//===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the declaration of the Type class. For more "Type" // stuff, look in DerivedTypes.h. // //===----------------------------------------------------------------------===// #ifndef LLVM_IR_TYPE_H #define LLVM_IR_TYPE_H #include "llvm/ADT/APFloat.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Support/CBindingWrapping.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/ErrorHandling.h" #include #include #include namespace llvm { template struct GraphTraits; class IntegerType; class LLVMContext; class PointerType; class raw_ostream; class StringRef; /// The instances of the Type class are immutable: once they are created, /// they are never changed. Also note that only one instance of a particular /// type is ever created. Thus seeing if two types are equal is a matter of /// doing a trivial pointer comparison. To enforce that no two equal instances /// are created, Type instances can only be created via static factory methods /// in class Type and in derived classes. Once allocated, Types are never /// free'd. /// class Type { public: //===--------------------------------------------------------------------===// /// Definitions of all of the base types for the Type system. Based on this /// value, you can cast to a class defined in DerivedTypes.h. /// Note: If you add an element to this, you need to add an element to the /// Type::getPrimitiveType function, or else things will break! /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding. /// enum TypeID { // PrimitiveTypes - make sure LastPrimitiveTyID stays up to date. VoidTyID = 0, ///< 0: type with no size HalfTyID, ///< 1: 16-bit floating point type FloatTyID, ///< 2: 32-bit floating point type DoubleTyID, ///< 3: 64-bit floating point type X86_FP80TyID, ///< 4: 80-bit floating point type (X87) FP128TyID, ///< 5: 128-bit floating point type (112-bit mantissa) PPC_FP128TyID, ///< 6: 128-bit floating point type (two 64-bits, PowerPC) LabelTyID, ///< 7: Labels MetadataTyID, ///< 8: Metadata X86_MMXTyID, ///< 9: MMX vectors (64 bits, X86 specific) TokenTyID, ///< 10: Tokens // Derived types... see DerivedTypes.h file. // Make sure FirstDerivedTyID stays up to date! IntegerTyID, ///< 11: Arbitrary bit width integers FunctionTyID, ///< 12: Functions StructTyID, ///< 13: Structures ArrayTyID, ///< 14: Arrays PointerTyID, ///< 15: Pointers VectorTyID ///< 16: SIMD 'packed' format, or other vector type }; private: /// This refers to the LLVMContext in which this type was uniqued. LLVMContext &Context; TypeID ID : 8; // The current base type of this type. unsigned SubclassData : 24; // Space for subclasses to store data. // Note that this should be synchronized with // MAX_INT_BITS value in IntegerType class. protected: friend class LLVMContextImpl; explicit Type(LLVMContext &C, TypeID tid) : Context(C), ID(tid), SubclassData(0) {} ~Type() = default; unsigned getSubclassData() const { return SubclassData; } void setSubclassData(unsigned val) { SubclassData = val; // Ensure we don't have any accidental truncation. assert(getSubclassData() == val && "Subclass data too large for field"); } /// Keeps track of how many Type*'s there are in the ContainedTys list. unsigned NumContainedTys = 0; /// A pointer to the array of Types contained by this Type. For example, this /// includes the arguments of a function type, the elements of a structure, /// the pointee of a pointer, the element type of an array, etc. This pointer /// may be 0 for types that don't contain other types (Integer, Double, /// Float). Type * const *ContainedTys = nullptr; static bool isSequentialType(TypeID TyID) { return TyID == ArrayTyID || TyID == VectorTyID; } public: /// Print the current type. /// Omit the type details if \p NoDetails == true. /// E.g., let %st = type { i32, i16 } /// When \p NoDetails is true, we only print %st. /// Put differently, \p NoDetails prints the type as if /// inlined with the operands when printing an instruction. void print(raw_ostream &O, bool IsForDebug = false, bool NoDetails = false) const; void dump() const; /// Return the LLVMContext in which this type was uniqued. LLVMContext &getContext() const { return Context; } //===--------------------------------------------------------------------===// // Accessors for working with types. // /// Return the type id for the type. This will return one of the TypeID enum /// elements defined above. TypeID getTypeID() const { return ID; } /// Return true if this is 'void'. bool isVoidTy() const { return getTypeID() == VoidTyID; } /// Return true if this is 'half', a 16-bit IEEE fp type. bool isHalfTy() const { return getTypeID() == HalfTyID; } /// Return true if this is 'float', a 32-bit IEEE fp type. bool isFloatTy() const { return getTypeID() == FloatTyID; } /// Return true if this is 'double', a 64-bit IEEE fp type. bool isDoubleTy() const { return getTypeID() == DoubleTyID; } /// Return true if this is x86 long double. bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; } /// Return true if this is 'fp128'. bool isFP128Ty() const { return getTypeID() == FP128TyID; } /// Return true if this is powerpc long double. bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; } /// Return true if this is one of the six floating-point types bool isFloatingPointTy() const { return getTypeID() == HalfTyID || getTypeID() == FloatTyID || getTypeID() == DoubleTyID || getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID || getTypeID() == PPC_FP128TyID; } const fltSemantics &getFltSemantics() const { switch (getTypeID()) { case HalfTyID: return APFloat::IEEEhalf(); case FloatTyID: return APFloat::IEEEsingle(); case DoubleTyID: return APFloat::IEEEdouble(); case X86_FP80TyID: return APFloat::x87DoubleExtended(); case FP128TyID: return APFloat::IEEEquad(); case PPC_FP128TyID: return APFloat::PPCDoubleDouble(); default: llvm_unreachable("Invalid floating type"); } } /// Return true if this is X86 MMX. bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; } /// Return true if this is a FP type or a vector of FP. bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); } /// Return true if this is 'label'. bool isLabelTy() const { return getTypeID() == LabelTyID; } /// Return true if this is 'metadata'. bool isMetadataTy() const { return getTypeID() == MetadataTyID; } /// Return true if this is 'token'. bool isTokenTy() const { return getTypeID() == TokenTyID; } /// True if this is an instance of IntegerType. bool isIntegerTy() const { return getTypeID() == IntegerTyID; } /// Return true if this is an IntegerType of the given width. bool isIntegerTy(unsigned Bitwidth) const; /// Return true if this is an integer type or a vector of integer types. bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); } /// Return true if this is an integer type or a vector of integer types of /// the given width. bool isIntOrIntVectorTy(unsigned BitWidth) const { return getScalarType()->isIntegerTy(BitWidth); } /// Return true if this is an integer type or a pointer type. bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); } /// True if this is an instance of FunctionType. bool isFunctionTy() const { return getTypeID() == FunctionTyID; } /// True if this is an instance of StructType. bool isStructTy() const { return getTypeID() == StructTyID; } /// True if this is an instance of ArrayType. bool isArrayTy() const { return getTypeID() == ArrayTyID; } /// True if this is an instance of PointerType. bool isPointerTy() const { return getTypeID() == PointerTyID; } /// Return true if this is a pointer type or a vector of pointer types. bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); } /// True if this is an instance of VectorType. bool isVectorTy() const { return getTypeID() == VectorTyID; } /// Return true if this type could be converted with a lossless BitCast to /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the /// same size only where no re-interpretation of the bits is done. /// Determine if this type could be losslessly bitcast to Ty bool canLosslesslyBitCastTo(Type *Ty) const; /// Return true if this type is empty, that is, it has no elements or all of /// its elements are empty. bool isEmptyTy() const; /// Return true if the type is "first class", meaning it is a valid type for a /// Value. bool isFirstClassType() const { return getTypeID() != FunctionTyID && getTypeID() != VoidTyID; } /// Return true if the type is a valid type for a register in codegen. This /// includes all first-class types except struct and array types. bool isSingleValueType() const { return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() || isPointerTy() || isVectorTy(); } /// Return true if the type is an aggregate type. This means it is valid as /// the first operand of an insertvalue or extractvalue instruction. This /// includes struct and array types, but does not include vector types. bool isAggregateType() const { return getTypeID() == StructTyID || getTypeID() == ArrayTyID; } /// Return true if it makes sense to take the size of this type. To get the /// actual size for a particular target, it is reasonable to use the /// DataLayout subsystem to do this. bool isSized(SmallPtrSetImpl *Visited = nullptr) const { // If it's a primitive, it is always sized. if (getTypeID() == IntegerTyID || isFloatingPointTy() || getTypeID() == PointerTyID || getTypeID() == X86_MMXTyID) return true; // If it is not something that can have a size (e.g. a function or label), // it doesn't have a size. if (getTypeID() != StructTyID && getTypeID() != ArrayTyID && getTypeID() != VectorTyID) return false; // Otherwise we have to try harder to decide. return isSizedDerivedType(Visited); } /// Return the basic size of this type if it is a primitive type. These are /// fixed by LLVM and are not target-dependent. /// This will return zero if the type does not have a size or is not a /// primitive type. /// /// Note that this may not reflect the size of memory allocated for an /// instance of the type or the number of bytes that are written when an /// instance of the type is stored to memory. The DataLayout class provides /// additional query functions to provide this information. /// unsigned getPrimitiveSizeInBits() const LLVM_READONLY; /// If this is a vector type, return the getPrimitiveSizeInBits value for the /// element type. Otherwise return the getPrimitiveSizeInBits value for this /// type. unsigned getScalarSizeInBits() const LLVM_READONLY; /// Return the width of the mantissa of this type. This is only valid on /// floating-point types. If the FP type does not have a stable mantissa (e.g. /// ppc long double), this method returns -1. int getFPMantissaWidth() const; /// If this is a vector type, return the element type, otherwise return /// 'this'. Type *getScalarType() const { if (isVectorTy()) return getVectorElementType(); return const_cast(this); } //===--------------------------------------------------------------------===// // Type Iteration support. // using subtype_iterator = Type * const *; subtype_iterator subtype_begin() const { return ContainedTys; } subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];} ArrayRef subtypes() const { return makeArrayRef(subtype_begin(), subtype_end()); } using subtype_reverse_iterator = std::reverse_iterator; subtype_reverse_iterator subtype_rbegin() const { return subtype_reverse_iterator(subtype_end()); } subtype_reverse_iterator subtype_rend() const { return subtype_reverse_iterator(subtype_begin()); } /// This method is used to implement the type iterator (defined at the end of /// the file). For derived types, this returns the types 'contained' in the /// derived type. Type *getContainedType(unsigned i) const { assert(i < NumContainedTys && "Index out of range!"); return ContainedTys[i]; } /// Return the number of types in the derived type. unsigned getNumContainedTypes() const { return NumContainedTys; } //===--------------------------------------------------------------------===// // Helper methods corresponding to subclass methods. This forces a cast to // the specified subclass and calls its accessor. "getVectorNumElements" (for // example) is shorthand for cast(Ty)->getNumElements(). This is // only intended to cover the core methods that are frequently used, helper // methods should not be added here. inline unsigned getIntegerBitWidth() const; inline Type *getFunctionParamType(unsigned i) const; inline unsigned getFunctionNumParams() const; inline bool isFunctionVarArg() const; inline StringRef getStructName() const; inline unsigned getStructNumElements() const; inline Type *getStructElementType(unsigned N) const; inline Type *getSequentialElementType() const { assert(isSequentialType(getTypeID()) && "Not a sequential type!"); return ContainedTys[0]; } inline uint64_t getArrayNumElements() const; Type *getArrayElementType() const { assert(getTypeID() == ArrayTyID); return ContainedTys[0]; } inline unsigned getVectorNumElements() const; Type *getVectorElementType() const { assert(getTypeID() == VectorTyID); return ContainedTys[0]; } Type *getPointerElementType() const { assert(getTypeID() == PointerTyID); return ContainedTys[0]; } /// Get the address space of this pointer or pointer vector type. inline unsigned getPointerAddressSpace() const; //===--------------------------------------------------------------------===// // Static members exported by the Type class itself. Useful for getting // instances of Type. // /// Return a type based on an identifier. static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber); //===--------------------------------------------------------------------===// // These are the builtin types that are always available. // static Type *getVoidTy(LLVMContext &C); static Type *getLabelTy(LLVMContext &C); static Type *getHalfTy(LLVMContext &C); static Type *getFloatTy(LLVMContext &C); static Type *getDoubleTy(LLVMContext &C); static Type *getMetadataTy(LLVMContext &C); static Type *getX86_FP80Ty(LLVMContext &C); static Type *getFP128Ty(LLVMContext &C); static Type *getPPC_FP128Ty(LLVMContext &C); static Type *getX86_MMXTy(LLVMContext &C); static Type *getTokenTy(LLVMContext &C); static IntegerType *getIntNTy(LLVMContext &C, unsigned N); static IntegerType *getInt1Ty(LLVMContext &C); static IntegerType *getInt8Ty(LLVMContext &C); static IntegerType *getInt16Ty(LLVMContext &C); static IntegerType *getInt32Ty(LLVMContext &C); static IntegerType *getInt64Ty(LLVMContext &C); static IntegerType *getInt128Ty(LLVMContext &C); template static Type *getScalarTy(LLVMContext &C) { int noOfBits = sizeof(ScalarTy) * CHAR_BIT; if (std::is_integral::value) { return (Type*) Type::getIntNTy(C, noOfBits); } else if (std::is_floating_point::value) { switch (noOfBits) { case 32: return Type::getFloatTy(C); case 64: return Type::getDoubleTy(C); } } llvm_unreachable("Unsupported type in Type::getScalarTy"); } //===--------------------------------------------------------------------===// // Convenience methods for getting pointer types with one of the above builtin // types as pointee. // static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0); static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0); static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0); static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0); static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0); static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0); static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0); static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0); static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0); static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0); static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0); static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0); static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0); /// Return a pointer to the current type. This is equivalent to /// PointerType::get(Foo, AddrSpace). PointerType *getPointerTo(unsigned AddrSpace = 0) const; private: /// Derived types like structures and arrays are sized iff all of the members /// of the type are sized as well. Since asking for their size is relatively /// uncommon, move this operation out-of-line. bool isSizedDerivedType(SmallPtrSetImpl *Visited = nullptr) const; }; // Printing of types. inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) { T.print(OS); return OS; } // allow isa(x) to work without DerivedTypes.h included. template <> struct isa_impl { static inline bool doit(const Type &Ty) { return Ty.getTypeID() == Type::PointerTyID; } }; //===----------------------------------------------------------------------===// // Provide specializations of GraphTraits to be able to treat a type as a // graph of sub types. template <> struct GraphTraits { using NodeRef = Type *; using ChildIteratorType = Type::subtype_iterator; static NodeRef getEntryNode(Type *T) { return T; } static ChildIteratorType child_begin(NodeRef N) { return N->subtype_begin(); } static ChildIteratorType child_end(NodeRef N) { return N->subtype_end(); } }; template <> struct GraphTraits { using NodeRef = const Type *; using ChildIteratorType = Type::subtype_iterator; static NodeRef getEntryNode(NodeRef T) { return T; } static ChildIteratorType child_begin(NodeRef N) { return N->subtype_begin(); } static ChildIteratorType child_end(NodeRef N) { return N->subtype_end(); } }; // Create wrappers for C Binding types (see CBindingWrapping.h). DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef) /* Specialized opaque type conversions. */ inline Type **unwrap(LLVMTypeRef* Tys) { return reinterpret_cast(Tys); } inline LLVMTypeRef *wrap(Type **Tys) { return reinterpret_cast(const_cast(Tys)); } } // end namespace llvm #endif // LLVM_IR_TYPE_H