cu = !{!0} !llvm.module.flags = !{!3, !4} !0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang version 6.0.0", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !2) !1 = !DIFile(filename: "t2.c", directory: "foo") !2 = !{} !3 = !{i32 2, !"Dwarf Version", i32 4} !4 = !{i32 2, !"Debug Info Version", i32 3} !8 = distinct !DISubprogram(name: "f", scope: !1, file: !1, line: 1, type: !9, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: false, unit: !0, retainedNodes: !2) !9 = !DISubroutineType(types: !10) !10 = !{null} !11 = !DILocalVariable(name: "x", scope: !8, file: !1, line: 2, type: !12) !12 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed) !13 = !DILocation(line: 2, column: 7, scope: !8) !14 = !DILocation(line: 3, column: 1, scope: !8) )"); auto *GV = M->getNamedValue("f"); ASSERT_TRUE(GV); auto *F = dyn_cast(GV); ASSERT_TRUE(F); Instruction *Inst = &F->front().front(); auto *AI = dyn_cast(Inst); ASSERT_TRUE(AI); Inst = Inst->getNextNode()->getNextNode(); ASSERT_TRUE(Inst); auto *DII = dyn_cast(Inst); ASSERT_TRUE(DII); Value *NewBase = Constant::getNullValue(Type::getInt32PtrTy(C)); DIBuilder DIB(*M); replaceDbgDeclare(AI, NewBase, DIB, DIExpression::ApplyOffset, 0); // There should be exactly two dbg.declares. int Declares = 0; for (const Instruction &I : F->front()) if (isa(I)) Declares++; EXPECT_EQ(2, Declares); } /// Build the dominator tree for the function and run the Test. static void runWithDomTree( Module &M, StringRef FuncName, function_ref Test) { auto *F = M.getFunction(FuncName); ASSERT_NE(F, nullptr) << "Could not find " << FuncName; // Compute the dominator tree for the function. DominatorTree DT(*F); Test(*F, &DT); } TEST(Local, MergeBasicBlockIntoOnlyPred) { LLVMContext C; std::unique_ptr M; auto resetIR = [&]() { M = parseIR(C, R"( define i32 @f(i8* %str) { entry: br label %bb2.i bb2.i: ; preds = %bb4.i, %entry br i1 false, label %bb4.i, label %base2flt.exit204 bb4.i: ; preds = %bb2.i br i1 false, label %base2flt.exit204, label %bb2.i bb10.i196.bb7.i197_crit_edge: ; No predecessors! br label %bb7.i197 bb7.i197: ; preds = %bb10.i196.bb7.i197_crit_edge %.reg2mem.0 = phi i32 [ %.reg2mem.0, %bb10.i196.bb7.i197_crit_edge ] br i1 undef, label %base2flt.exit204, label %base2flt.exit204 base2flt.exit204: ; preds = %bb7.i197, %bb7.i197, %bb2.i, %bb4.i ret i32 0 } )"); }; auto resetIRReplaceEntry = [&]() { M = parseIR(C, R"( define i32 @f() { entry: br label %bb2.i bb2.i: ; preds = %entry ret i32 0 } )"); }; auto Test = [&](Function &F, DomTreeUpdater &DTU) { for (Function::iterator I = F.begin(), E = F.end(); I != E;) { BasicBlock *BB = &*I++; BasicBlock *SinglePred = BB->getSinglePredecessor(); if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; BranchInst *Term = dyn_cast(SinglePred->getTerminator()); if (Term && !Term->isConditional()) MergeBasicBlockIntoOnlyPred(BB, &DTU); } if (DTU.hasDomTree()) { EXPECT_TRUE(DTU.getDomTree().verify()); } if (DTU.hasPostDomTree()) { EXPECT_TRUE(DTU.getPostDomTree().verify()); } }; // Test MergeBasicBlockIntoOnlyPred working under Eager UpdateStrategy with // both DT and PDT. resetIR(); runWithDomTree(*M, "f", [&](Function &F, DominatorTree *DT) { PostDominatorTree PDT = PostDominatorTree(F); DomTreeUpdater DTU(*DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); Test(F, DTU); }); // Test MergeBasicBlockIntoOnlyPred working under Eager UpdateStrategy with // DT. resetIR(); runWithDomTree(*M, "f", [&](Function &F, DominatorTree *DT) { DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Eager); Test(F, DTU); }); // Test MergeBasicBlockIntoOnlyPred working under Eager UpdateStrategy with // PDT. resetIR(); runWithDomTree(*M, "f", [&](Function &F, DominatorTree *DT) { PostDominatorTree PDT = PostDominatorTree(F); DomTreeUpdater DTU(PDT, DomTreeUpdater::UpdateStrategy::Eager); Test(F, DTU); }); // Test MergeBasicBlockIntoOnlyPred working under Lazy UpdateStrategy with // both DT and PDT. resetIR(); runWithDomTree(*M, "f", [&](Function &F, DominatorTree *DT) { PostDominatorTree PDT = PostDominatorTree(F); DomTreeUpdater DTU(*DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy); Test(F, DTU); }); // Test MergeBasicBlockIntoOnlyPred working under Lazy UpdateStrategy with // PDT. resetIR(); runWithDomTree(*M, "f", [&](Function &F, DominatorTree *DT) { PostDominatorTree PDT = PostDominatorTree(F); DomTreeUpdater DTU(PDT, DomTreeUpdater::UpdateStrategy::Lazy); Test(F, DTU); }); // Test MergeBasicBlockIntoOnlyPred working under Lazy UpdateStrategy with DT. resetIR(); runWithDomTree(*M, "f", [&](Function &F, DominatorTree *DT) { DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); Test(F, DTU); }); // Test MergeBasicBlockIntoOnlyPred working under Eager UpdateStrategy with // both DT and PDT. resetIRReplaceEntry(); runWithDomTree(*M, "f", [&](Function &F, DominatorTree *DT) { PostDominatorTree PDT = PostDominatorTree(F); DomTreeUpdater DTU(*DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); Test(F, DTU); }); // Test MergeBasicBlockIntoOnlyPred working under Eager UpdateStrategy with // DT. resetIRReplaceEntry(); runWithDomTree(*M, "f", [&](Function &F, DominatorTree *DT) { DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Eager); Test(F, DTU); }); // Test MergeBasicBlockIntoOnlyPred working under Eager UpdateStrategy with // PDT. resetIRReplaceEntry(); runWithDomTree(*M, "f", [&](Function &F, DominatorTree *DT) { PostDominatorTree PDT = PostDominatorTree(F); DomTreeUpdater DTU(PDT, DomTreeUpdater::UpdateStrategy::Eager); Test(F, DTU); }); // Test MergeBasicBlockIntoOnlyPred working under Lazy UpdateStrategy with // both DT and PDT. resetIRReplaceEntry(); runWithDomTree(*M, "f", [&](Function &F, DominatorTree *DT) { PostDominatorTree PDT = PostDominatorTree(F); DomTreeUpdater DTU(*DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy); Test(F, DTU); }); // Test MergeBasicBlockIntoOnlyPred working under Lazy UpdateStrategy with // PDT. resetIRReplaceEntry(); runWithDomTree(*M, "f", [&](Function &F, DominatorTree *DT) { PostDominatorTree PDT = PostDominatorTree(F); DomTreeUpdater DTU(PDT, DomTreeUpdater::UpdateStrategy::Lazy); Test(F, DTU); }); // Test MergeBasicBlockIntoOnlyPred working under Lazy UpdateStrategy with DT. resetIRReplaceEntry(); runWithDomTree(*M, "f", [&](Function &F, DominatorTree *DT) { DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); Test(F, DTU); }); } TEST(Local, ConstantFoldTerminator) { LLVMContext C; std::unique_ptr M = parseIR(C, R"( define void @br_same_dest() { entry: br i1 false, label %bb0, label %bb0 bb0: ret void } define void @br_different_dest() { entry: br i1 true, label %bb0, label %bb1 bb0: br label %exit bb1: br label %exit exit: ret void } define void @switch_2_different_dest() { entry: switch i32 0, label %default [ i32 0, label %bb0 ] default: ret void bb0: ret void } define void @switch_2_different_dest_default() { entry: switch i32 1, label %default [ i32 0, label %bb0 ] default: ret void bb0: ret void } define void @switch_3_different_dest() { entry: switch i32 0, label %default [ i32 0, label %bb0 i32 1, label %bb1 ] default: ret void bb0: ret void bb1: ret void } define void @switch_variable_2_default_dest(i32 %arg) { entry: switch i32 %arg, label %default [ i32 0, label %default ] default: ret void } define void @switch_constant_2_default_dest() { entry: switch i32 1, label %default [ i32 0, label %default ] default: ret void } define void @switch_constant_3_repeated_dest() { entry: switch i32 0, label %default [ i32 0, label %bb0 i32 1, label %bb0 ] bb0: ret void default: ret void } define void @indirectbr() { entry: indirectbr i8* blockaddress(@indirectbr, %bb0), [label %bb0, label %bb1] bb0: ret void bb1: ret void } define void @indirectbr_repeated() { entry: indirectbr i8* blockaddress(@indirectbr_repeated, %bb0), [label %bb0, label %bb0] bb0: ret void } define void @indirectbr_unreachable() { entry: indirectbr i8* blockaddress(@indirectbr_unreachable, %bb0), [label %bb1] bb0: ret void bb1: ret void } )"); auto CFAllTerminatorsEager = [&](Function &F, DominatorTree *DT) { PostDominatorTree PDT = PostDominatorTree(F); DomTreeUpdater DTU(*DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); for (Function::iterator I = F.begin(), E = F.end(); I != E;) { BasicBlock *BB = &*I++; ConstantFoldTerminator(BB, true, nullptr, &DTU); } EXPECT_TRUE(DTU.getDomTree().verify()); EXPECT_TRUE(DTU.getPostDomTree().verify()); }; auto CFAllTerminatorsLazy = [&](Function &F, DominatorTree *DT) { PostDominatorTree PDT = PostDominatorTree(F); DomTreeUpdater DTU(*DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy); for (Function::iterator I = F.begin(), E = F.end(); I != E;) { BasicBlock *BB = &*I++; ConstantFoldTerminator(BB, true, nullptr, &DTU); } EXPECT_TRUE(DTU.getDomTree().verify()); EXPECT_TRUE(DTU.getPostDomTree().verify()); }; // Test ConstantFoldTerminator under Eager UpdateStrategy. runWithDomTree(*M, "br_same_dest", CFAllTerminatorsEager); runWithDomTree(*M, "br_different_dest", CFAllTerminatorsEager); runWithDomTree(*M, "switch_2_different_dest", CFAllTerminatorsEager); runWithDomTree(*M, "switch_2_different_dest_default", CFAllTerminatorsEager); runWithDomTree(*M, "switch_3_different_dest", CFAllTerminatorsEager); runWithDomTree(*M, "switch_variable_2_default_dest", CFAllTerminatorsEager); runWithDomTree(*M, "switch_constant_2_default_dest", CFAllTerminatorsEager); runWithDomTree(*M, "switch_constant_3_repeated_dest", CFAllTerminatorsEager); runWithDomTree(*M, "indirectbr", CFAllTerminatorsEager); runWithDomTree(*M, "indirectbr_repeated", CFAllTerminatorsEager); runWithDomTree(*M, "indirectbr_unreachable", CFAllTerminatorsEager); // Test ConstantFoldTerminator under Lazy UpdateStrategy. runWithDomTree(*M, "br_same_dest", CFAllTerminatorsLazy); runWithDomTree(*M, "br_different_dest", CFAllTerminatorsLazy); runWithDomTree(*M, "switch_2_different_dest", CFAllTerminatorsLazy); runWithDomTree(*M, "switch_2_different_dest_default", CFAllTerminatorsLazy); runWithDomTree(*M, "switch_3_different_dest", CFAllTerminatorsLazy); runWithDomTree(*M, "switch_variable_2_default_dest", CFAllTerminatorsLazy); runWithDomTree(*M, "switch_constant_2_default_dest", CFAllTerminatorsLazy); runWithDomTree(*M, "switch_constant_3_repeated_dest", CFAllTerminatorsLazy); runWithDomTree(*M, "indirectbr", CFAllTerminatorsLazy); runWithDomTree(*M, "indirectbr_repeated", CFAllTerminatorsLazy); runWithDomTree(*M, "indirectbr_unreachable", CFAllTerminatorsLazy); } struct SalvageDebugInfoTest : ::testing::Test { LLVMContext C; std::unique_ptr M; Function *F = nullptr; void SetUp() { M = parseIR(C, R"( define void @f() !dbg !8 { entry: %x = add i32 0, 1 %y = add i32 %x, 2 call void @llvm.dbg.value(metadata i32 %x, metadata !11, metadata !DIExpression()), !dbg !13 call void @llvm.dbg.value(metadata i32 %y, metadata !11, metadata !DIExpression()), !dbg !13 ret void, !dbg !14 } declare void @llvm.dbg.value(metadata, metadata, metadata) !llvm.dbg.cu = !{!0} !llvm.module.flags = !{!3, !4} !0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang version 6.0.0", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !2) !1 = !DIFile(filename: "t2.c", directory: "foo") !2 = !{} !3 = !{i32 2, !"Dwarf Version", i32 4} !4 = !{i32 2, !"Debug Info Version", i32 3} !8 = distinct !DISubprogram(name: "f", scope: !1, file: !1, line: 1, type: !9, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: false, unit: !0, retainedNodes: !2) !9 = !DISubroutineType(types: !10) !10 = !{null} !11 = !DILocalVariable(name: "x", scope: !8, file: !1, line: 2, type: !12) !12 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed) !13 = !DILocation(line: 2, column: 7, scope: !8) !14 = !DILocation(line: 3, column: 1, scope: !8) )"); auto *GV = M->getNamedValue("f"); ASSERT_TRUE(GV); F = dyn_cast(GV); ASSERT_TRUE(F); } bool doesDebugValueDescribeX(const DbgValueInst &DI) { const auto &CI = *cast(DI.getValue()); if (CI.isZero()) return DI.getExpression()->getElements().equals( {dwarf::DW_OP_plus_uconst, 1, dwarf::DW_OP_stack_value}); else if (CI.isOneValue()) return DI.getExpression()->getElements().empty(); return false; } bool doesDebugValueDescribeY(const DbgValueInst &DI) { const auto &CI = *cast(DI.getValue()); if (CI.isZero()) return DI.getExpression()->getElements().equals( {dwarf::DW_OP_plus_uconst, 1, dwarf::DW_OP_plus_uconst, 2, dwarf::DW_OP_stack_value}); else if (CI.isOneValue()) return DI.getExpression()->getElements().equals( {dwarf::DW_OP_plus_uconst, 2, dwarf::DW_OP_stack_value}); return false; } void verifyDebugValuesAreSalvaged() { // Check that the debug values for %x and %y are preserved. bool FoundX = false; bool FoundY = false; for (const Instruction &I : F->front()) { auto DI = dyn_cast(&I); if (!DI) { // The function should only contain debug values and a terminator. ASSERT_TRUE(I.isTerminator()); continue; } EXPECT_EQ(DI->getVariable()->getName(), "x"); FoundX |= doesDebugValueDescribeX(*DI); FoundY |= doesDebugValueDescribeY(*DI); } ASSERT_TRUE(FoundX); ASSERT_TRUE(FoundY); } }; TEST_F(SalvageDebugInfoTest, RecursiveInstDeletion) { Instruction *Inst = &F->front().front(); Inst = Inst->getNextNode(); // Get %y = add ... ASSERT_TRUE(Inst); bool Deleted = RecursivelyDeleteTriviallyDeadInstructions(Inst); ASSERT_TRUE(Deleted); verifyDebugValuesAreSalvaged(); } TEST_F(SalvageDebugInfoTest, RecursiveBlockSimplification) { BasicBlock *BB = &F->front(); ASSERT_TRUE(BB); bool Deleted = SimplifyInstructionsInBlock(BB); ASSERT_TRUE(Deleted); verifyDebugValuesAreSalvaged(); } TEST(Local, ChangeToUnreachable) { LLVMContext Ctx; std::unique_ptr M = parseIR(Ctx, R"( define internal void @foo() !dbg !6 { entry: ret void, !dbg !8 } !llvm.dbg.cu = !{!0} !llvm.debugify = !{!3, !4} !llvm.module.flags = !{!5} !0 = distinct !DICompileUnit(language: DW_LANG_C, file: !1, producer: "debugify", isOptimized: true, runtimeVersion: 0, emissionKind: FullDebug, enums: !2) !1 = !DIFile(filename: "test.ll", directory: "/") !2 = !{} !3 = !{i32 1} !4 = !{i32 0} !5 = !{i32 2, !"Debug Info Version", i32 3} !6 = distinct !DISubprogram(name: "foo", linkageName: "foo", scope: null, file: !1, line: 1, type: !7, isLocal: true, isDefinition: true, scopeLine: 1, isOptimized: true, unit: !0, retainedNodes: !2) !7 = !DISubroutineType(types: !2) !8 = !DILocation(line: 1, column: 1, scope: !6) )"); bool BrokenDebugInfo = true; verifyModule(*M, &errs(), &BrokenDebugInfo); ASSERT_FALSE(BrokenDebugInfo); Function &F = *cast(M->getNamedValue("foo")); BasicBlock &BB = F.front(); Instruction &A = BB.front(); DebugLoc DLA = A.getDebugLoc(); ASSERT_TRUE(isa(&A)); // One instruction should be affected. EXPECT_EQ(changeToUnreachable(&A, /*UseLLVMTrap*/false), 1U); Instruction &B = BB.front(); // There should be an uncreachable instruction. ASSERT_TRUE(isa(&B)); DebugLoc DLB = B.getDebugLoc(); EXPECT_EQ(DLA, DLB); } TEST(Local, ReplaceAllDbgUsesWith) { using namespace llvm::dwarf; LLVMContext Ctx; // Note: The datalayout simulates Darwin/x86_64. std::unique_ptr M = parseIR(Ctx, R"( target datalayout = "e-m:o-i63:64-f80:128-n8:16:32:64-S128" declare i32 @escape(i32) define void @f() !dbg !6 { entry: %a = add i32 0, 1, !dbg !15 call void @llvm.dbg.value(metadata i32 %a, metadata !9, metadata !DIExpression()), !dbg !15 %b = add i64 0, 1, !dbg !16 call void @llvm.dbg.value(metadata i64 %b, metadata !11, metadata !DIExpression()), !dbg !16 call void @llvm.dbg.value(metadata i64 %b, metadata !11, metadata !DIExpression(DW_OP_lit0, DW_OP_mul)), !dbg !16 call void @llvm.dbg.value(metadata i64 %b, metadata !11, metadata !DIExpression(DW_OP_lit0, DW_OP_mul, DW_OP_stack_value)), !dbg !16 call void @llvm.dbg.value(metadata i64 %b, metadata !11, metadata !DIExpression(DW_OP_LLVM_fragment, 0, 8)), !dbg !16 call void @llvm.dbg.value(metadata i64 %b, metadata !11, metadata !DIExpression(DW_OP_lit0, DW_OP_mul, DW_OP_LLVM_fragment, 0, 8)), !dbg !16 call void @llvm.dbg.value(metadata i64 %b, metadata !11, metadata !DIExpression(DW_OP_lit0, DW_OP_mul, DW_OP_stack_value, DW_OP_LLVM_fragment, 0, 8)), !dbg !16 %c = inttoptr i64 0 to i64*, !dbg !17 call void @llvm.dbg.declare(metadata i64* %c, metadata !13, metadata !DIExpression()), !dbg !17 %d = inttoptr i64 0 to i32*, !dbg !18 call void @llvm.dbg.addr(metadata i32* %d, metadata !20, metadata !DIExpression()), !dbg !18 %e = add <2 x i16> zeroinitializer, zeroinitializer call void @llvm.dbg.value(metadata <2 x i16> %e, metadata !14, metadata !DIExpression()), !dbg !18 %f = call i32 @escape(i32 0) call void @llvm.dbg.value(metadata i32 %f, metadata !9, metadata !DIExpression()), !dbg !15 %barrier = call i32 @escape(i32 0) %g = call i32 @escape(i32 %f) call void @llvm.dbg.value(metadata i32 %g, metadata !9, metadata !DIExpression()), !dbg !15 ret void, !dbg !19 } declare void @llvm.dbg.addr(metadata, metadata, metadata) declare void @llvm.dbg.declare(metadata, metadata, metadata) declare void @llvm.dbg.value(metadata, metadata, metadata) !llvm.dbg.cu = !{!0} !llvm.module.flags = !{!5} !0 = distinct !DICompileUnit(language: DW_LANG_C, file: !1, producer: "debugify", isOptimized: true, runtimeVersion: 0, emissionKind: FullDebug, enums: !2) !1 = !DIFile(filename: "/Users/vsk/Desktop/foo.ll", directory: "/") !2 = !{} !5 = !{i32 2, !"Debug Info Version", i32 3} !6 = distinct !DISubprogram(name: "f", linkageName: "f", scope: null, file: !1, line: 1, type: !7, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: true, unit: !0, retainedNodes: !8) !7 = !DISubroutineType(types: !2) !8 = !{!9, !11, !13, !14} !9 = !DILocalVariable(name: "1", scope: !6, file: !1, line: 1, type: !10) !10 = !DIBasicType(name: "ty32", size: 32, encoding: DW_ATE_signed) !11 = !DILocalVariable(name: "2", scope: !6, file: !1, line: 2, type: !12) !12 = !DIBasicType(name: "ty64", size: 64, encoding: DW_ATE_signed) !13 = !DILocalVariable(name: "3", scope: !6, file: !1, line: 3, type: !12) !14 = !DILocalVariable(name: "4", scope: !6, file: !1, line: 4, type: !10) !15 = !DILocation(line: 1, column: 1, scope: !6) !16 = !DILocation(line: 2, column: 1, scope: !6) !17 = !DILocation(line: 3, column: 1, scope: !6) !18 = !DILocation(line: 4, column: 1, scope: !6) !19 = !DILocation(line: 5, column: 1, scope: !6) !20 = !DILocalVariable(name: "5", scope: !6, file: !1, line: 5, type: !10) )"); bool BrokenDebugInfo = true; verifyModule(*M, &errs(), &BrokenDebugInfo); ASSERT_FALSE(BrokenDebugInfo); Function &F = *cast(M->getNamedValue("f")); DominatorTree DT{F}; BasicBlock &BB = F.front(); Instruction &A = BB.front(); Instruction &B = *A.getNextNonDebugInstruction(); Instruction &C = *B.getNextNonDebugInstruction(); Instruction &D = *C.getNextNonDebugInstruction(); Instruction &E = *D.getNextNonDebugInstruction(); Instruction &F_ = *E.getNextNonDebugInstruction(); Instruction &Barrier = *F_.getNextNonDebugInstruction(); Instruction &G = *Barrier.getNextNonDebugInstruction(); // Simulate i32 <-> i64* conversion. Expect no updates: the datalayout says // pointers are 64 bits, so the conversion would be lossy. EXPECT_FALSE(replaceAllDbgUsesWith(A, C, C, DT)); EXPECT_FALSE(replaceAllDbgUsesWith(C, A, A, DT)); // Simulate i32 <-> <2 x i16> conversion. This is unsupported. EXPECT_FALSE(replaceAllDbgUsesWith(E, A, A, DT)); EXPECT_FALSE(replaceAllDbgUsesWith(A, E, E, DT)); // Simulate i32* <-> i64* conversion. EXPECT_TRUE(replaceAllDbgUsesWith(D, C, C, DT)); SmallVector CDbgVals; findDbgUsers(CDbgVals, &C); EXPECT_EQ(2U, CDbgVals.size()); EXPECT_TRUE(any_of(CDbgVals, [](DbgVariableIntrinsic *DII) { return isa(DII); })); EXPECT_TRUE(any_of(CDbgVals, [](DbgVariableIntrinsic *DII) { return isa(DII); })); EXPECT_TRUE(replaceAllDbgUsesWith(C, D, D, DT)); SmallVector DDbgVals; findDbgUsers(DDbgVals, &D); EXPECT_EQ(2U, DDbgVals.size()); EXPECT_TRUE(any_of(DDbgVals, [](DbgVariableIntrinsic *DII) { return isa(DII); })); EXPECT_TRUE(any_of(DDbgVals, [](DbgVariableIntrinsic *DII) { return isa(DII); })); // Introduce a use-before-def. Check that the dbg.value for %a is salvaged. EXPECT_TRUE(replaceAllDbgUsesWith(A, F_, F_, DT)); auto *ADbgVal = cast(A.getNextNode()); EXPECT_EQ(ConstantInt::get(A.getType(), 0), ADbgVal->getVariableLocation()); // Introduce a use-before-def. Check that the dbg.values for %f become undef. EXPECT_TRUE(replaceAllDbgUsesWith(F_, G, G, DT)); auto *FDbgVal = cast(F_.getNextNode()); EXPECT_TRUE(isa(FDbgVal->getVariableLocation())); SmallVector FDbgVals; findDbgValues(FDbgVals, &F_); EXPECT_EQ(0U, FDbgVals.size()); // Simulate i32 -> i64 conversion to test sign-extension. Here are some // interesting cases to handle: // 1) debug user has empty DIExpression // 2) debug user has non-empty, non-stack-value'd DIExpression // 3) debug user has non-empty, stack-value'd DIExpression // 4-6) like (1-3), but with a fragment EXPECT_TRUE(replaceAllDbgUsesWith(B, A, A, DT)); SmallVector ADbgVals; findDbgValues(ADbgVals, &A); EXPECT_EQ(6U, ADbgVals.size()); // Check that %a has a dbg.value with a DIExpression matching \p Ops. auto hasADbgVal = [&](ArrayRef Ops) { return any_of(ADbgVals, [&](DbgValueInst *DVI) { assert(DVI->getVariable()->getName() == "2"); return DVI->getExpression()->getElements() == Ops; }); }; // Case 1: The original expr is empty, so no deref is needed. EXPECT_TRUE(hasADbgVal({DW_OP_LLVM_convert, 32, DW_ATE_signed, DW_OP_LLVM_convert, 64, DW_ATE_signed, DW_OP_stack_value})); // Case 2: Perform an address calculation with the original expr, deref it, // then sign-extend the result. EXPECT_TRUE(hasADbgVal({DW_OP_lit0, DW_OP_mul, DW_OP_deref, DW_OP_LLVM_convert, 32, DW_ATE_signed, DW_OP_LLVM_convert, 64, DW_ATE_signed, DW_OP_stack_value})); // Case 3: Insert the sign-extension logic before the DW_OP_stack_value. EXPECT_TRUE(hasADbgVal({DW_OP_lit0, DW_OP_mul, DW_OP_LLVM_convert, 32, DW_ATE_signed, DW_OP_LLVM_convert, 64, DW_ATE_signed, DW_OP_stack_value})); // Cases 4-6: Just like cases 1-3, but preserve the fragment at the end. EXPECT_TRUE(hasADbgVal({DW_OP_LLVM_convert, 32, DW_ATE_signed, DW_OP_LLVM_convert, 64, DW_ATE_signed, DW_OP_stack_value, DW_OP_LLVM_fragment, 0, 8})); EXPECT_TRUE(hasADbgVal({DW_OP_lit0, DW_OP_mul, DW_OP_deref, DW_OP_LLVM_convert, 32, DW_ATE_signed, DW_OP_LLVM_convert, 64, DW_ATE_signed, DW_OP_stack_value, DW_OP_LLVM_fragment, 0, 8})); EXPECT_TRUE(hasADbgVal({DW_OP_lit0, DW_OP_mul, DW_OP_LLVM_convert, 32, DW_ATE_signed, DW_OP_LLVM_convert, 64, DW_ATE_signed, DW_OP_stack_value, DW_OP_LLVM_fragment, 0, 8})); verifyModule(*M, &errs(), &BrokenDebugInfo); ASSERT_FALSE(BrokenDebugInfo); } TEST(Local, RemoveUnreachableBlocks) { LLVMContext C; std::unique_ptr M = parseIR(C, R"( define void @br_simple() { entry: br label %bb0 bb0: ret void bb1: ret void } define void @br_self_loop() { entry: br label %bb0 bb0: br i1 true, label %bb1, label %bb0 bb1: br i1 true, label %bb0, label %bb2 bb2: br label %bb2 } define void @br_constant() { entry: br label %bb0 bb0: br i1 true, label %bb1, label %bb2 bb1: br i1 true, label %bb0, label %bb2 bb2: br label %bb2 } define void @br_loop() { entry: br label %bb0 bb0: br label %bb0 bb1: br label %bb2 bb2: br label %bb1 } declare i32 @__gxx_personality_v0(...) define void @invoke_terminator() personality i8* bitcast (i32 (...)* @__gxx_personality_v0 to i8*) { entry: br i1 undef, label %invoke.block, label %exit invoke.block: %cond = invoke zeroext i1 @invokable() to label %continue.block unwind label %lpad.block continue.block: br i1 %cond, label %if.then, label %if.end if.then: unreachable if.end: unreachable lpad.block: %lp = landingpad { i8*, i32 } catch i8* null br label %exit exit: ret void } declare i1 @invokable() )"); auto runEager = [&](Function &F, DominatorTree *DT) { PostDominatorTree PDT = PostDominatorTree(F); DomTreeUpdater DTU(*DT, PDT, DomTreeUpdater::UpdateStrategy::Eager); removeUnreachableBlocks(F, &DTU); EXPECT_TRUE(DTU.getDomTree().verify()); EXPECT_TRUE(DTU.getPostDomTree().verify()); }; auto runLazy = [&](Function &F, DominatorTree *DT) { PostDominatorTree PDT = PostDominatorTree(F); DomTreeUpdater DTU(*DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy); removeUnreachableBlocks(F, &DTU); EXPECT_TRUE(DTU.getDomTree().verify()); EXPECT_TRUE(DTU.getPostDomTree().verify()); }; // Test removeUnreachableBlocks under Eager UpdateStrategy. runWithDomTree(*M, "br_simple", runEager); runWithDomTree(*M, "br_self_loop", runEager); runWithDomTree(*M, "br_constant", runEager); runWithDomTree(*M, "br_loop", runEager); runWithDomTree(*M, "invoke_terminator", runEager); // Test removeUnreachableBlocks under Lazy UpdateStrategy. runWithDomTree(*M, "br_simple", runLazy); runWithDomTree(*M, "br_self_loop", runLazy); runWithDomTree(*M, "br_constant", runLazy); runWithDomTree(*M, "br_loop", runLazy); runWithDomTree(*M, "invoke_terminator", runLazy); M = parseIR(C, R"( define void @f() { entry: ret void bb0: ret void } )"); auto checkRUBlocksRetVal = [&](Function &F, DominatorTree *DT) { DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); EXPECT_TRUE(removeUnreachableBlocks(F, &DTU)); EXPECT_FALSE(removeUnreachableBlocks(F, &DTU)); EXPECT_TRUE(DTU.getDomTree().verify()); }; runWithDomTree(*M, "f", checkRUBlocksRetVal); } TEST(Local, SimplifyCFGWithNullAC) { LLVMContext Ctx; std::unique_ptr M = parseIR(Ctx, R"( declare void @true_path() declare void @false_path() declare void @llvm.assume(i1 %cond); define i32 @foo(i1, i32) { entry: %cmp = icmp sgt i32 %1, 0 br i1 %cmp, label %if.bb1, label %then.bb1 if.bb1: call void @true_path() br label %test.bb then.bb1: call void @false_path() br label %test.bb test.bb: %phi = phi i1 [1, %if.bb1], [%0, %then.bb1] call void @llvm.assume(i1 %0) br i1 %phi, label %if.bb2, label %then.bb2 if.bb2: ret i32 %1 then.bb2: ret i32 0 } )"); Function &F = *cast(M->getNamedValue("foo")); TargetTransformInfo TTI(M->getDataLayout()); SimplifyCFGOptions Options{}; Options.setAssumptionCache(nullptr); // Obtain BasicBlock of interest to this test, %test.bb. BasicBlock *TestBB = nullptr; for (BasicBlock &BB : F) { if (BB.getName().equals("test.bb")) { TestBB = &BB; break; } } ASSERT_TRUE(TestBB); // %test.bb is expected to be simplified by FoldCondBranchOnPHI. EXPECT_TRUE(simplifyCFG(TestBB, TTI, Options)); } TEST(Local, CanReplaceOperandWithVariable) { LLVMContext Ctx; Module M("test_module", Ctx); IRBuilder<> B(Ctx); FunctionType *FnType = FunctionType::get(Type::getVoidTy(Ctx), {}, false); FunctionType *VarArgFnType = FunctionType::get(Type::getVoidTy(Ctx), {B.getInt32Ty()}, true); Function *TestBody = Function::Create(FnType, GlobalValue::ExternalLinkage, 0, "", &M); BasicBlock *BB0 = BasicBlock::Create(Ctx, "", TestBody); B.SetInsertPoint(BB0); FunctionCallee Intrin = M.getOrInsertFunction("llvm.foo", FnType); FunctionCallee Func = M.getOrInsertFunction("foo", FnType); FunctionCallee VarArgFunc = M.getOrInsertFunction("foo.vararg", VarArgFnType); FunctionCallee VarArgIntrin = M.getOrInsertFunction("llvm.foo.vararg", VarArgFnType); auto *CallToIntrin = B.CreateCall(Intrin); auto *CallToFunc = B.CreateCall(Func); // Test if it's valid to replace the callee operand. EXPECT_FALSE(canReplaceOperandWithVariable(CallToIntrin, 0)); EXPECT_TRUE(canReplaceOperandWithVariable(CallToFunc, 0)); // That it's invalid to replace an argument in the variadic argument list for // an intrinsic, but OK for a normal function. auto *CallToVarArgFunc = B.CreateCall( VarArgFunc, {B.getInt32(0), B.getInt32(1), B.getInt32(2)}); EXPECT_TRUE(canReplaceOperandWithVariable(CallToVarArgFunc, 0)); EXPECT_TRUE(canReplaceOperandWithVariable(CallToVarArgFunc, 1)); EXPECT_TRUE(canReplaceOperandWithVariable(CallToVarArgFunc, 2)); EXPECT_TRUE(canReplaceOperandWithVariable(CallToVarArgFunc, 3)); auto *CallToVarArgIntrin = B.CreateCall( VarArgIntrin, {B.getInt32(0), B.getInt32(1), B.getInt32(2)}); EXPECT_TRUE(canReplaceOperandWithVariable(CallToVarArgIntrin, 0)); EXPECT_FALSE(canReplaceOperandWithVariable(CallToVarArgIntrin, 1)); EXPECT_FALSE(canReplaceOperandWithVariable(CallToVarArgIntrin, 2)); EXPECT_FALSE(canReplaceOperandWithVariable(CallToVarArgIntrin, 3)); // Test that it's invalid to replace gcroot operands, even though it can't use // immarg. Type *PtrPtr = B.getInt8Ty()->getPointerTo(0); Value *Alloca = B.CreateAlloca(PtrPtr, (unsigned)0); CallInst *GCRoot = B.CreateIntrinsic(Intrinsic::gcroot, {}, {Alloca, Constant::getNullValue(PtrPtr)}); EXPECT_TRUE(canReplaceOperandWithVariable(GCRoot, 0)); // Alloca EXPECT_FALSE(canReplaceOperandWithVariable(GCRoot, 1)); EXPECT_FALSE(canReplaceOperandWithVariable(GCRoot, 2)); BB0->dropAllReferences(); }