//===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------===// // // This file implements the MemorySSAUpdater class. // //===----------------------------------------------------------------===// #include "llvm/Analysis/MemorySSAUpdater.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/Analysis/IteratedDominanceFrontier.h" #include "llvm/Analysis/MemorySSA.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FormattedStream.h" #include #define DEBUG_TYPE "memoryssa" using namespace llvm; // This is the marker algorithm from "Simple and Efficient Construction of // Static Single Assignment Form" // The simple, non-marker algorithm places phi nodes at any join // Here, we place markers, and only place phi nodes if they end up necessary. // They are only necessary if they break a cycle (IE we recursively visit // ourselves again), or we discover, while getting the value of the operands, // that there are two or more definitions needing to be merged. // This still will leave non-minimal form in the case of irreducible control // flow, where phi nodes may be in cycles with themselves, but unnecessary. MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive( BasicBlock *BB, DenseMap> &CachedPreviousDef) { // First, do a cache lookup. Without this cache, certain CFG structures // (like a series of if statements) take exponential time to visit. auto Cached = CachedPreviousDef.find(BB); if (Cached != CachedPreviousDef.end()) { return Cached->second; } if (BasicBlock *Pred = BB->getSinglePredecessor()) { // Single predecessor case, just recurse, we can only have one definition. MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef); CachedPreviousDef.insert({BB, Result}); return Result; } if (VisitedBlocks.count(BB)) { // We hit our node again, meaning we had a cycle, we must insert a phi // node to break it so we have an operand. The only case this will // insert useless phis is if we have irreducible control flow. MemoryAccess *Result = MSSA->createMemoryPhi(BB); CachedPreviousDef.insert({BB, Result}); return Result; } if (VisitedBlocks.insert(BB).second) { // Mark us visited so we can detect a cycle SmallVector, 8> PhiOps; // Recurse to get the values in our predecessors for placement of a // potential phi node. This will insert phi nodes if we cycle in order to // break the cycle and have an operand. for (auto *Pred : predecessors(BB)) if (MSSA->DT->isReachableFromEntry(Pred)) PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef)); else PhiOps.push_back(MSSA->getLiveOnEntryDef()); // Now try to simplify the ops to avoid placing a phi. // This may return null if we never created a phi yet, that's okay MemoryPhi *Phi = dyn_cast_or_null(MSSA->getMemoryAccess(BB)); // See if we can avoid the phi by simplifying it. auto *Result = tryRemoveTrivialPhi(Phi, PhiOps); // If we couldn't simplify, we may have to create a phi if (Result == Phi) { if (!Phi) Phi = MSSA->createMemoryPhi(BB); // See if the existing phi operands match what we need. // Unlike normal SSA, we only allow one phi node per block, so we can't just // create a new one. if (Phi->getNumOperands() != 0) { // FIXME: Figure out whether this is dead code and if so remove it. if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) { // These will have been filled in by the recursive read we did above. llvm::copy(PhiOps, Phi->op_begin()); std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin()); } } else { unsigned i = 0; for (auto *Pred : predecessors(BB)) Phi->addIncoming(&*PhiOps[i++], Pred); InsertedPHIs.push_back(Phi); } Result = Phi; } // Set ourselves up for the next variable by resetting visited state. VisitedBlocks.erase(BB); CachedPreviousDef.insert({BB, Result}); return Result; } llvm_unreachable("Should have hit one of the three cases above"); } // This starts at the memory access, and goes backwards in the block to find the // previous definition. If a definition is not found the block of the access, // it continues globally, creating phi nodes to ensure we have a single // definition. MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) { if (auto *LocalResult = getPreviousDefInBlock(MA)) return LocalResult; DenseMap> CachedPreviousDef; return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef); } // This starts at the memory access, and goes backwards in the block to the find // the previous definition. If the definition is not found in the block of the // access, it returns nullptr. MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) { auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock()); // It's possible there are no defs, or we got handed the first def to start. if (Defs) { // If this is a def, we can just use the def iterators. if (!isa(MA)) { auto Iter = MA->getReverseDefsIterator(); ++Iter; if (Iter != Defs->rend()) return &*Iter; } else { // Otherwise, have to walk the all access iterator. auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend(); for (auto &U : make_range(++MA->getReverseIterator(), End)) if (!isa(U)) return cast(&U); // Note that if MA comes before Defs->begin(), we won't hit a def. return nullptr; } } return nullptr; } // This starts at the end of block MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd( BasicBlock *BB, DenseMap> &CachedPreviousDef) { auto *Defs = MSSA->getWritableBlockDefs(BB); if (Defs) { CachedPreviousDef.insert({BB, &*Defs->rbegin()}); return &*Defs->rbegin(); } return getPreviousDefRecursive(BB, CachedPreviousDef); } // Recurse over a set of phi uses to eliminate the trivial ones MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) { if (!Phi) return nullptr; TrackingVH Res(Phi); SmallVector, 8> Uses; std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses)); for (auto &U : Uses) { if (MemoryPhi *UsePhi = dyn_cast(&*U)) { auto OperRange = UsePhi->operands(); tryRemoveTrivialPhi(UsePhi, OperRange); } } return Res; } // Eliminate trivial phis // Phis are trivial if they are defined either by themselves, or all the same // argument. // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c) // We recursively try to remove them. template MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi, RangeType &Operands) { // Bail out on non-opt Phis. if (NonOptPhis.count(Phi)) return Phi; // Detect equal or self arguments MemoryAccess *Same = nullptr; for (auto &Op : Operands) { // If the same or self, good so far if (Op == Phi || Op == Same) continue; // not the same, return the phi since it's not eliminatable by us if (Same) return Phi; Same = cast(&*Op); } // Never found a non-self reference, the phi is undef if (Same == nullptr) return MSSA->getLiveOnEntryDef(); if (Phi) { Phi->replaceAllUsesWith(Same); removeMemoryAccess(Phi); } // We should only end up recursing in case we replaced something, in which // case, we may have made other Phis trivial. return recursePhi(Same); } void MemorySSAUpdater::insertUse(MemoryUse *MU) { InsertedPHIs.clear(); MU->setDefiningAccess(getPreviousDef(MU)); // Unlike for defs, there is no extra work to do. Because uses do not create // new may-defs, there are only two cases: // // 1. There was a def already below us, and therefore, we should not have // created a phi node because it was already needed for the def. // // 2. There is no def below us, and therefore, there is no extra renaming work // to do. } // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef. static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB, MemoryAccess *NewDef) { // Replace any operand with us an incoming block with the new defining // access. int i = MP->getBasicBlockIndex(BB); assert(i != -1 && "Should have found the basic block in the phi"); // We can't just compare i against getNumOperands since one is signed and the // other not. So use it to index into the block iterator. for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end(); ++BBIter) { if (*BBIter != BB) break; MP->setIncomingValue(i, NewDef); ++i; } } // A brief description of the algorithm: // First, we compute what should define the new def, using the SSA // construction algorithm. // Then, we update the defs below us (and any new phi nodes) in the graph to // point to the correct new defs, to ensure we only have one variable, and no // disconnected stores. void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) { InsertedPHIs.clear(); // See if we had a local def, and if not, go hunting. MemoryAccess *DefBefore = getPreviousDef(MD); bool DefBeforeSameBlock = DefBefore->getBlock() == MD->getBlock(); // There is a def before us, which means we can replace any store/phi uses // of that thing with us, since we are in the way of whatever was there // before. // We now define that def's memorydefs and memoryphis if (DefBeforeSameBlock) { for (auto UI = DefBefore->use_begin(), UE = DefBefore->use_end(); UI != UE;) { Use &U = *UI++; // Leave the MemoryUses alone. // Also make sure we skip ourselves to avoid self references. if (isa(U.getUser()) || U.getUser() == MD) continue; // Defs are automatically unoptimized when the user is set to MD below, // because the isOptimized() call will fail to find the same ID. U.set(MD); } } // and that def is now our defining access. MD->setDefiningAccess(DefBefore); // Remember the index where we may insert new phis below. unsigned NewPhiIndex = InsertedPHIs.size(); SmallVector FixupList(InsertedPHIs.begin(), InsertedPHIs.end()); if (!DefBeforeSameBlock) { // If there was a local def before us, we must have the same effect it // did. Because every may-def is the same, any phis/etc we would create, it // would also have created. If there was no local def before us, we // performed a global update, and have to search all successors and make // sure we update the first def in each of them (following all paths until // we hit the first def along each path). This may also insert phi nodes. // TODO: There are other cases we can skip this work, such as when we have a // single successor, and only used a straight line of single pred blocks // backwards to find the def. To make that work, we'd have to track whether // getDefRecursive only ever used the single predecessor case. These types // of paths also only exist in between CFG simplifications. // If this is the first def in the block and this insert is in an arbitrary // place, compute IDF and place phis. auto Iter = MD->getDefsIterator(); ++Iter; auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end(); if (Iter == IterEnd) { ForwardIDFCalculator IDFs(*MSSA->DT); SmallVector IDFBlocks; SmallPtrSet DefiningBlocks; DefiningBlocks.insert(MD->getBlock()); IDFs.setDefiningBlocks(DefiningBlocks); IDFs.calculate(IDFBlocks); SmallVector, 4> NewInsertedPHIs; for (auto *BBIDF : IDFBlocks) if (!MSSA->getMemoryAccess(BBIDF)) { auto *MPhi = MSSA->createMemoryPhi(BBIDF); NewInsertedPHIs.push_back(MPhi); // Add the phis created into the IDF blocks to NonOptPhis, so they are // not optimized out as trivial by the call to getPreviousDefFromEnd // below. Once they are complete, all these Phis are added to the // FixupList, and removed from NonOptPhis inside fixupDefs(). NonOptPhis.insert(MPhi); } for (auto &MPhi : NewInsertedPHIs) { auto *BBIDF = MPhi->getBlock(); for (auto *Pred : predecessors(BBIDF)) { DenseMap> CachedPreviousDef; MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef), Pred); } } // Re-take the index where we're adding the new phis, because the above // call to getPreviousDefFromEnd, may have inserted into InsertedPHIs. NewPhiIndex = InsertedPHIs.size(); for (auto &MPhi : NewInsertedPHIs) { InsertedPHIs.push_back(&*MPhi); FixupList.push_back(&*MPhi); } } FixupList.push_back(MD); } // Remember the index where we stopped inserting new phis above, since the // fixupDefs call in the loop below may insert more, that are already minimal. unsigned NewPhiIndexEnd = InsertedPHIs.size(); while (!FixupList.empty()) { unsigned StartingPHISize = InsertedPHIs.size(); fixupDefs(FixupList); FixupList.clear(); // Put any new phis on the fixup list, and process them FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end()); } // Optimize potentially non-minimal phis added in this method. unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex; if (NewPhiSize) tryRemoveTrivialPhis(ArrayRef(&InsertedPHIs[NewPhiIndex], NewPhiSize)); // Now that all fixups are done, rename all uses if we are asked. if (RenameUses) { SmallPtrSet Visited; BasicBlock *StartBlock = MD->getBlock(); // We are guaranteed there is a def in the block, because we just got it // handed to us in this function. MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin(); // Convert to incoming value if it's a memorydef. A phi *is* already an // incoming value. if (auto *MD = dyn_cast(FirstDef)) FirstDef = MD->getDefiningAccess(); MSSA->renamePass(MD->getBlock(), FirstDef, Visited); // We just inserted a phi into this block, so the incoming value will become // the phi anyway, so it does not matter what we pass. for (auto &MP : InsertedPHIs) { MemoryPhi *Phi = dyn_cast_or_null(MP); if (Phi) MSSA->renamePass(Phi->getBlock(), nullptr, Visited); } } } void MemorySSAUpdater::fixupDefs(const SmallVectorImpl &Vars) { SmallPtrSet Seen; SmallVector Worklist; for (auto &Var : Vars) { MemoryAccess *NewDef = dyn_cast_or_null(Var); if (!NewDef) continue; // First, see if there is a local def after the operand. auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock()); auto DefIter = NewDef->getDefsIterator(); // The temporary Phi is being fixed, unmark it for not to optimize. if (MemoryPhi *Phi = dyn_cast(NewDef)) NonOptPhis.erase(Phi); // If there is a local def after us, we only have to rename that. if (++DefIter != Defs->end()) { cast(DefIter)->setDefiningAccess(NewDef); continue; } // Otherwise, we need to search down through the CFG. // For each of our successors, handle it directly if their is a phi, or // place on the fixup worklist. for (const auto *S : successors(NewDef->getBlock())) { if (auto *MP = MSSA->getMemoryAccess(S)) setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef); else Worklist.push_back(S); } while (!Worklist.empty()) { const BasicBlock *FixupBlock = Worklist.back(); Worklist.pop_back(); // Get the first def in the block that isn't a phi node. if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) { auto *FirstDef = &*Defs->begin(); // The loop above and below should have taken care of phi nodes assert(!isa(FirstDef) && "Should have already handled phi nodes!"); // We are now this def's defining access, make sure we actually dominate // it assert(MSSA->dominates(NewDef, FirstDef) && "Should have dominated the new access"); // This may insert new phi nodes, because we are not guaranteed the // block we are processing has a single pred, and depending where the // store was inserted, it may require phi nodes below it. cast(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef)); return; } // We didn't find a def, so we must continue. for (const auto *S : successors(FixupBlock)) { // If there is a phi node, handle it. // Otherwise, put the block on the worklist if (auto *MP = MSSA->getMemoryAccess(S)) setMemoryPhiValueForBlock(MP, FixupBlock, NewDef); else { // If we cycle, we should have ended up at a phi node that we already // processed. FIXME: Double check this if (!Seen.insert(S).second) continue; Worklist.push_back(S); } } } } } void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) { if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) { MPhi->unorderedDeleteIncomingBlock(From); if (MPhi->getNumIncomingValues() == 1) removeMemoryAccess(MPhi); } } void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From, const BasicBlock *To) { if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) { bool Found = false; MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) { if (From != B) return false; if (Found) return true; Found = true; return false; }); if (MPhi->getNumIncomingValues() == 1) removeMemoryAccess(MPhi); } } void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB, const ValueToValueMapTy &VMap, PhiToDefMap &MPhiMap, bool CloneWasSimplified) { auto GetNewDefiningAccess = [&](MemoryAccess *MA) -> MemoryAccess * { MemoryAccess *InsnDefining = MA; if (MemoryUseOrDef *DefMUD = dyn_cast(InsnDefining)) { if (!MSSA->isLiveOnEntryDef(DefMUD)) { Instruction *DefMUDI = DefMUD->getMemoryInst(); assert(DefMUDI && "Found MemoryUseOrDef with no Instruction."); if (Instruction *NewDefMUDI = cast_or_null(VMap.lookup(DefMUDI))) InsnDefining = MSSA->getMemoryAccess(NewDefMUDI); } } else { MemoryPhi *DefPhi = cast(InsnDefining); if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi)) InsnDefining = NewDefPhi; } assert(InsnDefining && "Defining instruction cannot be nullptr."); return InsnDefining; }; const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); if (!Acc) return; for (const MemoryAccess &MA : *Acc) { if (const MemoryUseOrDef *MUD = dyn_cast(&MA)) { Instruction *Insn = MUD->getMemoryInst(); // Entry does not exist if the clone of the block did not clone all // instructions. This occurs in LoopRotate when cloning instructions // from the old header to the old preheader. The cloned instruction may // also be a simplified Value, not an Instruction (see LoopRotate). // Also in LoopRotate, even when it's an instruction, due to it being // simplified, it may be a Use rather than a Def, so we cannot use MUD as // template. Calls coming from updateForClonedBlockIntoPred, ensure this. if (Instruction *NewInsn = dyn_cast_or_null(VMap.lookup(Insn))) { MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess( NewInsn, GetNewDefiningAccess(MUD->getDefiningAccess()), CloneWasSimplified ? nullptr : MUD); MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End); } } } } void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock( BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) { auto *MPhi = MSSA->getMemoryAccess(Header); if (!MPhi) return; // Create phi node in the backedge block and populate it with the same // incoming values as MPhi. Skip incoming values coming from Preheader. auto *NewMPhi = MSSA->createMemoryPhi(BEBlock); bool HasUniqueIncomingValue = true; MemoryAccess *UniqueValue = nullptr; for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) { BasicBlock *IBB = MPhi->getIncomingBlock(I); MemoryAccess *IV = MPhi->getIncomingValue(I); if (IBB != Preheader) { NewMPhi->addIncoming(IV, IBB); if (HasUniqueIncomingValue) { if (!UniqueValue) UniqueValue = IV; else if (UniqueValue != IV) HasUniqueIncomingValue = false; } } } // Update incoming edges into MPhi. Remove all but the incoming edge from // Preheader. Add an edge from NewMPhi auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader); MPhi->setIncomingValue(0, AccFromPreheader); MPhi->setIncomingBlock(0, Preheader); for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I) MPhi->unorderedDeleteIncoming(I); MPhi->addIncoming(NewMPhi, BEBlock); // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be // replaced with the unique value. if (HasUniqueIncomingValue) removeMemoryAccess(NewMPhi); } void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks, ArrayRef ExitBlocks, const ValueToValueMapTy &VMap, bool IgnoreIncomingWithNoClones) { PhiToDefMap MPhiMap; auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) { assert(Phi && NewPhi && "Invalid Phi nodes."); BasicBlock *NewPhiBB = NewPhi->getBlock(); SmallPtrSet NewPhiBBPreds(pred_begin(NewPhiBB), pred_end(NewPhiBB)); for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) { MemoryAccess *IncomingAccess = Phi->getIncomingValue(It); BasicBlock *IncBB = Phi->getIncomingBlock(It); if (BasicBlock *NewIncBB = cast_or_null(VMap.lookup(IncBB))) IncBB = NewIncBB; else if (IgnoreIncomingWithNoClones) continue; // Now we have IncBB, and will need to add incoming from it to NewPhi. // If IncBB is not a predecessor of NewPhiBB, then do not add it. // NewPhiBB was cloned without that edge. if (!NewPhiBBPreds.count(IncBB)) continue; // Determine incoming value and add it as incoming from IncBB. if (MemoryUseOrDef *IncMUD = dyn_cast(IncomingAccess)) { if (!MSSA->isLiveOnEntryDef(IncMUD)) { Instruction *IncI = IncMUD->getMemoryInst(); assert(IncI && "Found MemoryUseOrDef with no Instruction."); if (Instruction *NewIncI = cast_or_null(VMap.lookup(IncI))) { IncMUD = MSSA->getMemoryAccess(NewIncI); assert(IncMUD && "MemoryUseOrDef cannot be null, all preds processed."); } } NewPhi->addIncoming(IncMUD, IncBB); } else { MemoryPhi *IncPhi = cast(IncomingAccess); if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi)) NewPhi->addIncoming(NewDefPhi, IncBB); else NewPhi->addIncoming(IncPhi, IncBB); } } }; auto ProcessBlock = [&](BasicBlock *BB) { BasicBlock *NewBlock = cast_or_null(VMap.lookup(BB)); if (!NewBlock) return; assert(!MSSA->getWritableBlockAccesses(NewBlock) && "Cloned block should have no accesses"); // Add MemoryPhi. if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) { MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock); MPhiMap[MPhi] = NewPhi; } // Update Uses and Defs. cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap); }; for (auto BB : llvm::concat(LoopBlocks, ExitBlocks)) ProcessBlock(BB); for (auto BB : llvm::concat(LoopBlocks, ExitBlocks)) if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi)) FixPhiIncomingValues(MPhi, cast(NewPhi)); } void MemorySSAUpdater::updateForClonedBlockIntoPred( BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) { // All defs/phis from outside BB that are used in BB, are valid uses in P1. // Since those defs/phis must have dominated BB, and also dominate P1. // Defs from BB being used in BB will be replaced with the cloned defs from // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the // incoming def into the Phi from P1. // Instructions cloned into the predecessor are in practice sometimes // simplified, so disable the use of the template, and create an access from // scratch. PhiToDefMap MPhiMap; if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1); cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true); } template void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop( ArrayRef ExitBlocks, Iter ValuesBegin, Iter ValuesEnd, DominatorTree &DT) { SmallVector Updates; // Update/insert phis in all successors of exit blocks. for (auto *Exit : ExitBlocks) for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd)) if (BasicBlock *NewExit = cast_or_null(VMap->lookup(Exit))) { BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0); Updates.push_back({DT.Insert, NewExit, ExitSucc}); } applyInsertUpdates(Updates, DT); } void MemorySSAUpdater::updateExitBlocksForClonedLoop( ArrayRef ExitBlocks, const ValueToValueMapTy &VMap, DominatorTree &DT) { const ValueToValueMapTy *const Arr[] = {&VMap}; privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr), std::end(Arr), DT); } void MemorySSAUpdater::updateExitBlocksForClonedLoop( ArrayRef ExitBlocks, ArrayRef> VMaps, DominatorTree &DT) { auto GetPtr = [&](const std::unique_ptr &I) { return I.get(); }; using MappedIteratorType = mapped_iterator *, decltype(GetPtr)>; auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr); auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr); privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT); } void MemorySSAUpdater::applyUpdates(ArrayRef Updates, DominatorTree &DT) { SmallVector RevDeleteUpdates; SmallVector InsertUpdates; for (auto &Update : Updates) { if (Update.getKind() == DT.Insert) InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()}); else RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()}); } if (!RevDeleteUpdates.empty()) { // Update for inserted edges: use newDT and snapshot CFG as if deletes had // not occurred. // FIXME: This creates a new DT, so it's more expensive to do mix // delete/inserts vs just inserts. We can do an incremental update on the DT // to revert deletes, than re-delete the edges. Teaching DT to do this, is // part of a pending cleanup. DominatorTree NewDT(DT, RevDeleteUpdates); GraphDiff GD(RevDeleteUpdates); applyInsertUpdates(InsertUpdates, NewDT, &GD); } else { GraphDiff GD; applyInsertUpdates(InsertUpdates, DT, &GD); } // Update for deleted edges for (auto &Update : RevDeleteUpdates) removeEdge(Update.getFrom(), Update.getTo()); } void MemorySSAUpdater::applyInsertUpdates(ArrayRef Updates, DominatorTree &DT) { GraphDiff GD; applyInsertUpdates(Updates, DT, &GD); } void MemorySSAUpdater::applyInsertUpdates(ArrayRef Updates, DominatorTree &DT, const GraphDiff *GD) { // Get recursive last Def, assuming well formed MSSA and updated DT. auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * { while (true) { MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB); // Return last Def or Phi in BB, if it exists. if (Defs) return &*(--Defs->end()); // Check number of predecessors, we only care if there's more than one. unsigned Count = 0; BasicBlock *Pred = nullptr; for (auto &Pair : children({GD, BB})) { Pred = Pair.second; Count++; if (Count == 2) break; } // If BB has multiple predecessors, get last definition from IDom. if (Count != 1) { // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its // DT is invalidated. Return LoE as its last def. This will be added to // MemoryPhi node, and later deleted when the block is deleted. if (!DT.getNode(BB)) return MSSA->getLiveOnEntryDef(); if (auto *IDom = DT.getNode(BB)->getIDom()) if (IDom->getBlock() != BB) { BB = IDom->getBlock(); continue; } return MSSA->getLiveOnEntryDef(); } else { // Single predecessor, BB cannot be dead. GetLastDef of Pred. assert(Count == 1 && Pred && "Single predecessor expected."); BB = Pred; } }; llvm_unreachable("Unable to get last definition."); }; // Get nearest IDom given a set of blocks. // TODO: this can be optimized by starting the search at the node with the // lowest level (highest in the tree). auto FindNearestCommonDominator = [&](const SmallSetVector &BBSet) -> BasicBlock * { BasicBlock *PrevIDom = *BBSet.begin(); for (auto *BB : BBSet) PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB); return PrevIDom; }; // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not // include CurrIDom. auto GetNoLongerDomBlocks = [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom, SmallVectorImpl &BlocksPrevDom) { if (PrevIDom == CurrIDom) return; BlocksPrevDom.push_back(PrevIDom); BasicBlock *NextIDom = PrevIDom; while (BasicBlock *UpIDom = DT.getNode(NextIDom)->getIDom()->getBlock()) { if (UpIDom == CurrIDom) break; BlocksPrevDom.push_back(UpIDom); NextIDom = UpIDom; } }; // Map a BB to its predecessors: added + previously existing. To get a // deterministic order, store predecessors as SetVectors. The order in each // will be defined by the order in Updates (fixed) and the order given by // children<> (also fixed). Since we further iterate over these ordered sets, // we lose the information of multiple edges possibly existing between two // blocks, so we'll keep and EdgeCount map for that. // An alternate implementation could keep unordered set for the predecessors, // traverse either Updates or children<> each time to get the deterministic // order, and drop the usage of EdgeCount. This alternate approach would still // require querying the maps for each predecessor, and children<> call has // additional computation inside for creating the snapshot-graph predecessors. // As such, we favor using a little additional storage and less compute time. // This decision can be revisited if we find the alternative more favorable. struct PredInfo { SmallSetVector Added; SmallSetVector Prev; }; SmallDenseMap PredMap; for (auto &Edge : Updates) { BasicBlock *BB = Edge.getTo(); auto &AddedBlockSet = PredMap[BB].Added; AddedBlockSet.insert(Edge.getFrom()); } // Store all existing predecessor for each BB, at least one must exist. SmallDenseMap, int> EdgeCountMap; SmallPtrSet NewBlocks; for (auto &BBPredPair : PredMap) { auto *BB = BBPredPair.first; const auto &AddedBlockSet = BBPredPair.second.Added; auto &PrevBlockSet = BBPredPair.second.Prev; for (auto &Pair : children({GD, BB})) { BasicBlock *Pi = Pair.second; if (!AddedBlockSet.count(Pi)) PrevBlockSet.insert(Pi); EdgeCountMap[{Pi, BB}]++; } if (PrevBlockSet.empty()) { assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added."); LLVM_DEBUG( dbgs() << "Adding a predecessor to a block with no predecessors. " "This must be an edge added to a new, likely cloned, block. " "Its memory accesses must be already correct, assuming completed " "via the updateExitBlocksForClonedLoop API. " "Assert a single such edge is added so no phi addition or " "additional processing is required.\n"); assert(AddedBlockSet.size() == 1 && "Can only handle adding one predecessor to a new block."); // Need to remove new blocks from PredMap. Remove below to not invalidate // iterator here. NewBlocks.insert(BB); } } // Nothing to process for new/cloned blocks. for (auto *BB : NewBlocks) PredMap.erase(BB); SmallVector BlocksWithDefsToReplace; SmallVector InsertedPhis; // First create MemoryPhis in all blocks that don't have one. Create in the // order found in Updates, not in PredMap, to get deterministic numbering. for (auto &Edge : Updates) { BasicBlock *BB = Edge.getTo(); if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB)) InsertedPhis.push_back(MSSA->createMemoryPhi(BB)); } // Now we'll fill in the MemoryPhis with the right incoming values. for (auto &BBPredPair : PredMap) { auto *BB = BBPredPair.first; const auto &PrevBlockSet = BBPredPair.second.Prev; const auto &AddedBlockSet = BBPredPair.second.Added; assert(!PrevBlockSet.empty() && "At least one previous predecessor must exist."); // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by // keeping this map before the loop. We can reuse already populated entries // if an edge is added from the same predecessor to two different blocks, // and this does happen in rotate. Note that the map needs to be updated // when deleting non-necessary phis below, if the phi is in the map by // replacing the value with DefP1. SmallDenseMap LastDefAddedPred; for (auto *AddedPred : AddedBlockSet) { auto *DefPn = GetLastDef(AddedPred); assert(DefPn != nullptr && "Unable to find last definition."); LastDefAddedPred[AddedPred] = DefPn; } MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB); // If Phi is not empty, add an incoming edge from each added pred. Must // still compute blocks with defs to replace for this block below. if (NewPhi->getNumOperands()) { for (auto *Pred : AddedBlockSet) { auto *LastDefForPred = LastDefAddedPred[Pred]; for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) NewPhi->addIncoming(LastDefForPred, Pred); } } else { // Pick any existing predecessor and get its definition. All other // existing predecessors should have the same one, since no phi existed. auto *P1 = *PrevBlockSet.begin(); MemoryAccess *DefP1 = GetLastDef(P1); // Check DefP1 against all Defs in LastDefPredPair. If all the same, // nothing to add. bool InsertPhi = false; for (auto LastDefPredPair : LastDefAddedPred) if (DefP1 != LastDefPredPair.second) { InsertPhi = true; break; } if (!InsertPhi) { // Since NewPhi may be used in other newly added Phis, replace all uses // of NewPhi with the definition coming from all predecessors (DefP1), // before deleting it. NewPhi->replaceAllUsesWith(DefP1); removeMemoryAccess(NewPhi); continue; } // Update Phi with new values for new predecessors and old value for all // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered // sets, the order of entries in NewPhi is deterministic. for (auto *Pred : AddedBlockSet) { auto *LastDefForPred = LastDefAddedPred[Pred]; for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) NewPhi->addIncoming(LastDefForPred, Pred); } for (auto *Pred : PrevBlockSet) for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I) NewPhi->addIncoming(DefP1, Pred); } // Get all blocks that used to dominate BB and no longer do after adding // AddedBlockSet, where PrevBlockSet are the previously known predecessors. assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom"); BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet); assert(PrevIDom && "Previous IDom should exists"); BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock(); assert(NewIDom && "BB should have a new valid idom"); assert(DT.dominates(NewIDom, PrevIDom) && "New idom should dominate old idom"); GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace); } tryRemoveTrivialPhis(InsertedPhis); // Create the set of blocks that now have a definition. We'll use this to // compute IDF and add Phis there next. SmallVector BlocksToProcess; for (auto &VH : InsertedPhis) if (auto *MPhi = cast_or_null(VH)) BlocksToProcess.push_back(MPhi->getBlock()); // Compute IDF and add Phis in all IDF blocks that do not have one. SmallVector IDFBlocks; if (!BlocksToProcess.empty()) { ForwardIDFCalculator IDFs(DT, GD); SmallPtrSet DefiningBlocks(BlocksToProcess.begin(), BlocksToProcess.end()); IDFs.setDefiningBlocks(DefiningBlocks); IDFs.calculate(IDFBlocks); SmallSetVector PhisToFill; // First create all needed Phis. for (auto *BBIDF : IDFBlocks) if (!MSSA->getMemoryAccess(BBIDF)) { auto *IDFPhi = MSSA->createMemoryPhi(BBIDF); InsertedPhis.push_back(IDFPhi); PhisToFill.insert(IDFPhi); } // Then update or insert their correct incoming values. for (auto *BBIDF : IDFBlocks) { auto *IDFPhi = MSSA->getMemoryAccess(BBIDF); assert(IDFPhi && "Phi must exist"); if (!PhisToFill.count(IDFPhi)) { // Update existing Phi. // FIXME: some updates may be redundant, try to optimize and skip some. for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I) IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I))); } else { for (auto &Pair : children({GD, BBIDF})) { BasicBlock *Pi = Pair.second; IDFPhi->addIncoming(GetLastDef(Pi), Pi); } } } } // Now for all defs in BlocksWithDefsToReplace, if there are uses they no // longer dominate, replace those with the closest dominating def. // This will also update optimized accesses, as they're also uses. for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) { if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) { for (auto &DefToReplaceUses : *DefsList) { BasicBlock *DominatingBlock = DefToReplaceUses.getBlock(); Value::use_iterator UI = DefToReplaceUses.use_begin(), E = DefToReplaceUses.use_end(); for (; UI != E;) { Use &U = *UI; ++UI; MemoryAccess *Usr = dyn_cast(U.getUser()); if (MemoryPhi *UsrPhi = dyn_cast(Usr)) { BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U); if (!DT.dominates(DominatingBlock, DominatedBlock)) U.set(GetLastDef(DominatedBlock)); } else { BasicBlock *DominatedBlock = Usr->getBlock(); if (!DT.dominates(DominatingBlock, DominatedBlock)) { if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock)) U.set(DomBlPhi); else { auto *IDom = DT.getNode(DominatedBlock)->getIDom(); assert(IDom && "Block must have a valid IDom."); U.set(GetLastDef(IDom->getBlock())); } cast(Usr)->resetOptimized(); } } } } } } tryRemoveTrivialPhis(InsertedPhis); } // Move What before Where in the MemorySSA IR. template void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB, WhereType Where) { // Mark MemoryPhi users of What not to be optimized. for (auto *U : What->users()) if (MemoryPhi *PhiUser = dyn_cast(U)) NonOptPhis.insert(PhiUser); // Replace all our users with our defining access. What->replaceAllUsesWith(What->getDefiningAccess()); // Let MemorySSA take care of moving it around in the lists. MSSA->moveTo(What, BB, Where); // Now reinsert it into the IR and do whatever fixups needed. if (auto *MD = dyn_cast(What)) insertDef(MD); else insertUse(cast(What)); // Clear dangling pointers. We added all MemoryPhi users, but not all // of them are removed by fixupDefs(). NonOptPhis.clear(); } // Move What before Where in the MemorySSA IR. void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) { moveTo(What, Where->getBlock(), Where->getIterator()); } // Move What after Where in the MemorySSA IR. void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) { moveTo(What, Where->getBlock(), ++Where->getIterator()); } void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, MemorySSA::InsertionPlace Where) { return moveTo(What, BB, Where); } // All accesses in To used to be in From. Move to end and update access lists. void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To, Instruction *Start) { MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From); if (!Accs) return; MemoryAccess *FirstInNew = nullptr; for (Instruction &I : make_range(Start->getIterator(), To->end())) if ((FirstInNew = MSSA->getMemoryAccess(&I))) break; if (!FirstInNew) return; auto *MUD = cast(FirstInNew); do { auto NextIt = ++MUD->getIterator(); MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end()) ? nullptr : cast(&*NextIt); MSSA->moveTo(MUD, To, MemorySSA::End); // Moving MUD from Accs in the moveTo above, may delete Accs, so we need to // retrieve it again. Accs = MSSA->getWritableBlockAccesses(From); MUD = NextMUD; } while (MUD); } void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From, BasicBlock *To, Instruction *Start) { assert(MSSA->getBlockAccesses(To) == nullptr && "To block is expected to be free of MemoryAccesses."); moveAllAccesses(From, To, Start); for (BasicBlock *Succ : successors(To)) if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); } void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To, Instruction *Start) { assert(From->getSinglePredecessor() == To && "From block is expected to have a single predecessor (To)."); moveAllAccesses(From, To, Start); for (BasicBlock *Succ : successors(From)) if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ)) MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To); } /// If all arguments of a MemoryPHI are defined by the same incoming /// argument, return that argument. static MemoryAccess *onlySingleValue(MemoryPhi *MP) { MemoryAccess *MA = nullptr; for (auto &Arg : MP->operands()) { if (!MA) MA = cast(Arg); else if (MA != Arg) return nullptr; } return MA; } void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor( BasicBlock *Old, BasicBlock *New, ArrayRef Preds, bool IdenticalEdgesWereMerged) { assert(!MSSA->getWritableBlockAccesses(New) && "Access list should be null for a new block."); MemoryPhi *Phi = MSSA->getMemoryAccess(Old); if (!Phi) return; if (Old->hasNPredecessors(1)) { assert(pred_size(New) == Preds.size() && "Should have moved all predecessors."); MSSA->moveTo(Phi, New, MemorySSA::Beginning); } else { assert(!Preds.empty() && "Must be moving at least one predecessor to the " "new immediate predecessor."); MemoryPhi *NewPhi = MSSA->createMemoryPhi(New); SmallPtrSet PredsSet(Preds.begin(), Preds.end()); // Currently only support the case of removing a single incoming edge when // identical edges were not merged. if (!IdenticalEdgesWereMerged) assert(PredsSet.size() == Preds.size() && "If identical edges were not merged, we cannot have duplicate " "blocks in the predecessors"); Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) { if (PredsSet.count(B)) { NewPhi->addIncoming(MA, B); if (!IdenticalEdgesWereMerged) PredsSet.erase(B); return true; } return false; }); Phi->addIncoming(NewPhi, New); if (onlySingleValue(NewPhi)) removeMemoryAccess(NewPhi); } } void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) { assert(!MSSA->isLiveOnEntryDef(MA) && "Trying to remove the live on entry def"); // We can only delete phi nodes if they have no uses, or we can replace all // uses with a single definition. MemoryAccess *NewDefTarget = nullptr; if (MemoryPhi *MP = dyn_cast(MA)) { // Note that it is sufficient to know that all edges of the phi node have // the same argument. If they do, by the definition of dominance frontiers // (which we used to place this phi), that argument must dominate this phi, // and thus, must dominate the phi's uses, and so we will not hit the assert // below. NewDefTarget = onlySingleValue(MP); assert((NewDefTarget || MP->use_empty()) && "We can't delete this memory phi"); } else { NewDefTarget = cast(MA)->getDefiningAccess(); } SmallSetVector PhisToCheck; // Re-point the uses at our defining access if (!isa(MA) && !MA->use_empty()) { // Reset optimized on users of this store, and reset the uses. // A few notes: // 1. This is a slightly modified version of RAUW to avoid walking the // uses twice here. // 2. If we wanted to be complete, we would have to reset the optimized // flags on users of phi nodes if doing the below makes a phi node have all // the same arguments. Instead, we prefer users to removeMemoryAccess those // phi nodes, because doing it here would be N^3. if (MA->hasValueHandle()) ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget); // Note: We assume MemorySSA is not used in metadata since it's not really // part of the IR. while (!MA->use_empty()) { Use &U = *MA->use_begin(); if (auto *MUD = dyn_cast(U.getUser())) MUD->resetOptimized(); if (OptimizePhis) if (MemoryPhi *MP = dyn_cast(U.getUser())) PhisToCheck.insert(MP); U.set(NewDefTarget); } } // The call below to erase will destroy MA, so we can't change the order we // are doing things here MSSA->removeFromLookups(MA); MSSA->removeFromLists(MA); // Optionally optimize Phi uses. This will recursively remove trivial phis. if (!PhisToCheck.empty()) { SmallVector PhisToOptimize{PhisToCheck.begin(), PhisToCheck.end()}; PhisToCheck.clear(); unsigned PhisSize = PhisToOptimize.size(); while (PhisSize-- > 0) if (MemoryPhi *MP = cast_or_null(PhisToOptimize.pop_back_val())) { auto OperRange = MP->operands(); tryRemoveTrivialPhi(MP, OperRange); } } } void MemorySSAUpdater::removeBlocks( const SmallSetVector &DeadBlocks) { // First delete all uses of BB in MemoryPhis. for (BasicBlock *BB : DeadBlocks) { Instruction *TI = BB->getTerminator(); assert(TI && "Basic block expected to have a terminator instruction"); for (BasicBlock *Succ : successors(TI)) if (!DeadBlocks.count(Succ)) if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) { MP->unorderedDeleteIncomingBlock(BB); if (MP->getNumIncomingValues() == 1) removeMemoryAccess(MP); } // Drop all references of all accesses in BB if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB)) for (MemoryAccess &MA : *Acc) MA.dropAllReferences(); } // Next, delete all memory accesses in each block for (BasicBlock *BB : DeadBlocks) { MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB); if (!Acc) continue; for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) { MemoryAccess *MA = &*AB; ++AB; MSSA->removeFromLookups(MA); MSSA->removeFromLists(MA); } } } void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef UpdatedPHIs) { for (auto &VH : UpdatedPHIs) if (auto *MPhi = cast_or_null(VH)) { auto OperRange = MPhi->operands(); tryRemoveTrivialPhi(MPhi, OperRange); } } void MemorySSAUpdater::changeToUnreachable(const Instruction *I) { const BasicBlock *BB = I->getParent(); // Remove memory accesses in BB for I and all following instructions. auto BBI = I->getIterator(), BBE = BB->end(); // FIXME: If this becomes too expensive, iterate until the first instruction // with a memory access, then iterate over MemoryAccesses. while (BBI != BBE) removeMemoryAccess(&*(BBI++)); // Update phis in BB's successors to remove BB. SmallVector UpdatedPHIs; for (const BasicBlock *Successor : successors(BB)) { removeDuplicatePhiEdgesBetween(BB, Successor); if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) { MPhi->unorderedDeleteIncomingBlock(BB); UpdatedPHIs.push_back(MPhi); } } // Optimize trivial phis. tryRemoveTrivialPhis(UpdatedPHIs); } void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst *BI, const BasicBlock *To) { const BasicBlock *BB = BI->getParent(); SmallVector UpdatedPHIs; for (const BasicBlock *Succ : successors(BB)) { removeDuplicatePhiEdgesBetween(BB, Succ); if (Succ != To) if (auto *MPhi = MSSA->getMemoryAccess(Succ)) { MPhi->unorderedDeleteIncomingBlock(BB); UpdatedPHIs.push_back(MPhi); } } // Optimize trivial phis. tryRemoveTrivialPhis(UpdatedPHIs); } MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB( Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, MemorySSA::InsertionPlace Point) { MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); MSSA->insertIntoListsForBlock(NewAccess, BB, Point); return NewAccess; } MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore( Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) { assert(I->getParent() == InsertPt->getBlock() && "New and old access must be in the same block"); MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), InsertPt->getIterator()); return NewAccess; } MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter( Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) { assert(I->getParent() == InsertPt->getBlock() && "New and old access must be in the same block"); MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition); MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(), ++InsertPt->getIterator()); return NewAccess; }