//===--- ImplicitConversionInLoopCheck.cpp - clang-tidy--------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "ImplicitConversionInLoopCheck.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/ASTMatchers/ASTMatchFinder.h" #include "clang/ASTMatchers/ASTMatchers.h" #include "clang/Lex/Lexer.h" using namespace clang::ast_matchers; namespace clang { namespace tidy { namespace performance { // Checks if the stmt is a ImplicitCastExpr with a CastKind that is not a NoOp. // The subtelty is that in some cases (user defined conversions), we can // get to ImplicitCastExpr inside each other, with the outer one a NoOp. In this // case we skip the first cast expr. static bool IsNonTrivialImplicitCast(const Stmt *ST) { if (const auto *ICE = dyn_cast(ST)) { return (ICE->getCastKind() != CK_NoOp) || IsNonTrivialImplicitCast(ICE->getSubExpr()); } return false; } void ImplicitConversionInLoopCheck::registerMatchers(MatchFinder *Finder) { // We look for const ref loop variables that (optionally inside an // ExprWithCleanup) materialize a temporary, and contain a implicit // conversion. The check on the implicit conversion is done in check() because // we can't access implicit conversion subnode via matchers: has() skips casts // and materialize! We also bind on the call to operator* to get the proper // type in the diagnostic message. We use both cxxOperatorCallExpr for user // defined operator and unaryOperator when the iterator is a pointer, like // for arrays or std::array. // // Note that when the implicit conversion is done through a user defined // conversion operator, the node is a CXXMemberCallExpr, not a // CXXOperatorCallExpr, so it should not get caught by the // cxxOperatorCallExpr() matcher. Finder->addMatcher( cxxForRangeStmt(hasLoopVariable( varDecl( hasType(qualType(references(qualType(isConstQualified())))), hasInitializer( expr(anyOf(hasDescendant( cxxOperatorCallExpr().bind("operator-call")), hasDescendant(unaryOperator(hasOperatorName("*")) .bind("operator-call")))) .bind("init"))) .bind("faulty-var"))), this); } void ImplicitConversionInLoopCheck::check( const MatchFinder::MatchResult &Result) { const auto *VD = Result.Nodes.getNodeAs("faulty-var"); const auto *Init = Result.Nodes.getNodeAs("init"); const auto *OperatorCall = Result.Nodes.getNodeAs("operator-call"); if (const auto *Cleanup = dyn_cast(Init)) Init = Cleanup->getSubExpr(); const auto *Materialized = dyn_cast(Init); if (!Materialized) return; // We ignore NoOp casts. Those are generated if the * operator on the // iterator returns a value instead of a reference, and the loop variable // is a reference. This situation is fine (it probably produces the same // code at the end). if (IsNonTrivialImplicitCast(Materialized->getTemporary())) ReportAndFix(Result.Context, VD, OperatorCall); } void ImplicitConversionInLoopCheck::ReportAndFix( const ASTContext *Context, const VarDecl *VD, const Expr *OperatorCall) { // We only match on const ref, so we should print a const ref version of the // type. QualType ConstType = OperatorCall->getType().withConst(); QualType ConstRefType = Context->getLValueReferenceType(ConstType); const char Message[] = "the type of the loop variable %0 is different from the one returned " "by the iterator and generates an implicit conversion; you can either " "change the type to the matching one (%1 but 'const auto&' is always a " "valid option) or remove the reference to make it explicit that you are " "creating a new value"; diag(VD->getBeginLoc(), Message) << VD << ConstRefType; } } // namespace performance } // namespace tidy } // namespace clang