//===- LoopVersioning.cpp - Utility to version a loop ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines a utility class to perform loop versioning. The versioned // loop speculates that otherwise may-aliasing memory accesses don't overlap and // emits checks to prove this. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/LoopVersioning.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/Analysis/LoopAccessAnalysis.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/MemorySSA.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/PassManager.h" #include "llvm/InitializePasses.h" #include "llvm/Support/CommandLine.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" using namespace llvm; static cl::opt AnnotateNoAlias("loop-version-annotate-no-alias", cl::init(true), cl::Hidden, cl::desc("Add no-alias annotation for instructions that " "are disambiguated by memchecks")); LoopVersioning::LoopVersioning(const LoopAccessInfo &LAI, ArrayRef Checks, Loop *L, LoopInfo *LI, DominatorTree *DT, ScalarEvolution *SE) : VersionedLoop(L), NonVersionedLoop(nullptr), AliasChecks(Checks.begin(), Checks.end()), Preds(LAI.getPSE().getUnionPredicate()), LAI(LAI), LI(LI), DT(DT), SE(SE) { assert(L->getUniqueExitBlock() && "No single exit block"); } void LoopVersioning::versionLoop( const SmallVectorImpl &DefsUsedOutside) { assert(VersionedLoop->isLoopSimplifyForm() && "Loop is not in loop-simplify form"); Instruction *FirstCheckInst; Instruction *MemRuntimeCheck; Value *SCEVRuntimeCheck; Value *RuntimeCheck = nullptr; // Add the memcheck in the original preheader (this is empty initially). BasicBlock *RuntimeCheckBB = VersionedLoop->getLoopPreheader(); const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); std::tie(FirstCheckInst, MemRuntimeCheck) = addRuntimeChecks(RuntimeCheckBB->getTerminator(), VersionedLoop, AliasChecks, RtPtrChecking.getSE()); SCEVExpander Exp(*SE, RuntimeCheckBB->getModule()->getDataLayout(), "scev.check"); SCEVRuntimeCheck = Exp.expandCodeForPredicate(&Preds, RuntimeCheckBB->getTerminator()); auto *CI = dyn_cast(SCEVRuntimeCheck); // Discard the SCEV runtime check if it is always true. if (CI && CI->isZero()) SCEVRuntimeCheck = nullptr; if (MemRuntimeCheck && SCEVRuntimeCheck) { RuntimeCheck = BinaryOperator::Create(Instruction::Or, MemRuntimeCheck, SCEVRuntimeCheck, "lver.safe"); if (auto *I = dyn_cast(RuntimeCheck)) I->insertBefore(RuntimeCheckBB->getTerminator()); } else RuntimeCheck = MemRuntimeCheck ? MemRuntimeCheck : SCEVRuntimeCheck; assert(RuntimeCheck && "called even though we don't need " "any runtime checks"); // Rename the block to make the IR more readable. RuntimeCheckBB->setName(VersionedLoop->getHeader()->getName() + ".lver.check"); // Create empty preheader for the loop (and after cloning for the // non-versioned loop). BasicBlock *PH = SplitBlock(RuntimeCheckBB, RuntimeCheckBB->getTerminator(), DT, LI, nullptr, VersionedLoop->getHeader()->getName() + ".ph"); // Clone the loop including the preheader. // // FIXME: This does not currently preserve SimplifyLoop because the exit // block is a join between the two loops. SmallVector NonVersionedLoopBlocks; NonVersionedLoop = cloneLoopWithPreheader(PH, RuntimeCheckBB, VersionedLoop, VMap, ".lver.orig", LI, DT, NonVersionedLoopBlocks); remapInstructionsInBlocks(NonVersionedLoopBlocks, VMap); // Insert the conditional branch based on the result of the memchecks. Instruction *OrigTerm = RuntimeCheckBB->getTerminator(); BranchInst::Create(NonVersionedLoop->getLoopPreheader(), VersionedLoop->getLoopPreheader(), RuntimeCheck, OrigTerm); OrigTerm->eraseFromParent(); // The loops merge in the original exit block. This is now dominated by the // memchecking block. DT->changeImmediateDominator(VersionedLoop->getExitBlock(), RuntimeCheckBB); // Adds the necessary PHI nodes for the versioned loops based on the // loop-defined values used outside of the loop. addPHINodes(DefsUsedOutside); formDedicatedExitBlocks(NonVersionedLoop, DT, LI, nullptr, true); formDedicatedExitBlocks(VersionedLoop, DT, LI, nullptr, true); assert(NonVersionedLoop->isLoopSimplifyForm() && VersionedLoop->isLoopSimplifyForm() && "The versioned loops should be in simplify form."); } void LoopVersioning::addPHINodes( const SmallVectorImpl &DefsUsedOutside) { BasicBlock *PHIBlock = VersionedLoop->getExitBlock(); assert(PHIBlock && "No single successor to loop exit block"); PHINode *PN; // First add a single-operand PHI for each DefsUsedOutside if one does not // exists yet. for (auto *Inst : DefsUsedOutside) { // See if we have a single-operand PHI with the value defined by the // original loop. for (auto I = PHIBlock->begin(); (PN = dyn_cast(I)); ++I) { if (PN->getIncomingValue(0) == Inst) break; } // If not create it. if (!PN) { PN = PHINode::Create(Inst->getType(), 2, Inst->getName() + ".lver", &PHIBlock->front()); SmallVector UsersToUpdate; for (User *U : Inst->users()) if (!VersionedLoop->contains(cast(U)->getParent())) UsersToUpdate.push_back(U); for (User *U : UsersToUpdate) U->replaceUsesOfWith(Inst, PN); PN->addIncoming(Inst, VersionedLoop->getExitingBlock()); } } // Then for each PHI add the operand for the edge from the cloned loop. for (auto I = PHIBlock->begin(); (PN = dyn_cast(I)); ++I) { assert(PN->getNumOperands() == 1 && "Exit block should only have on predecessor"); // If the definition was cloned used that otherwise use the same value. Value *ClonedValue = PN->getIncomingValue(0); auto Mapped = VMap.find(ClonedValue); if (Mapped != VMap.end()) ClonedValue = Mapped->second; PN->addIncoming(ClonedValue, NonVersionedLoop->getExitingBlock()); } } void LoopVersioning::prepareNoAliasMetadata() { // We need to turn the no-alias relation between pointer checking groups into // no-aliasing annotations between instructions. // // We accomplish this by mapping each pointer checking group (a set of // pointers memchecked together) to an alias scope and then also mapping each // group to the list of scopes it can't alias. const RuntimePointerChecking *RtPtrChecking = LAI.getRuntimePointerChecking(); LLVMContext &Context = VersionedLoop->getHeader()->getContext(); // First allocate an aliasing scope for each pointer checking group. // // While traversing through the checking groups in the loop, also create a // reverse map from pointers to the pointer checking group they were assigned // to. MDBuilder MDB(Context); MDNode *Domain = MDB.createAnonymousAliasScopeDomain("LVerDomain"); for (const auto &Group : RtPtrChecking->CheckingGroups) { GroupToScope[&Group] = MDB.createAnonymousAliasScope(Domain); for (unsigned PtrIdx : Group.Members) PtrToGroup[RtPtrChecking->getPointerInfo(PtrIdx).PointerValue] = &Group; } // Go through the checks and for each pointer group, collect the scopes for // each non-aliasing pointer group. DenseMap> GroupToNonAliasingScopes; for (const auto &Check : AliasChecks) GroupToNonAliasingScopes[Check.first].push_back(GroupToScope[Check.second]); // Finally, transform the above to actually map to scope list which is what // the metadata uses. for (auto Pair : GroupToNonAliasingScopes) GroupToNonAliasingScopeList[Pair.first] = MDNode::get(Context, Pair.second); } void LoopVersioning::annotateLoopWithNoAlias() { if (!AnnotateNoAlias) return; // First prepare the maps. prepareNoAliasMetadata(); // Add the scope and no-alias metadata to the instructions. for (Instruction *I : LAI.getDepChecker().getMemoryInstructions()) { annotateInstWithNoAlias(I); } } void LoopVersioning::annotateInstWithNoAlias(Instruction *VersionedInst, const Instruction *OrigInst) { if (!AnnotateNoAlias) return; LLVMContext &Context = VersionedLoop->getHeader()->getContext(); const Value *Ptr = isa(OrigInst) ? cast(OrigInst)->getPointerOperand() : cast(OrigInst)->getPointerOperand(); // Find the group for the pointer and then add the scope metadata. auto Group = PtrToGroup.find(Ptr); if (Group != PtrToGroup.end()) { VersionedInst->setMetadata( LLVMContext::MD_alias_scope, MDNode::concatenate( VersionedInst->getMetadata(LLVMContext::MD_alias_scope), MDNode::get(Context, GroupToScope[Group->second]))); // Add the no-alias metadata. auto NonAliasingScopeList = GroupToNonAliasingScopeList.find(Group->second); if (NonAliasingScopeList != GroupToNonAliasingScopeList.end()) VersionedInst->setMetadata( LLVMContext::MD_noalias, MDNode::concatenate( VersionedInst->getMetadata(LLVMContext::MD_noalias), NonAliasingScopeList->second)); } } namespace { bool runImpl(LoopInfo *LI, function_ref GetLAA, DominatorTree *DT, ScalarEvolution *SE) { // Build up a worklist of inner-loops to version. This is necessary as the // act of versioning a loop creates new loops and can invalidate iterators // across the loops. SmallVector Worklist; for (Loop *TopLevelLoop : *LI) for (Loop *L : depth_first(TopLevelLoop)) // We only handle inner-most loops. if (L->isInnermost()) Worklist.push_back(L); // Now walk the identified inner loops. bool Changed = false; for (Loop *L : Worklist) { if (!L->isLoopSimplifyForm() || !L->isRotatedForm() || !L->getExitingBlock()) continue; const LoopAccessInfo &LAI = GetLAA(*L); if (!LAI.hasConvergentOp() && (LAI.getNumRuntimePointerChecks() || !LAI.getPSE().getUnionPredicate().isAlwaysTrue())) { LoopVersioning LVer(LAI, LAI.getRuntimePointerChecking()->getChecks(), L, LI, DT, SE); LVer.versionLoop(); LVer.annotateLoopWithNoAlias(); Changed = true; } } return Changed; } /// Also expose this is a pass. Currently this is only used for /// unit-testing. It adds all memchecks necessary to remove all may-aliasing /// array accesses from the loop. class LoopVersioningLegacyPass : public FunctionPass { public: LoopVersioningLegacyPass() : FunctionPass(ID) { initializeLoopVersioningLegacyPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { auto *LI = &getAnalysis().getLoopInfo(); auto GetLAA = [&](Loop &L) -> const LoopAccessInfo & { return getAnalysis().getInfo(&L); }; auto *DT = &getAnalysis().getDomTree(); auto *SE = &getAnalysis().getSE(); return runImpl(LI, GetLAA, DT, SE); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); } static char ID; }; } #define LVER_OPTION "loop-versioning" #define DEBUG_TYPE LVER_OPTION char LoopVersioningLegacyPass::ID; static const char LVer_name[] = "Loop Versioning"; INITIALIZE_PASS_BEGIN(LoopVersioningLegacyPass, LVER_OPTION, LVer_name, false, false) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_END(LoopVersioningLegacyPass, LVER_OPTION, LVer_name, false, false) namespace llvm { FunctionPass *createLoopVersioningLegacyPass() { return new LoopVersioningLegacyPass(); } PreservedAnalyses LoopVersioningPass::run(Function &F, FunctionAnalysisManager &AM) { auto &SE = AM.getResult(F); auto &LI = AM.getResult(F); auto &TTI = AM.getResult(F); auto &DT = AM.getResult(F); auto &TLI = AM.getResult(F); auto &AA = AM.getResult(F); auto &AC = AM.getResult(F); MemorySSA *MSSA = EnableMSSALoopDependency ? &AM.getResult(F).getMSSA() : nullptr; auto &LAM = AM.getResult(F).getManager(); auto GetLAA = [&](Loop &L) -> const LoopAccessInfo & { LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr, MSSA}; return LAM.getResult(L, AR); }; if (runImpl(&LI, GetLAA, &DT, &SE)) return PreservedAnalyses::none(); return PreservedAnalyses::all(); } } // namespace llvm