#include "benchmark/benchmark.h" #define BASIC_BENCHMARK_TEST(x) BENCHMARK(x)->Arg(8)->Arg(512)->Arg(8192) void BM_empty(benchmark::State& state) { for (auto _ : state) { benchmark::DoNotOptimize(state.iterations()); } } BENCHMARK(BM_empty); BENCHMARK(BM_empty)->ThreadPerCpu(); void BM_spin_empty(benchmark::State& state) { for (auto _ : state) { for (int x = 0; x < state.range(0); ++x) { benchmark::DoNotOptimize(x); } } } BASIC_BENCHMARK_TEST(BM_spin_empty); BASIC_BENCHMARK_TEST(BM_spin_empty)->ThreadPerCpu(); void BM_spin_pause_before(benchmark::State& state) { for (int i = 0; i < state.range(0); ++i) { benchmark::DoNotOptimize(i); } for (auto _ : state) { for (int i = 0; i < state.range(0); ++i) { benchmark::DoNotOptimize(i); } } } BASIC_BENCHMARK_TEST(BM_spin_pause_before); BASIC_BENCHMARK_TEST(BM_spin_pause_before)->ThreadPerCpu(); void BM_spin_pause_during(benchmark::State& state) { for (auto _ : state) { state.PauseTiming(); for (int i = 0; i < state.range(0); ++i) { benchmark::DoNotOptimize(i); } state.ResumeTiming(); for (int i = 0; i < state.range(0); ++i) { benchmark::DoNotOptimize(i); } } } BASIC_BENCHMARK_TEST(BM_spin_pause_during); BASIC_BENCHMARK_TEST(BM_spin_pause_during)->ThreadPerCpu(); void BM_pause_during(benchmark::State& state) { for (auto _ : state) { state.PauseTiming(); state.ResumeTiming(); } } BENCHMARK(BM_pause_during); BENCHMARK(BM_pause_during)->ThreadPerCpu(); BENCHMARK(BM_pause_during)->UseRealTime(); BENCHMARK(BM_pause_during)->UseRealTime()->ThreadPerCpu(); void BM_spin_pause_after(benchmark::State& state) { for (auto _ : state) { for (int i = 0; i < state.range(0); ++i) { benchmark::DoNotOptimize(i); } } for (int i = 0; i < state.range(0); ++i) { benchmark::DoNotOptimize(i); } } BASIC_BENCHMARK_TEST(BM_spin_pause_after); BASIC_BENCHMARK_TEST(BM_spin_pause_after)->ThreadPerCpu(); void BM_spin_pause_before_and_after(benchmark::State& state) { for (int i = 0; i < state.range(0); ++i) { benchmark::DoNotOptimize(i); } for (auto _ : state) { for (int i = 0; i < state.range(0); ++i) { benchmark::DoNotOptimize(i); } } for (int i = 0; i < state.range(0); ++i) { benchmark::DoNotOptimize(i); } } BASIC_BENCHMARK_TEST(BM_spin_pause_before_and_after); BASIC_BENCHMARK_TEST(BM_spin_pause_before_and_after)->ThreadPerCpu(); void BM_empty_stop_start(benchmark::State& state) { for (auto _ : state) { } } BENCHMARK(BM_empty_stop_start); BENCHMARK(BM_empty_stop_start)->ThreadPerCpu(); void BM_KeepRunning(benchmark::State& state) { size_t iter_count = 0; assert(iter_count == state.iterations()); while (state.KeepRunning()) { ++iter_count; } assert(iter_count == state.iterations()); } BENCHMARK(BM_KeepRunning); void BM_KeepRunningBatch(benchmark::State& state) { // Choose a prime batch size to avoid evenly dividing max_iterations. const size_t batch_size = 101; size_t iter_count = 0; while (state.KeepRunningBatch(batch_size)) { iter_count += batch_size; } assert(state.iterations() == iter_count); } BENCHMARK(BM_KeepRunningBatch); void BM_RangedFor(benchmark::State& state) { size_t iter_count = 0; for (auto _ : state) { ++iter_count; } assert(iter_count == state.max_iterations); } BENCHMARK(BM_RangedFor); // Ensure that StateIterator provides all the necessary typedefs required to // instantiate std::iterator_traits. static_assert(std::is_same< typename std::iterator_traits::value_type, typename benchmark::State::StateIterator::value_type>::value, ""); BENCHMARK_MAIN();