// Copyright 2015-2016 Brian Smith. // // Permission to use, copy, modify, and/or distribute this software for any // purpose with or without fee is hereby granted, provided that the above // copyright notice and this permission notice appear in all copies. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. //! ECDSA Signatures using the P-256 and P-384 curves. use super::digest_scalar::digest_scalar; use crate::{ arithmetic::montgomery::*, cpu, digest, ec::{ self, suite_b::{ops::*, private_key}, }, error, io::der, limb, pkcs8, rand, sealed, signature, }; /// An ECDSA signing algorithm. pub struct EcdsaSigningAlgorithm { curve: &'static ec::Curve, private_scalar_ops: &'static PrivateScalarOps, private_key_ops: &'static PrivateKeyOps, digest_alg: &'static digest::Algorithm, pkcs8_template: &'static pkcs8::Template, format_rs: fn(ops: &'static ScalarOps, r: &Scalar, s: &Scalar, out: &mut [u8]) -> usize, id: AlgorithmID, } #[derive(Debug, Eq, PartialEq)] enum AlgorithmID { ECDSA_P256_SHA256_FIXED_SIGNING, ECDSA_P384_SHA384_FIXED_SIGNING, ECDSA_P256_SHA256_ASN1_SIGNING, ECDSA_P384_SHA384_ASN1_SIGNING, } derive_debug_via_id!(EcdsaSigningAlgorithm); impl PartialEq for EcdsaSigningAlgorithm { fn eq(&self, other: &Self) -> bool { self.id == other.id } } impl Eq for EcdsaSigningAlgorithm {} impl sealed::Sealed for EcdsaSigningAlgorithm {} /// An ECDSA key pair, used for signing. pub struct EcdsaKeyPair { d: Scalar, nonce_key: NonceRandomKey, alg: &'static EcdsaSigningAlgorithm, public_key: PublicKey, } derive_debug_via_field!(EcdsaKeyPair, stringify!(EcdsaKeyPair), public_key); impl EcdsaKeyPair { /// Generates a new key pair and returns the key pair serialized as a /// PKCS#8 document. /// /// The PKCS#8 document will be a v1 `OneAsymmetricKey` with the public key /// included in the `ECPrivateKey` structure, as described in /// [RFC 5958 Section 2] and [RFC 5915]. The `ECPrivateKey` structure will /// not have a `parameters` field so the generated key is compatible with /// PKCS#11. /// /// [RFC 5915]: https://tools.ietf.org/html/rfc5915 /// [RFC 5958 Section 2]: https://tools.ietf.org/html/rfc5958#section-2 pub fn generate_pkcs8( alg: &'static EcdsaSigningAlgorithm, rng: &dyn rand::SecureRandom, ) -> Result { let private_key = ec::Seed::generate(alg.curve, rng, cpu::features())?; let public_key = private_key.compute_public_key()?; Ok(pkcs8::wrap_key( &alg.pkcs8_template, private_key.bytes_less_safe(), public_key.as_ref(), )) } /// Constructs an ECDSA key pair by parsing an unencrypted PKCS#8 v1 /// id-ecPublicKey `ECPrivateKey` key. /// /// The input must be in PKCS#8 v1 format. It must contain the public key in /// the `ECPrivateKey` structure; `from_pkcs8()` will verify that the public /// key and the private key are consistent with each other. The algorithm /// identifier must identify the curve by name; it must not use an /// "explicit" encoding of the curve. The `parameters` field of the /// `ECPrivateKey`, if present, must be the same named curve that is in the /// algorithm identifier in the PKCS#8 header. pub fn from_pkcs8( alg: &'static EcdsaSigningAlgorithm, pkcs8: &[u8], ) -> Result { let key_pair = ec::suite_b::key_pair_from_pkcs8( alg.curve, alg.pkcs8_template, untrusted::Input::from(pkcs8), cpu::features(), )?; let rng = rand::SystemRandom::new(); // TODO: make this a parameter. Self::new(alg, key_pair, &rng) } /// Constructs an ECDSA key pair from the private key and public key bytes /// /// The private key must encoded as a big-endian fixed-length integer. For /// example, a P-256 private key must be 32 bytes prefixed with leading /// zeros as needed. /// /// The public key is encoding in uncompressed form using the /// Octet-String-to-Elliptic-Curve-Point algorithm in /// [SEC 1: Elliptic Curve Cryptography, Version 2.0]. /// /// This is intended for use by code that deserializes key pairs. It is /// recommended to use `EcdsaKeyPair::from_pkcs8()` (with a PKCS#8-encoded /// key) instead. /// /// [SEC 1: Elliptic Curve Cryptography, Version 2.0]: /// http://www.secg.org/sec1-v2.pdf pub fn from_private_key_and_public_key( alg: &'static EcdsaSigningAlgorithm, private_key: &[u8], public_key: &[u8], ) -> Result { let key_pair = ec::suite_b::key_pair_from_bytes( alg.curve, untrusted::Input::from(private_key), untrusted::Input::from(public_key), cpu::features(), )?; let rng = rand::SystemRandom::new(); // TODO: make this a parameter. Self::new(alg, key_pair, &rng) } fn new( alg: &'static EcdsaSigningAlgorithm, key_pair: ec::KeyPair, rng: &dyn rand::SecureRandom, ) -> Result { let (seed, public_key) = key_pair.split(); let d = private_key::private_key_as_scalar(alg.private_key_ops, &seed); let d = alg .private_scalar_ops .scalar_ops .scalar_product(&d, &alg.private_scalar_ops.oneRR_mod_n); let nonce_key = NonceRandomKey::new(alg, &seed, rng)?; Ok(Self { d, nonce_key, alg, public_key: PublicKey(public_key), }) } /// Deprecated. Returns the signature of the `message` using a random nonce /// generated by `rng`. pub fn sign( &self, rng: &dyn rand::SecureRandom, message: &[u8], ) -> Result { // Step 4 (out of order). let h = digest::digest(self.alg.digest_alg, message); // Incorporate `h` into the nonce to hedge against faulty RNGs. (This // is not an approved random number generator that is mandated in // the spec.) let nonce_rng = NonceRandom { key: &self.nonce_key, message_digest: &h, rng, }; self.sign_digest(h, &nonce_rng) } #[cfg(test)] fn sign_with_fixed_nonce_during_test( &self, rng: &dyn rand::SecureRandom, message: &[u8], ) -> Result { // Step 4 (out of order). let h = digest::digest(self.alg.digest_alg, message); self.sign_digest(h, rng) } /// Returns the signature of message digest `h` using a "random" nonce /// generated by `rng`. fn sign_digest( &self, h: digest::Digest, rng: &dyn rand::SecureRandom, ) -> Result { // NSA Suite B Implementer's Guide to ECDSA Section 3.4.1: ECDSA // Signature Generation. // NSA Guide Prerequisites: // // Prior to generating an ECDSA signature, the signatory shall // obtain: // // 1. an authentic copy of the domain parameters, // 2. a digital signature key pair (d,Q), either generated by a // method from Appendix A.1, or obtained from a trusted third // party, // 3. assurance of the validity of the public key Q (see Appendix // A.3), and // 4. assurance that he/she/it actually possesses the associated // private key d (see [SP800-89] Section 6). // // The domain parameters are hard-coded into the source code. // `EcdsaKeyPair::generate_pkcs8()` can be used to meet the second // requirement; otherwise, it is up to the user to ensure the key pair // was obtained from a trusted private key. The constructors for // `EcdsaKeyPair` ensure that #3 and #4 are met subject to the caveats // in SP800-89 Section 6. let ops = self.alg.private_scalar_ops; let scalar_ops = ops.scalar_ops; let cops = scalar_ops.common; let private_key_ops = self.alg.private_key_ops; for _ in 0..100 { // XXX: iteration conut? // Step 1. let k = private_key::random_scalar(self.alg.private_key_ops, rng)?; let k_inv = scalar_ops.scalar_inv_to_mont(&k); // Step 2. let r = private_key_ops.point_mul_base(&k); // Step 3. let r = { let (x, _) = private_key::affine_from_jacobian(private_key_ops, &r)?; let x = cops.elem_unencoded(&x); elem_reduced_to_scalar(cops, &x) }; if cops.is_zero(&r) { continue; } // Step 4 is done by the caller. // Step 5. let e = digest_scalar(scalar_ops, h); // Step 6. let s = { let dr = scalar_ops.scalar_product(&self.d, &r); let e_plus_dr = scalar_sum(cops, &e, &dr); scalar_ops.scalar_product(&k_inv, &e_plus_dr) }; if cops.is_zero(&s) { continue; } // Step 7 with encoding. return Ok(signature::Signature::new(|sig_bytes| { (self.alg.format_rs)(scalar_ops, &r, &s, sig_bytes) })); } Err(error::Unspecified) } } /// Generates an ECDSA nonce in a way that attempts to protect against a faulty /// `SecureRandom`. struct NonceRandom<'a> { key: &'a NonceRandomKey, message_digest: &'a digest::Digest, rng: &'a dyn rand::SecureRandom, } impl core::fmt::Debug for NonceRandom<'_> { fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { f.debug_struct("NonceRandom").finish() } } impl rand::sealed::SecureRandom for NonceRandom<'_> { fn fill_impl(&self, dest: &mut [u8]) -> Result<(), error::Unspecified> { // Use the same digest algorithm that will be used to digest the // message. The digest algorithm's output is exactly the right size; // this is checked below. // // XXX(perf): The single iteration will require two digest block // operations because the amount of data digested is larger than one // block. let digest_alg = self.key.0.algorithm(); let mut ctx = digest::Context::new(digest_alg); // Digest the randomized digest of the private key. let key = self.key.0.as_ref(); ctx.update(key); // The random value is digested between the key and the message so that // the key and the message are not directly digested in the same digest // block. assert!(key.len() <= digest_alg.block_len / 2); { let mut rand = [0u8; digest::MAX_BLOCK_LEN]; let rand = &mut rand[..digest_alg.block_len - key.len()]; assert!(rand.len() >= dest.len()); self.rng.fill(rand)?; ctx.update(rand); } ctx.update(self.message_digest.as_ref()); let nonce = ctx.finish(); // `copy_from_slice()` panics if the lengths differ, so we don't have // to separately assert that the lengths are the same. dest.copy_from_slice(nonce.as_ref()); Ok(()) } } impl<'a> sealed::Sealed for NonceRandom<'a> {} struct NonceRandomKey(digest::Digest); impl NonceRandomKey { fn new( alg: &EcdsaSigningAlgorithm, seed: &ec::Seed, rng: &dyn rand::SecureRandom, ) -> Result { let mut rand = [0; digest::MAX_OUTPUT_LEN]; let rand = &mut rand[0..alg.curve.elem_scalar_seed_len]; // XXX: `KeyRejected` isn't the right way to model failure of the RNG, // but to fix that we'd need to break the API by changing the result type. // TODO: Fix the API in the next breaking release. rng.fill(rand) .map_err(|error::Unspecified| error::KeyRejected::rng_failed())?; let mut ctx = digest::Context::new(alg.digest_alg); ctx.update(rand); ctx.update(seed.bytes_less_safe()); Ok(NonceRandomKey(ctx.finish())) } } impl signature::KeyPair for EcdsaKeyPair { type PublicKey = PublicKey; fn public_key(&self) -> &Self::PublicKey { &self.public_key } } #[derive(Clone, Copy)] pub struct PublicKey(ec::PublicKey); derive_debug_self_as_ref_hex_bytes!(PublicKey); impl AsRef<[u8]> for PublicKey { fn as_ref(&self) -> &[u8] { self.0.as_ref() } } fn format_rs_fixed(ops: &'static ScalarOps, r: &Scalar, s: &Scalar, out: &mut [u8]) -> usize { let scalar_len = ops.scalar_bytes_len(); let (r_out, rest) = out.split_at_mut(scalar_len); limb::big_endian_from_limbs(&r.limbs[..ops.common.num_limbs], r_out); let (s_out, _) = rest.split_at_mut(scalar_len); limb::big_endian_from_limbs(&s.limbs[..ops.common.num_limbs], s_out); 2 * scalar_len } fn format_rs_asn1(ops: &'static ScalarOps, r: &Scalar, s: &Scalar, out: &mut [u8]) -> usize { // This assumes `a` is not zero since neither `r` or `s` is allowed to be // zero. fn format_integer_tlv(ops: &ScalarOps, a: &Scalar, out: &mut [u8]) -> usize { let mut fixed = [0u8; ec::SCALAR_MAX_BYTES + 1]; let fixed = &mut fixed[..(ops.scalar_bytes_len() + 1)]; limb::big_endian_from_limbs(&a.limbs[..ops.common.num_limbs], &mut fixed[1..]); // Since `a_fixed_out` is an extra byte long, it is guaranteed to start // with a zero. debug_assert_eq!(fixed[0], 0); // There must be at least one non-zero byte since `a` isn't zero. let first_index = fixed.iter().position(|b| *b != 0).unwrap(); // If the first byte has its high bit set, it needs to be prefixed with 0x00. let first_index = if fixed[first_index] & 0x80 != 0 { first_index - 1 } else { first_index }; let value = &fixed[first_index..]; out[0] = der::Tag::Integer as u8; // Lengths less than 128 are encoded in one byte. assert!(value.len() < 128); out[1] = value.len() as u8; out[2..][..value.len()].copy_from_slice(&value); 2 + value.len() } out[0] = der::Tag::Sequence as u8; let r_tlv_len = format_integer_tlv(ops, r, &mut out[2..]); let s_tlv_len = format_integer_tlv(ops, s, &mut out[2..][r_tlv_len..]); // Lengths less than 128 are encoded in one byte. let value_len = r_tlv_len + s_tlv_len; assert!(value_len < 128); out[1] = value_len as u8; 2 + value_len } /// Signing of fixed-length (PKCS#11 style) ECDSA signatures using the /// P-256 curve and SHA-256. /// /// See "`ECDSA_*_FIXED` Details" in `ring::signature`'s module-level /// documentation for more details. pub static ECDSA_P256_SHA256_FIXED_SIGNING: EcdsaSigningAlgorithm = EcdsaSigningAlgorithm { curve: &ec::suite_b::curve::P256, private_scalar_ops: &p256::PRIVATE_SCALAR_OPS, private_key_ops: &p256::PRIVATE_KEY_OPS, digest_alg: &digest::SHA256, pkcs8_template: &EC_PUBLIC_KEY_P256_PKCS8_V1_TEMPLATE, format_rs: format_rs_fixed, id: AlgorithmID::ECDSA_P256_SHA256_FIXED_SIGNING, }; /// Signing of fixed-length (PKCS#11 style) ECDSA signatures using the /// P-384 curve and SHA-384. /// /// See "`ECDSA_*_FIXED` Details" in `ring::signature`'s module-level /// documentation for more details. pub static ECDSA_P384_SHA384_FIXED_SIGNING: EcdsaSigningAlgorithm = EcdsaSigningAlgorithm { curve: &ec::suite_b::curve::P384, private_scalar_ops: &p384::PRIVATE_SCALAR_OPS, private_key_ops: &p384::PRIVATE_KEY_OPS, digest_alg: &digest::SHA384, pkcs8_template: &EC_PUBLIC_KEY_P384_PKCS8_V1_TEMPLATE, format_rs: format_rs_fixed, id: AlgorithmID::ECDSA_P384_SHA384_FIXED_SIGNING, }; /// Signing of ASN.1 DER-encoded ECDSA signatures using the P-256 curve and /// SHA-256. /// /// See "`ECDSA_*_ASN1` Details" in `ring::signature`'s module-level /// documentation for more details. pub static ECDSA_P256_SHA256_ASN1_SIGNING: EcdsaSigningAlgorithm = EcdsaSigningAlgorithm { curve: &ec::suite_b::curve::P256, private_scalar_ops: &p256::PRIVATE_SCALAR_OPS, private_key_ops: &p256::PRIVATE_KEY_OPS, digest_alg: &digest::SHA256, pkcs8_template: &EC_PUBLIC_KEY_P256_PKCS8_V1_TEMPLATE, format_rs: format_rs_asn1, id: AlgorithmID::ECDSA_P256_SHA256_ASN1_SIGNING, }; /// Signing of ASN.1 DER-encoded ECDSA signatures using the P-384 curve and /// SHA-384. /// /// See "`ECDSA_*_ASN1` Details" in `ring::signature`'s module-level /// documentation for more details. pub static ECDSA_P384_SHA384_ASN1_SIGNING: EcdsaSigningAlgorithm = EcdsaSigningAlgorithm { curve: &ec::suite_b::curve::P384, private_scalar_ops: &p384::PRIVATE_SCALAR_OPS, private_key_ops: &p384::PRIVATE_KEY_OPS, digest_alg: &digest::SHA384, pkcs8_template: &EC_PUBLIC_KEY_P384_PKCS8_V1_TEMPLATE, format_rs: format_rs_asn1, id: AlgorithmID::ECDSA_P384_SHA384_ASN1_SIGNING, }; static EC_PUBLIC_KEY_P256_PKCS8_V1_TEMPLATE: pkcs8::Template = pkcs8::Template { bytes: include_bytes!("ecPublicKey_p256_pkcs8_v1_template.der"), alg_id_range: core::ops::Range { start: 8, end: 27 }, curve_id_index: 9, private_key_index: 0x24, }; static EC_PUBLIC_KEY_P384_PKCS8_V1_TEMPLATE: pkcs8::Template = pkcs8::Template { bytes: include_bytes!("ecPublicKey_p384_pkcs8_v1_template.der"), alg_id_range: core::ops::Range { start: 8, end: 24 }, curve_id_index: 9, private_key_index: 0x23, }; #[cfg(test)] mod tests { use crate::{signature, test}; #[test] fn signature_ecdsa_sign_fixed_test() { test::run( test_file!("ecdsa_sign_fixed_tests.txt"), |section, test_case| { assert_eq!(section, ""); let curve_name = test_case.consume_string("Curve"); let digest_name = test_case.consume_string("Digest"); let msg = test_case.consume_bytes("Msg"); let d = test_case.consume_bytes("d"); let q = test_case.consume_bytes("Q"); let k = test_case.consume_bytes("k"); let expected_result = test_case.consume_bytes("Sig"); let alg = match (curve_name.as_str(), digest_name.as_str()) { ("P-256", "SHA256") => &signature::ECDSA_P256_SHA256_FIXED_SIGNING, ("P-384", "SHA384") => &signature::ECDSA_P384_SHA384_FIXED_SIGNING, _ => { panic!("Unsupported curve+digest: {}+{}", curve_name, digest_name); } }; let private_key = signature::EcdsaKeyPair::from_private_key_and_public_key(alg, &d, &q).unwrap(); let rng = test::rand::FixedSliceRandom { bytes: &k }; let actual_result = private_key .sign_with_fixed_nonce_during_test(&rng, &msg) .unwrap(); assert_eq!(actual_result.as_ref(), &expected_result[..]); Ok(()) }, ); } #[test] fn signature_ecdsa_sign_asn1_test() { test::run( test_file!("ecdsa_sign_asn1_tests.txt"), |section, test_case| { assert_eq!(section, ""); let curve_name = test_case.consume_string("Curve"); let digest_name = test_case.consume_string("Digest"); let msg = test_case.consume_bytes("Msg"); let d = test_case.consume_bytes("d"); let q = test_case.consume_bytes("Q"); let k = test_case.consume_bytes("k"); let expected_result = test_case.consume_bytes("Sig"); let alg = match (curve_name.as_str(), digest_name.as_str()) { ("P-256", "SHA256") => &signature::ECDSA_P256_SHA256_ASN1_SIGNING, ("P-384", "SHA384") => &signature::ECDSA_P384_SHA384_ASN1_SIGNING, _ => { panic!("Unsupported curve+digest: {}+{}", curve_name, digest_name); } }; let private_key = signature::EcdsaKeyPair::from_private_key_and_public_key(alg, &d, &q).unwrap(); let rng = test::rand::FixedSliceRandom { bytes: &k }; let actual_result = private_key .sign_with_fixed_nonce_during_test(&rng, &msg) .unwrap(); assert_eq!(actual_result.as_ref(), &expected_result[..]); Ok(()) }, ); } }