//===- DeclCXX.h - Classes for representing C++ declarations --*- C++ -*-=====// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // /// \file /// Defines the C++ Decl subclasses, other than those for templates /// (found in DeclTemplate.h) and friends (in DeclFriend.h). // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_AST_DECLCXX_H #define LLVM_CLANG_AST_DECLCXX_H #include "clang/AST/ASTUnresolvedSet.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclBase.h" #include "clang/AST/DeclarationName.h" #include "clang/AST/Expr.h" #include "clang/AST/ExternalASTSource.h" #include "clang/AST/LambdaCapture.h" #include "clang/AST/NestedNameSpecifier.h" #include "clang/AST/Redeclarable.h" #include "clang/AST/Stmt.h" #include "clang/AST/Type.h" #include "clang/AST/TypeLoc.h" #include "clang/AST/UnresolvedSet.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/Lambda.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/OperatorKinds.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/Specifiers.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/PointerIntPair.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/TinyPtrVector.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/PointerLikeTypeTraits.h" #include "llvm/Support/TrailingObjects.h" #include #include #include #include #include namespace clang { class ASTContext; class ClassTemplateDecl; class ConstructorUsingShadowDecl; class CXXBasePath; class CXXBasePaths; class CXXConstructorDecl; class CXXDestructorDecl; class CXXFinalOverriderMap; class CXXIndirectPrimaryBaseSet; class CXXMethodDecl; class DecompositionDecl; class DiagnosticBuilder; class FriendDecl; class FunctionTemplateDecl; class IdentifierInfo; class MemberSpecializationInfo; class BaseUsingDecl; class TemplateDecl; class TemplateParameterList; class UsingDecl; /// Represents an access specifier followed by colon ':'. /// /// An objects of this class represents sugar for the syntactic occurrence /// of an access specifier followed by a colon in the list of member /// specifiers of a C++ class definition. /// /// Note that they do not represent other uses of access specifiers, /// such as those occurring in a list of base specifiers. /// Also note that this class has nothing to do with so-called /// "access declarations" (C++98 11.3 [class.access.dcl]). class AccessSpecDecl : public Decl { /// The location of the ':'. SourceLocation ColonLoc; AccessSpecDecl(AccessSpecifier AS, DeclContext *DC, SourceLocation ASLoc, SourceLocation ColonLoc) : Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) { setAccess(AS); } AccessSpecDecl(EmptyShell Empty) : Decl(AccessSpec, Empty) {} virtual void anchor(); public: /// The location of the access specifier. SourceLocation getAccessSpecifierLoc() const { return getLocation(); } /// Sets the location of the access specifier. void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); } /// The location of the colon following the access specifier. SourceLocation getColonLoc() const { return ColonLoc; } /// Sets the location of the colon. void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; } SourceRange getSourceRange() const override LLVM_READONLY { return SourceRange(getAccessSpecifierLoc(), getColonLoc()); } static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS, DeclContext *DC, SourceLocation ASLoc, SourceLocation ColonLoc) { return new (C, DC) AccessSpecDecl(AS, DC, ASLoc, ColonLoc); } static AccessSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID); // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == AccessSpec; } }; /// Represents a base class of a C++ class. /// /// Each CXXBaseSpecifier represents a single, direct base class (or /// struct) of a C++ class (or struct). It specifies the type of that /// base class, whether it is a virtual or non-virtual base, and what /// level of access (public, protected, private) is used for the /// derivation. For example: /// /// \code /// class A { }; /// class B { }; /// class C : public virtual A, protected B { }; /// \endcode /// /// In this code, C will have two CXXBaseSpecifiers, one for "public /// virtual A" and the other for "protected B". class CXXBaseSpecifier { /// The source code range that covers the full base /// specifier, including the "virtual" (if present) and access /// specifier (if present). SourceRange Range; /// The source location of the ellipsis, if this is a pack /// expansion. SourceLocation EllipsisLoc; /// Whether this is a virtual base class or not. unsigned Virtual : 1; /// Whether this is the base of a class (true) or of a struct (false). /// /// This determines the mapping from the access specifier as written in the /// source code to the access specifier used for semantic analysis. unsigned BaseOfClass : 1; /// Access specifier as written in the source code (may be AS_none). /// /// The actual type of data stored here is an AccessSpecifier, but we use /// "unsigned" here to work around a VC++ bug. unsigned Access : 2; /// Whether the class contains a using declaration /// to inherit the named class's constructors. unsigned InheritConstructors : 1; /// The type of the base class. /// /// This will be a class or struct (or a typedef of such). The source code /// range does not include the \c virtual or the access specifier. TypeSourceInfo *BaseTypeInfo; public: CXXBaseSpecifier() = default; CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A, TypeSourceInfo *TInfo, SourceLocation EllipsisLoc) : Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC), Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) {} /// Retrieves the source range that contains the entire base specifier. SourceRange getSourceRange() const LLVM_READONLY { return Range; } SourceLocation getBeginLoc() const LLVM_READONLY { return Range.getBegin(); } SourceLocation getEndLoc() const LLVM_READONLY { return Range.getEnd(); } /// Get the location at which the base class type was written. SourceLocation getBaseTypeLoc() const LLVM_READONLY { return BaseTypeInfo->getTypeLoc().getBeginLoc(); } /// Determines whether the base class is a virtual base class (or not). bool isVirtual() const { return Virtual; } /// Determine whether this base class is a base of a class declared /// with the 'class' keyword (vs. one declared with the 'struct' keyword). bool isBaseOfClass() const { return BaseOfClass; } /// Determine whether this base specifier is a pack expansion. bool isPackExpansion() const { return EllipsisLoc.isValid(); } /// Determine whether this base class's constructors get inherited. bool getInheritConstructors() const { return InheritConstructors; } /// Set that this base class's constructors should be inherited. void setInheritConstructors(bool Inherit = true) { InheritConstructors = Inherit; } /// For a pack expansion, determine the location of the ellipsis. SourceLocation getEllipsisLoc() const { return EllipsisLoc; } /// Returns the access specifier for this base specifier. /// /// This is the actual base specifier as used for semantic analysis, so /// the result can never be AS_none. To retrieve the access specifier as /// written in the source code, use getAccessSpecifierAsWritten(). AccessSpecifier getAccessSpecifier() const { if ((AccessSpecifier)Access == AS_none) return BaseOfClass? AS_private : AS_public; else return (AccessSpecifier)Access; } /// Retrieves the access specifier as written in the source code /// (which may mean that no access specifier was explicitly written). /// /// Use getAccessSpecifier() to retrieve the access specifier for use in /// semantic analysis. AccessSpecifier getAccessSpecifierAsWritten() const { return (AccessSpecifier)Access; } /// Retrieves the type of the base class. /// /// This type will always be an unqualified class type. QualType getType() const { return BaseTypeInfo->getType().getUnqualifiedType(); } /// Retrieves the type and source location of the base class. TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; } }; /// Represents a C++ struct/union/class. class CXXRecordDecl : public RecordDecl { friend class ASTDeclReader; friend class ASTDeclWriter; friend class ASTNodeImporter; friend class ASTReader; friend class ASTRecordWriter; friend class ASTWriter; friend class DeclContext; friend class LambdaExpr; friend void FunctionDecl::setPure(bool); friend void TagDecl::startDefinition(); /// Values used in DefinitionData fields to represent special members. enum SpecialMemberFlags { SMF_DefaultConstructor = 0x1, SMF_CopyConstructor = 0x2, SMF_MoveConstructor = 0x4, SMF_CopyAssignment = 0x8, SMF_MoveAssignment = 0x10, SMF_Destructor = 0x20, SMF_All = 0x3f }; struct DefinitionData { #define FIELD(Name, Width, Merge) \ unsigned Name : Width; #include "CXXRecordDeclDefinitionBits.def" /// Whether this class describes a C++ lambda. unsigned IsLambda : 1; /// Whether we are currently parsing base specifiers. unsigned IsParsingBaseSpecifiers : 1; /// True when visible conversion functions are already computed /// and are available. unsigned ComputedVisibleConversions : 1; unsigned HasODRHash : 1; /// A hash of parts of the class to help in ODR checking. unsigned ODRHash = 0; /// The number of base class specifiers in Bases. unsigned NumBases = 0; /// The number of virtual base class specifiers in VBases. unsigned NumVBases = 0; /// Base classes of this class. /// /// FIXME: This is wasted space for a union. LazyCXXBaseSpecifiersPtr Bases; /// direct and indirect virtual base classes of this class. LazyCXXBaseSpecifiersPtr VBases; /// The conversion functions of this C++ class (but not its /// inherited conversion functions). /// /// Each of the entries in this overload set is a CXXConversionDecl. LazyASTUnresolvedSet Conversions; /// The conversion functions of this C++ class and all those /// inherited conversion functions that are visible in this class. /// /// Each of the entries in this overload set is a CXXConversionDecl or a /// FunctionTemplateDecl. LazyASTUnresolvedSet VisibleConversions; /// The declaration which defines this record. CXXRecordDecl *Definition; /// The first friend declaration in this class, or null if there /// aren't any. /// /// This is actually currently stored in reverse order. LazyDeclPtr FirstFriend; DefinitionData(CXXRecordDecl *D); /// Retrieve the set of direct base classes. CXXBaseSpecifier *getBases() const { if (!Bases.isOffset()) return Bases.get(nullptr); return getBasesSlowCase(); } /// Retrieve the set of virtual base classes. CXXBaseSpecifier *getVBases() const { if (!VBases.isOffset()) return VBases.get(nullptr); return getVBasesSlowCase(); } ArrayRef bases() const { return llvm::makeArrayRef(getBases(), NumBases); } ArrayRef vbases() const { return llvm::makeArrayRef(getVBases(), NumVBases); } private: CXXBaseSpecifier *getBasesSlowCase() const; CXXBaseSpecifier *getVBasesSlowCase() const; }; struct DefinitionData *DefinitionData; /// Describes a C++ closure type (generated by a lambda expression). struct LambdaDefinitionData : public DefinitionData { using Capture = LambdaCapture; /// Whether this lambda is known to be dependent, even if its /// context isn't dependent. /// /// A lambda with a non-dependent context can be dependent if it occurs /// within the default argument of a function template, because the /// lambda will have been created with the enclosing context as its /// declaration context, rather than function. This is an unfortunate /// artifact of having to parse the default arguments before. unsigned Dependent : 1; /// Whether this lambda is a generic lambda. unsigned IsGenericLambda : 1; /// The Default Capture. unsigned CaptureDefault : 2; /// The number of captures in this lambda is limited 2^NumCaptures. unsigned NumCaptures : 15; /// The number of explicit captures in this lambda. unsigned NumExplicitCaptures : 13; /// Has known `internal` linkage. unsigned HasKnownInternalLinkage : 1; /// The number used to indicate this lambda expression for name /// mangling in the Itanium C++ ABI. unsigned ManglingNumber : 31; /// The declaration that provides context for this lambda, if the /// actual DeclContext does not suffice. This is used for lambdas that /// occur within default arguments of function parameters within the class /// or within a data member initializer. LazyDeclPtr ContextDecl; /// The list of captures, both explicit and implicit, for this /// lambda. Capture *Captures = nullptr; /// The type of the call method. TypeSourceInfo *MethodTyInfo; LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info, bool Dependent, bool IsGeneric, LambdaCaptureDefault CaptureDefault) : DefinitionData(D), Dependent(Dependent), IsGenericLambda(IsGeneric), CaptureDefault(CaptureDefault), NumCaptures(0), NumExplicitCaptures(0), HasKnownInternalLinkage(0), ManglingNumber(0), MethodTyInfo(Info) { IsLambda = true; // C++1z [expr.prim.lambda]p4: // This class type is not an aggregate type. Aggregate = false; PlainOldData = false; } }; struct DefinitionData *dataPtr() const { // Complete the redecl chain (if necessary). getMostRecentDecl(); return DefinitionData; } struct DefinitionData &data() const { auto *DD = dataPtr(); assert(DD && "queried property of class with no definition"); return *DD; } struct LambdaDefinitionData &getLambdaData() const { // No update required: a merged definition cannot change any lambda // properties. auto *DD = DefinitionData; assert(DD && DD->IsLambda && "queried lambda property of non-lambda class"); return static_cast(*DD); } /// The template or declaration that this declaration /// describes or was instantiated from, respectively. /// /// For non-templates, this value will be null. For record /// declarations that describe a class template, this will be a /// pointer to a ClassTemplateDecl. For member /// classes of class template specializations, this will be the /// MemberSpecializationInfo referring to the member class that was /// instantiated or specialized. llvm::PointerUnion TemplateOrInstantiation; /// Called from setBases and addedMember to notify the class that a /// direct or virtual base class or a member of class type has been added. void addedClassSubobject(CXXRecordDecl *Base); /// Notify the class that member has been added. /// /// This routine helps maintain information about the class based on which /// members have been added. It will be invoked by DeclContext::addDecl() /// whenever a member is added to this record. void addedMember(Decl *D); void markedVirtualFunctionPure(); /// Get the head of our list of friend declarations, possibly /// deserializing the friends from an external AST source. FriendDecl *getFirstFriend() const; /// Determine whether this class has an empty base class subobject of type X /// or of one of the types that might be at offset 0 within X (per the C++ /// "standard layout" rules). bool hasSubobjectAtOffsetZeroOfEmptyBaseType(ASTContext &Ctx, const CXXRecordDecl *X); protected: CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, CXXRecordDecl *PrevDecl); public: /// Iterator that traverses the base classes of a class. using base_class_iterator = CXXBaseSpecifier *; /// Iterator that traverses the base classes of a class. using base_class_const_iterator = const CXXBaseSpecifier *; CXXRecordDecl *getCanonicalDecl() override { return cast(RecordDecl::getCanonicalDecl()); } const CXXRecordDecl *getCanonicalDecl() const { return const_cast(this)->getCanonicalDecl(); } CXXRecordDecl *getPreviousDecl() { return cast_or_null( static_cast(this)->getPreviousDecl()); } const CXXRecordDecl *getPreviousDecl() const { return const_cast(this)->getPreviousDecl(); } CXXRecordDecl *getMostRecentDecl() { return cast( static_cast(this)->getMostRecentDecl()); } const CXXRecordDecl *getMostRecentDecl() const { return const_cast(this)->getMostRecentDecl(); } CXXRecordDecl *getMostRecentNonInjectedDecl() { CXXRecordDecl *Recent = static_cast(this)->getMostRecentDecl(); while (Recent->isInjectedClassName()) { // FIXME: Does injected class name need to be in the redeclarations chain? assert(Recent->getPreviousDecl()); Recent = Recent->getPreviousDecl(); } return Recent; } const CXXRecordDecl *getMostRecentNonInjectedDecl() const { return const_cast(this)->getMostRecentNonInjectedDecl(); } CXXRecordDecl *getDefinition() const { // We only need an update if we don't already know which // declaration is the definition. auto *DD = DefinitionData ? DefinitionData : dataPtr(); return DD ? DD->Definition : nullptr; } bool hasDefinition() const { return DefinitionData || dataPtr(); } static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC, SourceLocation StartLoc, SourceLocation IdLoc, IdentifierInfo *Id, CXXRecordDecl *PrevDecl = nullptr, bool DelayTypeCreation = false); static CXXRecordDecl *CreateLambda(const ASTContext &C, DeclContext *DC, TypeSourceInfo *Info, SourceLocation Loc, bool DependentLambda, bool IsGeneric, LambdaCaptureDefault CaptureDefault); static CXXRecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID); bool isDynamicClass() const { return data().Polymorphic || data().NumVBases != 0; } /// @returns true if class is dynamic or might be dynamic because the /// definition is incomplete of dependent. bool mayBeDynamicClass() const { return !hasDefinition() || isDynamicClass() || hasAnyDependentBases(); } /// @returns true if class is non dynamic or might be non dynamic because the /// definition is incomplete of dependent. bool mayBeNonDynamicClass() const { return !hasDefinition() || !isDynamicClass() || hasAnyDependentBases(); } void setIsParsingBaseSpecifiers() { data().IsParsingBaseSpecifiers = true; } bool isParsingBaseSpecifiers() const { return data().IsParsingBaseSpecifiers; } unsigned getODRHash() const; /// Sets the base classes of this struct or class. void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases); /// Retrieves the number of base classes of this class. unsigned getNumBases() const { return data().NumBases; } using base_class_range = llvm::iterator_range; using base_class_const_range = llvm::iterator_range; base_class_range bases() { return base_class_range(bases_begin(), bases_end()); } base_class_const_range bases() const { return base_class_const_range(bases_begin(), bases_end()); } base_class_iterator bases_begin() { return data().getBases(); } base_class_const_iterator bases_begin() const { return data().getBases(); } base_class_iterator bases_end() { return bases_begin() + data().NumBases; } base_class_const_iterator bases_end() const { return bases_begin() + data().NumBases; } /// Retrieves the number of virtual base classes of this class. unsigned getNumVBases() const { return data().NumVBases; } base_class_range vbases() { return base_class_range(vbases_begin(), vbases_end()); } base_class_const_range vbases() const { return base_class_const_range(vbases_begin(), vbases_end()); } base_class_iterator vbases_begin() { return data().getVBases(); } base_class_const_iterator vbases_begin() const { return data().getVBases(); } base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; } base_class_const_iterator vbases_end() const { return vbases_begin() + data().NumVBases; } /// Determine whether this class has any dependent base classes which /// are not the current instantiation. bool hasAnyDependentBases() const; /// Iterator access to method members. The method iterator visits /// all method members of the class, including non-instance methods, /// special methods, etc. using method_iterator = specific_decl_iterator; using method_range = llvm::iterator_range>; method_range methods() const { return method_range(method_begin(), method_end()); } /// Method begin iterator. Iterates in the order the methods /// were declared. method_iterator method_begin() const { return method_iterator(decls_begin()); } /// Method past-the-end iterator. method_iterator method_end() const { return method_iterator(decls_end()); } /// Iterator access to constructor members. using ctor_iterator = specific_decl_iterator; using ctor_range = llvm::iterator_range>; ctor_range ctors() const { return ctor_range(ctor_begin(), ctor_end()); } ctor_iterator ctor_begin() const { return ctor_iterator(decls_begin()); } ctor_iterator ctor_end() const { return ctor_iterator(decls_end()); } /// An iterator over friend declarations. All of these are defined /// in DeclFriend.h. class friend_iterator; using friend_range = llvm::iterator_range; friend_range friends() const; friend_iterator friend_begin() const; friend_iterator friend_end() const; void pushFriendDecl(FriendDecl *FD); /// Determines whether this record has any friends. bool hasFriends() const { return data().FirstFriend.isValid(); } /// \c true if a defaulted copy constructor for this class would be /// deleted. bool defaultedCopyConstructorIsDeleted() const { assert((!needsOverloadResolutionForCopyConstructor() || (data().DeclaredSpecialMembers & SMF_CopyConstructor)) && "this property has not yet been computed by Sema"); return data().DefaultedCopyConstructorIsDeleted; } /// \c true if a defaulted move constructor for this class would be /// deleted. bool defaultedMoveConstructorIsDeleted() const { assert((!needsOverloadResolutionForMoveConstructor() || (data().DeclaredSpecialMembers & SMF_MoveConstructor)) && "this property has not yet been computed by Sema"); return data().DefaultedMoveConstructorIsDeleted; } /// \c true if a defaulted destructor for this class would be deleted. bool defaultedDestructorIsDeleted() const { assert((!needsOverloadResolutionForDestructor() || (data().DeclaredSpecialMembers & SMF_Destructor)) && "this property has not yet been computed by Sema"); return data().DefaultedDestructorIsDeleted; } /// \c true if we know for sure that this class has a single, /// accessible, unambiguous copy constructor that is not deleted. bool hasSimpleCopyConstructor() const { return !hasUserDeclaredCopyConstructor() && !data().DefaultedCopyConstructorIsDeleted; } /// \c true if we know for sure that this class has a single, /// accessible, unambiguous move constructor that is not deleted. bool hasSimpleMoveConstructor() const { return !hasUserDeclaredMoveConstructor() && hasMoveConstructor() && !data().DefaultedMoveConstructorIsDeleted; } /// \c true if we know for sure that this class has a single, /// accessible, unambiguous copy assignment operator that is not deleted. bool hasSimpleCopyAssignment() const { return !hasUserDeclaredCopyAssignment() && !data().DefaultedCopyAssignmentIsDeleted; } /// \c true if we know for sure that this class has a single, /// accessible, unambiguous move assignment operator that is not deleted. bool hasSimpleMoveAssignment() const { return !hasUserDeclaredMoveAssignment() && hasMoveAssignment() && !data().DefaultedMoveAssignmentIsDeleted; } /// \c true if we know for sure that this class has an accessible /// destructor that is not deleted. bool hasSimpleDestructor() const { return !hasUserDeclaredDestructor() && !data().DefaultedDestructorIsDeleted; } /// Determine whether this class has any default constructors. bool hasDefaultConstructor() const { return (data().DeclaredSpecialMembers & SMF_DefaultConstructor) || needsImplicitDefaultConstructor(); } /// Determine if we need to declare a default constructor for /// this class. /// /// This value is used for lazy creation of default constructors. bool needsImplicitDefaultConstructor() const { return (!data().UserDeclaredConstructor && !(data().DeclaredSpecialMembers & SMF_DefaultConstructor) && (!isLambda() || lambdaIsDefaultConstructibleAndAssignable())) || // FIXME: Proposed fix to core wording issue: if a class inherits // a default constructor and doesn't explicitly declare one, one // is declared implicitly. (data().HasInheritedDefaultConstructor && !(data().DeclaredSpecialMembers & SMF_DefaultConstructor)); } /// Determine whether this class has any user-declared constructors. /// /// When true, a default constructor will not be implicitly declared. bool hasUserDeclaredConstructor() const { return data().UserDeclaredConstructor; } /// Whether this class has a user-provided default constructor /// per C++11. bool hasUserProvidedDefaultConstructor() const { return data().UserProvidedDefaultConstructor; } /// Determine whether this class has a user-declared copy constructor. /// /// When false, a copy constructor will be implicitly declared. bool hasUserDeclaredCopyConstructor() const { return data().UserDeclaredSpecialMembers & SMF_CopyConstructor; } /// Determine whether this class needs an implicit copy /// constructor to be lazily declared. bool needsImplicitCopyConstructor() const { return !(data().DeclaredSpecialMembers & SMF_CopyConstructor); } /// Determine whether we need to eagerly declare a defaulted copy /// constructor for this class. bool needsOverloadResolutionForCopyConstructor() const { // C++17 [class.copy.ctor]p6: // If the class definition declares a move constructor or move assignment // operator, the implicitly declared copy constructor is defined as // deleted. // In MSVC mode, sometimes a declared move assignment does not delete an // implicit copy constructor, so defer this choice to Sema. if (data().UserDeclaredSpecialMembers & (SMF_MoveConstructor | SMF_MoveAssignment)) return true; return data().NeedOverloadResolutionForCopyConstructor; } /// Determine whether an implicit copy constructor for this type /// would have a parameter with a const-qualified reference type. bool implicitCopyConstructorHasConstParam() const { return data().ImplicitCopyConstructorCanHaveConstParamForNonVBase && (isAbstract() || data().ImplicitCopyConstructorCanHaveConstParamForVBase); } /// Determine whether this class has a copy constructor with /// a parameter type which is a reference to a const-qualified type. bool hasCopyConstructorWithConstParam() const { return data().HasDeclaredCopyConstructorWithConstParam || (needsImplicitCopyConstructor() && implicitCopyConstructorHasConstParam()); } /// Whether this class has a user-declared move constructor or /// assignment operator. /// /// When false, a move constructor and assignment operator may be /// implicitly declared. bool hasUserDeclaredMoveOperation() const { return data().UserDeclaredSpecialMembers & (SMF_MoveConstructor | SMF_MoveAssignment); } /// Determine whether this class has had a move constructor /// declared by the user. bool hasUserDeclaredMoveConstructor() const { return data().UserDeclaredSpecialMembers & SMF_MoveConstructor; } /// Determine whether this class has a move constructor. bool hasMoveConstructor() const { return (data().DeclaredSpecialMembers & SMF_MoveConstructor) || needsImplicitMoveConstructor(); } /// Set that we attempted to declare an implicit copy /// constructor, but overload resolution failed so we deleted it. void setImplicitCopyConstructorIsDeleted() { assert((data().DefaultedCopyConstructorIsDeleted || needsOverloadResolutionForCopyConstructor()) && "Copy constructor should not be deleted"); data().DefaultedCopyConstructorIsDeleted = true; } /// Set that we attempted to declare an implicit move /// constructor, but overload resolution failed so we deleted it. void setImplicitMoveConstructorIsDeleted() { assert((data().DefaultedMoveConstructorIsDeleted || needsOverloadResolutionForMoveConstructor()) && "move constructor should not be deleted"); data().DefaultedMoveConstructorIsDeleted = true; } /// Set that we attempted to declare an implicit destructor, /// but overload resolution failed so we deleted it. void setImplicitDestructorIsDeleted() { assert((data().DefaultedDestructorIsDeleted || needsOverloadResolutionForDestructor()) && "destructor should not be deleted"); data().DefaultedDestructorIsDeleted = true; } /// Determine whether this class should get an implicit move /// constructor or if any existing special member function inhibits this. bool needsImplicitMoveConstructor() const { return !(data().DeclaredSpecialMembers & SMF_MoveConstructor) && !hasUserDeclaredCopyConstructor() && !hasUserDeclaredCopyAssignment() && !hasUserDeclaredMoveAssignment() && !hasUserDeclaredDestructor(); } /// Determine whether we need to eagerly declare a defaulted move /// constructor for this class. bool needsOverloadResolutionForMoveConstructor() const { return data().NeedOverloadResolutionForMoveConstructor; } /// Determine whether this class has a user-declared copy assignment /// operator. /// /// When false, a copy assignment operator will be implicitly declared. bool hasUserDeclaredCopyAssignment() const { return data().UserDeclaredSpecialMembers & SMF_CopyAssignment; } /// Set that we attempted to declare an implicit copy assignment /// operator, but overload resolution failed so we deleted it. void setImplicitCopyAssignmentIsDeleted() { assert((data().DefaultedCopyAssignmentIsDeleted || needsOverloadResolutionForCopyAssignment()) && "copy assignment should not be deleted"); data().DefaultedCopyAssignmentIsDeleted = true; } /// Determine whether this class needs an implicit copy /// assignment operator to be lazily declared. bool needsImplicitCopyAssignment() const { return !(data().DeclaredSpecialMembers & SMF_CopyAssignment); } /// Determine whether we need to eagerly declare a defaulted copy /// assignment operator for this class. bool needsOverloadResolutionForCopyAssignment() const { // C++20 [class.copy.assign]p2: // If the class definition declares a move constructor or move assignment // operator, the implicitly declared copy assignment operator is defined // as deleted. // In MSVC mode, sometimes a declared move constructor does not delete an // implicit copy assignment, so defer this choice to Sema. if (data().UserDeclaredSpecialMembers & (SMF_MoveConstructor | SMF_MoveAssignment)) return true; return data().NeedOverloadResolutionForCopyAssignment; } /// Determine whether an implicit copy assignment operator for this /// type would have a parameter with a const-qualified reference type. bool implicitCopyAssignmentHasConstParam() const { return data().ImplicitCopyAssignmentHasConstParam; } /// Determine whether this class has a copy assignment operator with /// a parameter type which is a reference to a const-qualified type or is not /// a reference. bool hasCopyAssignmentWithConstParam() const { return data().HasDeclaredCopyAssignmentWithConstParam || (needsImplicitCopyAssignment() && implicitCopyAssignmentHasConstParam()); } /// Determine whether this class has had a move assignment /// declared by the user. bool hasUserDeclaredMoveAssignment() const { return data().UserDeclaredSpecialMembers & SMF_MoveAssignment; } /// Determine whether this class has a move assignment operator. bool hasMoveAssignment() const { return (data().DeclaredSpecialMembers & SMF_MoveAssignment) || needsImplicitMoveAssignment(); } /// Set that we attempted to declare an implicit move assignment /// operator, but overload resolution failed so we deleted it. void setImplicitMoveAssignmentIsDeleted() { assert((data().DefaultedMoveAssignmentIsDeleted || needsOverloadResolutionForMoveAssignment()) && "move assignment should not be deleted"); data().DefaultedMoveAssignmentIsDeleted = true; } /// Determine whether this class should get an implicit move /// assignment operator or if any existing special member function inhibits /// this. bool needsImplicitMoveAssignment() const { return !(data().DeclaredSpecialMembers & SMF_MoveAssignment) && !hasUserDeclaredCopyConstructor() && !hasUserDeclaredCopyAssignment() && !hasUserDeclaredMoveConstructor() && !hasUserDeclaredDestructor() && (!isLambda() || lambdaIsDefaultConstructibleAndAssignable()); } /// Determine whether we need to eagerly declare a move assignment /// operator for this class. bool needsOverloadResolutionForMoveAssignment() const { return data().NeedOverloadResolutionForMoveAssignment; } /// Determine whether this class has a user-declared destructor. /// /// When false, a destructor will be implicitly declared. bool hasUserDeclaredDestructor() const { return data().UserDeclaredSpecialMembers & SMF_Destructor; } /// Determine whether this class needs an implicit destructor to /// be lazily declared. bool needsImplicitDestructor() const { return !(data().DeclaredSpecialMembers & SMF_Destructor); } /// Determine whether we need to eagerly declare a destructor for this /// class. bool needsOverloadResolutionForDestructor() const { return data().NeedOverloadResolutionForDestructor; } /// Determine whether this class describes a lambda function object. bool isLambda() const { // An update record can't turn a non-lambda into a lambda. auto *DD = DefinitionData; return DD && DD->IsLambda; } /// Determine whether this class describes a generic /// lambda function object (i.e. function call operator is /// a template). bool isGenericLambda() const; /// Determine whether this lambda should have an implicit default constructor /// and copy and move assignment operators. bool lambdaIsDefaultConstructibleAndAssignable() const; /// Retrieve the lambda call operator of the closure type /// if this is a closure type. CXXMethodDecl *getLambdaCallOperator() const; /// Retrieve the dependent lambda call operator of the closure type /// if this is a templated closure type. FunctionTemplateDecl *getDependentLambdaCallOperator() const; /// Retrieve the lambda static invoker, the address of which /// is returned by the conversion operator, and the body of which /// is forwarded to the lambda call operator. The version that does not /// take a calling convention uses the 'default' calling convention for free /// functions if the Lambda's calling convention was not modified via /// attribute. Otherwise, it will return the calling convention specified for /// the lambda. CXXMethodDecl *getLambdaStaticInvoker() const; CXXMethodDecl *getLambdaStaticInvoker(CallingConv CC) const; /// Retrieve the generic lambda's template parameter list. /// Returns null if the class does not represent a lambda or a generic /// lambda. TemplateParameterList *getGenericLambdaTemplateParameterList() const; /// Retrieve the lambda template parameters that were specified explicitly. ArrayRef getLambdaExplicitTemplateParameters() const; LambdaCaptureDefault getLambdaCaptureDefault() const { assert(isLambda()); return static_cast(getLambdaData().CaptureDefault); } /// Set the captures for this lambda closure type. void setCaptures(ASTContext &Context, ArrayRef Captures); /// For a closure type, retrieve the mapping from captured /// variables and \c this to the non-static data members that store the /// values or references of the captures. /// /// \param Captures Will be populated with the mapping from captured /// variables to the corresponding fields. /// /// \param ThisCapture Will be set to the field declaration for the /// \c this capture. /// /// \note No entries will be added for init-captures, as they do not capture /// variables. void getCaptureFields(llvm::DenseMap &Captures, FieldDecl *&ThisCapture) const; using capture_const_iterator = const LambdaCapture *; using capture_const_range = llvm::iterator_range; capture_const_range captures() const { return capture_const_range(captures_begin(), captures_end()); } capture_const_iterator captures_begin() const { return isLambda() ? getLambdaData().Captures : nullptr; } capture_const_iterator captures_end() const { return isLambda() ? captures_begin() + getLambdaData().NumCaptures : nullptr; } unsigned capture_size() const { return getLambdaData().NumCaptures; } using conversion_iterator = UnresolvedSetIterator; conversion_iterator conversion_begin() const { return data().Conversions.get(getASTContext()).begin(); } conversion_iterator conversion_end() const { return data().Conversions.get(getASTContext()).end(); } /// Removes a conversion function from this class. The conversion /// function must currently be a member of this class. Furthermore, /// this class must currently be in the process of being defined. void removeConversion(const NamedDecl *Old); /// Get all conversion functions visible in current class, /// including conversion function templates. llvm::iterator_range getVisibleConversionFunctions() const; /// Determine whether this class is an aggregate (C++ [dcl.init.aggr]), /// which is a class with no user-declared constructors, no private /// or protected non-static data members, no base classes, and no virtual /// functions (C++ [dcl.init.aggr]p1). bool isAggregate() const { return data().Aggregate; } /// Whether this class has any in-class initializers /// for non-static data members (including those in anonymous unions or /// structs). bool hasInClassInitializer() const { return data().HasInClassInitializer; } /// Whether this class or any of its subobjects has any members of /// reference type which would make value-initialization ill-formed. /// /// Per C++03 [dcl.init]p5: /// - if T is a non-union class type without a user-declared constructor, /// then every non-static data member and base-class component of T is /// value-initialized [...] A program that calls for [...] /// value-initialization of an entity of reference type is ill-formed. bool hasUninitializedReferenceMember() const { return !isUnion() && !hasUserDeclaredConstructor() && data().HasUninitializedReferenceMember; } /// Whether this class is a POD-type (C++ [class]p4) /// /// For purposes of this function a class is POD if it is an aggregate /// that has no non-static non-POD data members, no reference data /// members, no user-defined copy assignment operator and no /// user-defined destructor. /// /// Note that this is the C++ TR1 definition of POD. bool isPOD() const { return data().PlainOldData; } /// True if this class is C-like, without C++-specific features, e.g. /// it contains only public fields, no bases, tag kind is not 'class', etc. bool isCLike() const; /// Determine whether this is an empty class in the sense of /// (C++11 [meta.unary.prop]). /// /// The CXXRecordDecl is a class type, but not a union type, /// with no non-static data members other than bit-fields of length 0, /// no virtual member functions, no virtual base classes, /// and no base class B for which is_empty::value is false. /// /// \note This does NOT include a check for union-ness. bool isEmpty() const { return data().Empty; } bool hasPrivateFields() const { return data().HasPrivateFields; } bool hasProtectedFields() const { return data().HasProtectedFields; } /// Determine whether this class has direct non-static data members. bool hasDirectFields() const { auto &D = data(); return D.HasPublicFields || D.HasProtectedFields || D.HasPrivateFields; } /// Whether this class is polymorphic (C++ [class.virtual]), /// which means that the class contains or inherits a virtual function. bool isPolymorphic() const { return data().Polymorphic; } /// Determine whether this class has a pure virtual function. /// /// The class is is abstract per (C++ [class.abstract]p2) if it declares /// a pure virtual function or inherits a pure virtual function that is /// not overridden. bool isAbstract() const { return data().Abstract; } /// Determine whether this class is standard-layout per /// C++ [class]p7. bool isStandardLayout() const { return data().IsStandardLayout; } /// Determine whether this class was standard-layout per /// C++11 [class]p7, specifically using the C++11 rules without any DRs. bool isCXX11StandardLayout() const { return data().IsCXX11StandardLayout; } /// Determine whether this class, or any of its class subobjects, /// contains a mutable field. bool hasMutableFields() const { return data().HasMutableFields; } /// Determine whether this class has any variant members. bool hasVariantMembers() const { return data().HasVariantMembers; } /// Determine whether this class has a trivial default constructor /// (C++11 [class.ctor]p5). bool hasTrivialDefaultConstructor() const { return hasDefaultConstructor() && (data().HasTrivialSpecialMembers & SMF_DefaultConstructor); } /// Determine whether this class has a non-trivial default constructor /// (C++11 [class.ctor]p5). bool hasNonTrivialDefaultConstructor() const { return (data().DeclaredNonTrivialSpecialMembers & SMF_DefaultConstructor) || (needsImplicitDefaultConstructor() && !(data().HasTrivialSpecialMembers & SMF_DefaultConstructor)); } /// Determine whether this class has at least one constexpr constructor /// other than the copy or move constructors. bool hasConstexprNonCopyMoveConstructor() const { return data().HasConstexprNonCopyMoveConstructor || (needsImplicitDefaultConstructor() && defaultedDefaultConstructorIsConstexpr()); } /// Determine whether a defaulted default constructor for this class /// would be constexpr. bool defaultedDefaultConstructorIsConstexpr() const { return data().DefaultedDefaultConstructorIsConstexpr && (!isUnion() || hasInClassInitializer() || !hasVariantMembers() || getLangOpts().CPlusPlus20); } /// Determine whether this class has a constexpr default constructor. bool hasConstexprDefaultConstructor() const { return data().HasConstexprDefaultConstructor || (needsImplicitDefaultConstructor() && defaultedDefaultConstructorIsConstexpr()); } /// Determine whether this class has a trivial copy constructor /// (C++ [class.copy]p6, C++11 [class.copy]p12) bool hasTrivialCopyConstructor() const { return data().HasTrivialSpecialMembers & SMF_CopyConstructor; } bool hasTrivialCopyConstructorForCall() const { return data().HasTrivialSpecialMembersForCall & SMF_CopyConstructor; } /// Determine whether this class has a non-trivial copy constructor /// (C++ [class.copy]p6, C++11 [class.copy]p12) bool hasNonTrivialCopyConstructor() const { return data().DeclaredNonTrivialSpecialMembers & SMF_CopyConstructor || !hasTrivialCopyConstructor(); } bool hasNonTrivialCopyConstructorForCall() const { return (data().DeclaredNonTrivialSpecialMembersForCall & SMF_CopyConstructor) || !hasTrivialCopyConstructorForCall(); } /// Determine whether this class has a trivial move constructor /// (C++11 [class.copy]p12) bool hasTrivialMoveConstructor() const { return hasMoveConstructor() && (data().HasTrivialSpecialMembers & SMF_MoveConstructor); } bool hasTrivialMoveConstructorForCall() const { return hasMoveConstructor() && (data().HasTrivialSpecialMembersForCall & SMF_MoveConstructor); } /// Determine whether this class has a non-trivial move constructor /// (C++11 [class.copy]p12) bool hasNonTrivialMoveConstructor() const { return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveConstructor) || (needsImplicitMoveConstructor() && !(data().HasTrivialSpecialMembers & SMF_MoveConstructor)); } bool hasNonTrivialMoveConstructorForCall() const { return (data().DeclaredNonTrivialSpecialMembersForCall & SMF_MoveConstructor) || (needsImplicitMoveConstructor() && !(data().HasTrivialSpecialMembersForCall & SMF_MoveConstructor)); } /// Determine whether this class has a trivial copy assignment operator /// (C++ [class.copy]p11, C++11 [class.copy]p25) bool hasTrivialCopyAssignment() const { return data().HasTrivialSpecialMembers & SMF_CopyAssignment; } /// Determine whether this class has a non-trivial copy assignment /// operator (C++ [class.copy]p11, C++11 [class.copy]p25) bool hasNonTrivialCopyAssignment() const { return data().DeclaredNonTrivialSpecialMembers & SMF_CopyAssignment || !hasTrivialCopyAssignment(); } /// Determine whether this class has a trivial move assignment operator /// (C++11 [class.copy]p25) bool hasTrivialMoveAssignment() const { return hasMoveAssignment() && (data().HasTrivialSpecialMembers & SMF_MoveAssignment); } /// Determine whether this class has a non-trivial move assignment /// operator (C++11 [class.copy]p25) bool hasNonTrivialMoveAssignment() const { return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveAssignment) || (needsImplicitMoveAssignment() && !(data().HasTrivialSpecialMembers & SMF_MoveAssignment)); } /// Determine whether a defaulted default constructor for this class /// would be constexpr. bool defaultedDestructorIsConstexpr() const { return data().DefaultedDestructorIsConstexpr && getLangOpts().CPlusPlus20; } /// Determine whether this class has a constexpr destructor. bool hasConstexprDestructor() const; /// Determine whether this class has a trivial destructor /// (C++ [class.dtor]p3) bool hasTrivialDestructor() const { return data().HasTrivialSpecialMembers & SMF_Destructor; } bool hasTrivialDestructorForCall() const { return data().HasTrivialSpecialMembersForCall & SMF_Destructor; } /// Determine whether this class has a non-trivial destructor /// (C++ [class.dtor]p3) bool hasNonTrivialDestructor() const { return !(data().HasTrivialSpecialMembers & SMF_Destructor); } bool hasNonTrivialDestructorForCall() const { return !(data().HasTrivialSpecialMembersForCall & SMF_Destructor); } void setHasTrivialSpecialMemberForCall() { data().HasTrivialSpecialMembersForCall = (SMF_CopyConstructor | SMF_MoveConstructor | SMF_Destructor); } /// Determine whether declaring a const variable with this type is ok /// per core issue 253. bool allowConstDefaultInit() const { return !data().HasUninitializedFields || !(data().HasDefaultedDefaultConstructor || needsImplicitDefaultConstructor()); } /// Determine whether this class has a destructor which has no /// semantic effect. /// /// Any such destructor will be trivial, public, defaulted and not deleted, /// and will call only irrelevant destructors. bool hasIrrelevantDestructor() const { return data().HasIrrelevantDestructor; } /// Determine whether this class has a non-literal or/ volatile type /// non-static data member or base class. bool hasNonLiteralTypeFieldsOrBases() const { return data().HasNonLiteralTypeFieldsOrBases; } /// Determine whether this class has a using-declaration that names /// a user-declared base class constructor. bool hasInheritedConstructor() const { return data().HasInheritedConstructor; } /// Determine whether this class has a using-declaration that names /// a base class assignment operator. bool hasInheritedAssignment() const { return data().HasInheritedAssignment; } /// Determine whether this class is considered trivially copyable per /// (C++11 [class]p6). bool isTriviallyCopyable() const; /// Determine whether this class is considered trivial. /// /// C++11 [class]p6: /// "A trivial class is a class that has a trivial default constructor and /// is trivially copyable." bool isTrivial() const { return isTriviallyCopyable() && hasTrivialDefaultConstructor(); } /// Determine whether this class is a literal type. /// /// C++11 [basic.types]p10: /// A class type that has all the following properties: /// - it has a trivial destructor /// - every constructor call and full-expression in the /// brace-or-equal-intializers for non-static data members (if any) is /// a constant expression. /// - it is an aggregate type or has at least one constexpr constructor /// or constructor template that is not a copy or move constructor, and /// - all of its non-static data members and base classes are of literal /// types /// /// We resolve DR1361 by ignoring the second bullet. We resolve DR1452 by /// treating types with trivial default constructors as literal types. /// /// Only in C++17 and beyond, are lambdas literal types. bool isLiteral() const { const LangOptions &LangOpts = getLangOpts(); return (LangOpts.CPlusPlus20 ? hasConstexprDestructor() : hasTrivialDestructor()) && (!isLambda() || LangOpts.CPlusPlus17) && !hasNonLiteralTypeFieldsOrBases() && (isAggregate() || isLambda() || hasConstexprNonCopyMoveConstructor() || hasTrivialDefaultConstructor()); } /// Determine whether this is a structural type. bool isStructural() const { return isLiteral() && data().StructuralIfLiteral; } /// If this record is an instantiation of a member class, /// retrieves the member class from which it was instantiated. /// /// This routine will return non-null for (non-templated) member /// classes of class templates. For example, given: /// /// \code /// template /// struct X { /// struct A { }; /// }; /// \endcode /// /// The declaration for X::A is a (non-templated) CXXRecordDecl /// whose parent is the class template specialization X. For /// this declaration, getInstantiatedFromMemberClass() will return /// the CXXRecordDecl X::A. When a complete definition of /// X::A is required, it will be instantiated from the /// declaration returned by getInstantiatedFromMemberClass(). CXXRecordDecl *getInstantiatedFromMemberClass() const; /// If this class is an instantiation of a member class of a /// class template specialization, retrieves the member specialization /// information. MemberSpecializationInfo *getMemberSpecializationInfo() const; /// Specify that this record is an instantiation of the /// member class \p RD. void setInstantiationOfMemberClass(CXXRecordDecl *RD, TemplateSpecializationKind TSK); /// Retrieves the class template that is described by this /// class declaration. /// /// Every class template is represented as a ClassTemplateDecl and a /// CXXRecordDecl. The former contains template properties (such as /// the template parameter lists) while the latter contains the /// actual description of the template's /// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the /// CXXRecordDecl that from a ClassTemplateDecl, while /// getDescribedClassTemplate() retrieves the ClassTemplateDecl from /// a CXXRecordDecl. ClassTemplateDecl *getDescribedClassTemplate() const; void setDescribedClassTemplate(ClassTemplateDecl *Template); /// Determine whether this particular class is a specialization or /// instantiation of a class template or member class of a class template, /// and how it was instantiated or specialized. TemplateSpecializationKind getTemplateSpecializationKind() const; /// Set the kind of specialization or template instantiation this is. void setTemplateSpecializationKind(TemplateSpecializationKind TSK); /// Retrieve the record declaration from which this record could be /// instantiated. Returns null if this class is not a template instantiation. const CXXRecordDecl *getTemplateInstantiationPattern() const; CXXRecordDecl *getTemplateInstantiationPattern() { return const_cast(const_cast(this) ->getTemplateInstantiationPattern()); } /// Returns the destructor decl for this class. CXXDestructorDecl *getDestructor() const; /// Returns true if the class destructor, or any implicitly invoked /// destructors are marked noreturn. bool isAnyDestructorNoReturn() const { return data().IsAnyDestructorNoReturn; } /// If the class is a local class [class.local], returns /// the enclosing function declaration. const FunctionDecl *isLocalClass() const { if (const auto *RD = dyn_cast(getDeclContext())) return RD->isLocalClass(); return dyn_cast(getDeclContext()); } FunctionDecl *isLocalClass() { return const_cast( const_cast(this)->isLocalClass()); } /// Determine whether this dependent class is a current instantiation, /// when viewed from within the given context. bool isCurrentInstantiation(const DeclContext *CurContext) const; /// Determine whether this class is derived from the class \p Base. /// /// This routine only determines whether this class is derived from \p Base, /// but does not account for factors that may make a Derived -> Base class /// ill-formed, such as private/protected inheritance or multiple, ambiguous /// base class subobjects. /// /// \param Base the base class we are searching for. /// /// \returns true if this class is derived from Base, false otherwise. bool isDerivedFrom(const CXXRecordDecl *Base) const; /// Determine whether this class is derived from the type \p Base. /// /// This routine only determines whether this class is derived from \p Base, /// but does not account for factors that may make a Derived -> Base class /// ill-formed, such as private/protected inheritance or multiple, ambiguous /// base class subobjects. /// /// \param Base the base class we are searching for. /// /// \param Paths will contain the paths taken from the current class to the /// given \p Base class. /// /// \returns true if this class is derived from \p Base, false otherwise. /// /// \todo add a separate parameter to configure IsDerivedFrom, rather than /// tangling input and output in \p Paths bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const; /// Determine whether this class is virtually derived from /// the class \p Base. /// /// This routine only determines whether this class is virtually /// derived from \p Base, but does not account for factors that may /// make a Derived -> Base class ill-formed, such as /// private/protected inheritance or multiple, ambiguous base class /// subobjects. /// /// \param Base the base class we are searching for. /// /// \returns true if this class is virtually derived from Base, /// false otherwise. bool isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const; /// Determine whether this class is provably not derived from /// the type \p Base. bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const; /// Function type used by forallBases() as a callback. /// /// \param BaseDefinition the definition of the base class /// /// \returns true if this base matched the search criteria using ForallBasesCallback = llvm::function_ref; /// Determines if the given callback holds for all the direct /// or indirect base classes of this type. /// /// The class itself does not count as a base class. This routine /// returns false if the class has non-computable base classes. /// /// \param BaseMatches Callback invoked for each (direct or indirect) base /// class of this type until a call returns false. bool forallBases(ForallBasesCallback BaseMatches) const; /// Function type used by lookupInBases() to determine whether a /// specific base class subobject matches the lookup criteria. /// /// \param Specifier the base-class specifier that describes the inheritance /// from the base class we are trying to match. /// /// \param Path the current path, from the most-derived class down to the /// base named by the \p Specifier. /// /// \returns true if this base matched the search criteria, false otherwise. using BaseMatchesCallback = llvm::function_ref; /// Look for entities within the base classes of this C++ class, /// transitively searching all base class subobjects. /// /// This routine uses the callback function \p BaseMatches to find base /// classes meeting some search criteria, walking all base class subobjects /// and populating the given \p Paths structure with the paths through the /// inheritance hierarchy that resulted in a match. On a successful search, /// the \p Paths structure can be queried to retrieve the matching paths and /// to determine if there were any ambiguities. /// /// \param BaseMatches callback function used to determine whether a given /// base matches the user-defined search criteria. /// /// \param Paths used to record the paths from this class to its base class /// subobjects that match the search criteria. /// /// \param LookupInDependent can be set to true to extend the search to /// dependent base classes. /// /// \returns true if there exists any path from this class to a base class /// subobject that matches the search criteria. bool lookupInBases(BaseMatchesCallback BaseMatches, CXXBasePaths &Paths, bool LookupInDependent = false) const; /// Base-class lookup callback that determines whether the given /// base class specifier refers to a specific class declaration. /// /// This callback can be used with \c lookupInBases() to determine whether /// a given derived class has is a base class subobject of a particular type. /// The base record pointer should refer to the canonical CXXRecordDecl of the /// base class that we are searching for. static bool FindBaseClass(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, const CXXRecordDecl *BaseRecord); /// Base-class lookup callback that determines whether the /// given base class specifier refers to a specific class /// declaration and describes virtual derivation. /// /// This callback can be used with \c lookupInBases() to determine /// whether a given derived class has is a virtual base class /// subobject of a particular type. The base record pointer should /// refer to the canonical CXXRecordDecl of the base class that we /// are searching for. static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier, CXXBasePath &Path, const CXXRecordDecl *BaseRecord); /// Retrieve the final overriders for each virtual member /// function in the class hierarchy where this class is the /// most-derived class in the class hierarchy. void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const; /// Get the indirect primary bases for this class. void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const; /// Determine whether this class has a member with the given name, possibly /// in a non-dependent base class. /// /// No check for ambiguity is performed, so this should never be used when /// implementing language semantics, but it may be appropriate for warnings, /// static analysis, or similar. bool hasMemberName(DeclarationName N) const; /// Performs an imprecise lookup of a dependent name in this class. /// /// This function does not follow strict semantic rules and should be used /// only when lookup rules can be relaxed, e.g. indexing. std::vector lookupDependentName(DeclarationName Name, llvm::function_ref Filter); /// Renders and displays an inheritance diagram /// for this C++ class and all of its base classes (transitively) using /// GraphViz. void viewInheritance(ASTContext& Context) const; /// Calculates the access of a decl that is reached /// along a path. static AccessSpecifier MergeAccess(AccessSpecifier PathAccess, AccessSpecifier DeclAccess) { assert(DeclAccess != AS_none); if (DeclAccess == AS_private) return AS_none; return (PathAccess > DeclAccess ? PathAccess : DeclAccess); } /// Indicates that the declaration of a defaulted or deleted special /// member function is now complete. void finishedDefaultedOrDeletedMember(CXXMethodDecl *MD); void setTrivialForCallFlags(CXXMethodDecl *MD); /// Indicates that the definition of this class is now complete. void completeDefinition() override; /// Indicates that the definition of this class is now complete, /// and provides a final overrider map to help determine /// /// \param FinalOverriders The final overrider map for this class, which can /// be provided as an optimization for abstract-class checking. If NULL, /// final overriders will be computed if they are needed to complete the /// definition. void completeDefinition(CXXFinalOverriderMap *FinalOverriders); /// Determine whether this class may end up being abstract, even though /// it is not yet known to be abstract. /// /// \returns true if this class is not known to be abstract but has any /// base classes that are abstract. In this case, \c completeDefinition() /// will need to compute final overriders to determine whether the class is /// actually abstract. bool mayBeAbstract() const; /// Determine whether it's impossible for a class to be derived from this /// class. This is best-effort, and may conservatively return false. bool isEffectivelyFinal() const; /// If this is the closure type of a lambda expression, retrieve the /// number to be used for name mangling in the Itanium C++ ABI. /// /// Zero indicates that this closure type has internal linkage, so the /// mangling number does not matter, while a non-zero value indicates which /// lambda expression this is in this particular context. unsigned getLambdaManglingNumber() const { assert(isLambda() && "Not a lambda closure type!"); return getLambdaData().ManglingNumber; } /// The lambda is known to has internal linkage no matter whether it has name /// mangling number. bool hasKnownLambdaInternalLinkage() const { assert(isLambda() && "Not a lambda closure type!"); return getLambdaData().HasKnownInternalLinkage; } /// Retrieve the declaration that provides additional context for a /// lambda, when the normal declaration context is not specific enough. /// /// Certain contexts (default arguments of in-class function parameters and /// the initializers of data members) have separate name mangling rules for /// lambdas within the Itanium C++ ABI. For these cases, this routine provides /// the declaration in which the lambda occurs, e.g., the function parameter /// or the non-static data member. Otherwise, it returns NULL to imply that /// the declaration context suffices. Decl *getLambdaContextDecl() const; /// Set the mangling number and context declaration for a lambda /// class. void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl, bool HasKnownInternalLinkage = false) { assert(isLambda() && "Not a lambda closure type!"); getLambdaData().ManglingNumber = ManglingNumber; getLambdaData().ContextDecl = ContextDecl; getLambdaData().HasKnownInternalLinkage = HasKnownInternalLinkage; } /// Set the device side mangling number. void setDeviceLambdaManglingNumber(unsigned Num) const; /// Retrieve the device side mangling number. unsigned getDeviceLambdaManglingNumber() const; /// Returns the inheritance model used for this record. MSInheritanceModel getMSInheritanceModel() const; /// Calculate what the inheritance model would be for this class. MSInheritanceModel calculateInheritanceModel() const; /// In the Microsoft C++ ABI, use zero for the field offset of a null data /// member pointer if we can guarantee that zero is not a valid field offset, /// or if the member pointer has multiple fields. Polymorphic classes have a /// vfptr at offset zero, so we can use zero for null. If there are multiple /// fields, we can use zero even if it is a valid field offset because /// null-ness testing will check the other fields. bool nullFieldOffsetIsZero() const; /// Controls when vtordisps will be emitted if this record is used as a /// virtual base. MSVtorDispMode getMSVtorDispMode() const; /// Determine whether this lambda expression was known to be dependent /// at the time it was created, even if its context does not appear to be /// dependent. /// /// This flag is a workaround for an issue with parsing, where default /// arguments are parsed before their enclosing function declarations have /// been created. This means that any lambda expressions within those /// default arguments will have as their DeclContext the context enclosing /// the function declaration, which may be non-dependent even when the /// function declaration itself is dependent. This flag indicates when we /// know that the lambda is dependent despite that. bool isDependentLambda() const { return isLambda() && getLambdaData().Dependent; } TypeSourceInfo *getLambdaTypeInfo() const { return getLambdaData().MethodTyInfo; } // Determine whether this type is an Interface Like type for // __interface inheritance purposes. bool isInterfaceLike() const; static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K >= firstCXXRecord && K <= lastCXXRecord; } void markAbstract() { data().Abstract = true; } }; /// Store information needed for an explicit specifier. /// Used by CXXDeductionGuideDecl, CXXConstructorDecl and CXXConversionDecl. class ExplicitSpecifier { llvm::PointerIntPair ExplicitSpec{ nullptr, ExplicitSpecKind::ResolvedFalse}; public: ExplicitSpecifier() = default; ExplicitSpecifier(Expr *Expression, ExplicitSpecKind Kind) : ExplicitSpec(Expression, Kind) {} ExplicitSpecKind getKind() const { return ExplicitSpec.getInt(); } const Expr *getExpr() const { return ExplicitSpec.getPointer(); } Expr *getExpr() { return ExplicitSpec.getPointer(); } /// Determine if the declaration had an explicit specifier of any kind. bool isSpecified() const { return ExplicitSpec.getInt() != ExplicitSpecKind::ResolvedFalse || ExplicitSpec.getPointer(); } /// Check for equivalence of explicit specifiers. /// \return true if the explicit specifier are equivalent, false otherwise. bool isEquivalent(const ExplicitSpecifier Other) const; /// Determine whether this specifier is known to correspond to an explicit /// declaration. Returns false if the specifier is absent or has an /// expression that is value-dependent or evaluates to false. bool isExplicit() const { return ExplicitSpec.getInt() == ExplicitSpecKind::ResolvedTrue; } /// Determine if the explicit specifier is invalid. /// This state occurs after a substitution failures. bool isInvalid() const { return ExplicitSpec.getInt() == ExplicitSpecKind::Unresolved && !ExplicitSpec.getPointer(); } void setKind(ExplicitSpecKind Kind) { ExplicitSpec.setInt(Kind); } void setExpr(Expr *E) { ExplicitSpec.setPointer(E); } // Retrieve the explicit specifier in the given declaration, if any. static ExplicitSpecifier getFromDecl(FunctionDecl *Function); static const ExplicitSpecifier getFromDecl(const FunctionDecl *Function) { return getFromDecl(const_cast(Function)); } static ExplicitSpecifier Invalid() { return ExplicitSpecifier(nullptr, ExplicitSpecKind::Unresolved); } }; /// Represents a C++ deduction guide declaration. /// /// \code /// template struct A { A(); A(T); }; /// A() -> A; /// \endcode /// /// In this example, there will be an explicit deduction guide from the /// second line, and implicit deduction guide templates synthesized from /// the constructors of \c A. class CXXDeductionGuideDecl : public FunctionDecl { void anchor() override; private: CXXDeductionGuideDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, SourceLocation EndLocation, CXXConstructorDecl *Ctor) : FunctionDecl(CXXDeductionGuide, C, DC, StartLoc, NameInfo, T, TInfo, SC_None, false, ConstexprSpecKind::Unspecified), Ctor(Ctor), ExplicitSpec(ES) { if (EndLocation.isValid()) setRangeEnd(EndLocation); setIsCopyDeductionCandidate(false); } CXXConstructorDecl *Ctor; ExplicitSpecifier ExplicitSpec; void setExplicitSpecifier(ExplicitSpecifier ES) { ExplicitSpec = ES; } public: friend class ASTDeclReader; friend class ASTDeclWriter; static CXXDeductionGuideDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, SourceLocation EndLocation, CXXConstructorDecl *Ctor = nullptr); static CXXDeductionGuideDecl *CreateDeserialized(ASTContext &C, unsigned ID); ExplicitSpecifier getExplicitSpecifier() { return ExplicitSpec; } const ExplicitSpecifier getExplicitSpecifier() const { return ExplicitSpec; } /// Return true if the declartion is already resolved to be explicit. bool isExplicit() const { return ExplicitSpec.isExplicit(); } /// Get the template for which this guide performs deduction. TemplateDecl *getDeducedTemplate() const { return getDeclName().getCXXDeductionGuideTemplate(); } /// Get the constructor from which this deduction guide was generated, if /// this is an implicit deduction guide. CXXConstructorDecl *getCorrespondingConstructor() const { return Ctor; } void setIsCopyDeductionCandidate(bool isCDC = true) { FunctionDeclBits.IsCopyDeductionCandidate = isCDC; } bool isCopyDeductionCandidate() const { return FunctionDeclBits.IsCopyDeductionCandidate; } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == CXXDeductionGuide; } }; /// \brief Represents the body of a requires-expression. /// /// This decl exists merely to serve as the DeclContext for the local /// parameters of the requires expression as well as other declarations inside /// it. /// /// \code /// template requires requires (T t) { {t++} -> regular; } /// \endcode /// /// In this example, a RequiresExpr object will be generated for the expression, /// and a RequiresExprBodyDecl will be created to hold the parameter t and the /// template argument list imposed by the compound requirement. class RequiresExprBodyDecl : public Decl, public DeclContext { RequiresExprBodyDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc) : Decl(RequiresExprBody, DC, StartLoc), DeclContext(RequiresExprBody) {} public: friend class ASTDeclReader; friend class ASTDeclWriter; static RequiresExprBodyDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc); static RequiresExprBodyDecl *CreateDeserialized(ASTContext &C, unsigned ID); // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == RequiresExprBody; } }; /// Represents a static or instance method of a struct/union/class. /// /// In the terminology of the C++ Standard, these are the (static and /// non-static) member functions, whether virtual or not. class CXXMethodDecl : public FunctionDecl { void anchor() override; protected: CXXMethodDecl(Kind DK, ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool isInline, ConstexprSpecKind ConstexprKind, SourceLocation EndLocation, Expr *TrailingRequiresClause = nullptr) : FunctionDecl(DK, C, RD, StartLoc, NameInfo, T, TInfo, SC, isInline, ConstexprKind, TrailingRequiresClause) { if (EndLocation.isValid()) setRangeEnd(EndLocation); } public: static CXXMethodDecl *Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, StorageClass SC, bool isInline, ConstexprSpecKind ConstexprKind, SourceLocation EndLocation, Expr *TrailingRequiresClause = nullptr); static CXXMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID); bool isStatic() const; bool isInstance() const { return !isStatic(); } /// Returns true if the given operator is implicitly static in a record /// context. static bool isStaticOverloadedOperator(OverloadedOperatorKind OOK) { // [class.free]p1: // Any allocation function for a class T is a static member // (even if not explicitly declared static). // [class.free]p6 Any deallocation function for a class X is a static member // (even if not explicitly declared static). return OOK == OO_New || OOK == OO_Array_New || OOK == OO_Delete || OOK == OO_Array_Delete; } bool isConst() const { return getType()->castAs()->isConst(); } bool isVolatile() const { return getType()->castAs()->isVolatile(); } bool isVirtual() const { CXXMethodDecl *CD = const_cast(this)->getCanonicalDecl(); // Member function is virtual if it is marked explicitly so, or if it is // declared in __interface -- then it is automatically pure virtual. if (CD->isVirtualAsWritten() || CD->isPure()) return true; return CD->size_overridden_methods() != 0; } /// If it's possible to devirtualize a call to this method, return the called /// function. Otherwise, return null. /// \param Base The object on which this virtual function is called. /// \param IsAppleKext True if we are compiling for Apple kext. CXXMethodDecl *getDevirtualizedMethod(const Expr *Base, bool IsAppleKext); const CXXMethodDecl *getDevirtualizedMethod(const Expr *Base, bool IsAppleKext) const { return const_cast(this)->getDevirtualizedMethod( Base, IsAppleKext); } /// Determine whether this is a usual deallocation function (C++ /// [basic.stc.dynamic.deallocation]p2), which is an overloaded delete or /// delete[] operator with a particular signature. Populates \p PreventedBy /// with the declarations of the functions of the same kind if they were the /// reason for this function returning false. This is used by /// Sema::isUsualDeallocationFunction to reconsider the answer based on the /// context. bool isUsualDeallocationFunction( SmallVectorImpl &PreventedBy) const; /// Determine whether this is a copy-assignment operator, regardless /// of whether it was declared implicitly or explicitly. bool isCopyAssignmentOperator() const; /// Determine whether this is a move assignment operator. bool isMoveAssignmentOperator() const; CXXMethodDecl *getCanonicalDecl() override { return cast(FunctionDecl::getCanonicalDecl()); } const CXXMethodDecl *getCanonicalDecl() const { return const_cast(this)->getCanonicalDecl(); } CXXMethodDecl *getMostRecentDecl() { return cast( static_cast(this)->getMostRecentDecl()); } const CXXMethodDecl *getMostRecentDecl() const { return const_cast(this)->getMostRecentDecl(); } void addOverriddenMethod(const CXXMethodDecl *MD); using method_iterator = const CXXMethodDecl *const *; method_iterator begin_overridden_methods() const; method_iterator end_overridden_methods() const; unsigned size_overridden_methods() const; using overridden_method_range = llvm::iterator_range< llvm::TinyPtrVector::const_iterator>; overridden_method_range overridden_methods() const; /// Return the parent of this method declaration, which /// is the class in which this method is defined. const CXXRecordDecl *getParent() const { return cast(FunctionDecl::getParent()); } /// Return the parent of this method declaration, which /// is the class in which this method is defined. CXXRecordDecl *getParent() { return const_cast( cast(FunctionDecl::getParent())); } /// Return the type of the \c this pointer. /// /// Should only be called for instance (i.e., non-static) methods. Note /// that for the call operator of a lambda closure type, this returns the /// desugared 'this' type (a pointer to the closure type), not the captured /// 'this' type. QualType getThisType() const; /// Return the type of the object pointed by \c this. /// /// See getThisType() for usage restriction. QualType getThisObjectType() const; static QualType getThisType(const FunctionProtoType *FPT, const CXXRecordDecl *Decl); static QualType getThisObjectType(const FunctionProtoType *FPT, const CXXRecordDecl *Decl); Qualifiers getMethodQualifiers() const { return getType()->castAs()->getMethodQuals(); } /// Retrieve the ref-qualifier associated with this method. /// /// In the following example, \c f() has an lvalue ref-qualifier, \c g() /// has an rvalue ref-qualifier, and \c h() has no ref-qualifier. /// @code /// struct X { /// void f() &; /// void g() &&; /// void h(); /// }; /// @endcode RefQualifierKind getRefQualifier() const { return getType()->castAs()->getRefQualifier(); } bool hasInlineBody() const; /// Determine whether this is a lambda closure type's static member /// function that is used for the result of the lambda's conversion to /// function pointer (for a lambda with no captures). /// /// The function itself, if used, will have a placeholder body that will be /// supplied by IR generation to either forward to the function call operator /// or clone the function call operator. bool isLambdaStaticInvoker() const; /// Find the method in \p RD that corresponds to this one. /// /// Find if \p RD or one of the classes it inherits from override this method. /// If so, return it. \p RD is assumed to be a subclass of the class defining /// this method (or be the class itself), unless \p MayBeBase is set to true. CXXMethodDecl * getCorrespondingMethodInClass(const CXXRecordDecl *RD, bool MayBeBase = false); const CXXMethodDecl * getCorrespondingMethodInClass(const CXXRecordDecl *RD, bool MayBeBase = false) const { return const_cast(this) ->getCorrespondingMethodInClass(RD, MayBeBase); } /// Find if \p RD declares a function that overrides this function, and if so, /// return it. Does not search base classes. CXXMethodDecl *getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD, bool MayBeBase = false); const CXXMethodDecl * getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD, bool MayBeBase = false) const { return const_cast(this) ->getCorrespondingMethodDeclaredInClass(RD, MayBeBase); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K >= firstCXXMethod && K <= lastCXXMethod; } }; /// Represents a C++ base or member initializer. /// /// This is part of a constructor initializer that /// initializes one non-static member variable or one base class. For /// example, in the following, both 'A(a)' and 'f(3.14159)' are member /// initializers: /// /// \code /// class A { }; /// class B : public A { /// float f; /// public: /// B(A& a) : A(a), f(3.14159) { } /// }; /// \endcode class CXXCtorInitializer final { /// Either the base class name/delegating constructor type (stored as /// a TypeSourceInfo*), an normal field (FieldDecl), or an anonymous field /// (IndirectFieldDecl*) being initialized. llvm::PointerUnion Initializee; /// The argument used to initialize the base or member, which may /// end up constructing an object (when multiple arguments are involved). Stmt *Init; /// The source location for the field name or, for a base initializer /// pack expansion, the location of the ellipsis. /// /// In the case of a delegating /// constructor, it will still include the type's source location as the /// Initializee points to the CXXConstructorDecl (to allow loop detection). SourceLocation MemberOrEllipsisLocation; /// Location of the left paren of the ctor-initializer. SourceLocation LParenLoc; /// Location of the right paren of the ctor-initializer. SourceLocation RParenLoc; /// If the initializee is a type, whether that type makes this /// a delegating initialization. unsigned IsDelegating : 1; /// If the initializer is a base initializer, this keeps track /// of whether the base is virtual or not. unsigned IsVirtual : 1; /// Whether or not the initializer is explicitly written /// in the sources. unsigned IsWritten : 1; /// If IsWritten is true, then this number keeps track of the textual order /// of this initializer in the original sources, counting from 0. unsigned SourceOrder : 13; public: /// Creates a new base-class initializer. explicit CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual, SourceLocation L, Expr *Init, SourceLocation R, SourceLocation EllipsisLoc); /// Creates a new member initializer. explicit CXXCtorInitializer(ASTContext &Context, FieldDecl *Member, SourceLocation MemberLoc, SourceLocation L, Expr *Init, SourceLocation R); /// Creates a new anonymous field initializer. explicit CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member, SourceLocation MemberLoc, SourceLocation L, Expr *Init, SourceLocation R); /// Creates a new delegating initializer. explicit CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, SourceLocation L, Expr *Init, SourceLocation R); /// \return Unique reproducible object identifier. int64_t getID(const ASTContext &Context) const; /// Determine whether this initializer is initializing a base class. bool isBaseInitializer() const { return Initializee.is() && !IsDelegating; } /// Determine whether this initializer is initializing a non-static /// data member. bool isMemberInitializer() const { return Initializee.is(); } bool isAnyMemberInitializer() const { return isMemberInitializer() || isIndirectMemberInitializer(); } bool isIndirectMemberInitializer() const { return Initializee.is(); } /// Determine whether this initializer is an implicit initializer /// generated for a field with an initializer defined on the member /// declaration. /// /// In-class member initializers (also known as "non-static data member /// initializations", NSDMIs) were introduced in C++11. bool isInClassMemberInitializer() const { return Init->getStmtClass() == Stmt::CXXDefaultInitExprClass; } /// Determine whether this initializer is creating a delegating /// constructor. bool isDelegatingInitializer() const { return Initializee.is() && IsDelegating; } /// Determine whether this initializer is a pack expansion. bool isPackExpansion() const { return isBaseInitializer() && MemberOrEllipsisLocation.isValid(); } // For a pack expansion, returns the location of the ellipsis. SourceLocation getEllipsisLoc() const { if (!isPackExpansion()) return {}; return MemberOrEllipsisLocation; } /// If this is a base class initializer, returns the type of the /// base class with location information. Otherwise, returns an NULL /// type location. TypeLoc getBaseClassLoc() const; /// If this is a base class initializer, returns the type of the base class. /// Otherwise, returns null. const Type *getBaseClass() const; /// Returns whether the base is virtual or not. bool isBaseVirtual() const { assert(isBaseInitializer() && "Must call this on base initializer!"); return IsVirtual; } /// Returns the declarator information for a base class or delegating /// initializer. TypeSourceInfo *getTypeSourceInfo() const { return Initializee.dyn_cast(); } /// If this is a member initializer, returns the declaration of the /// non-static data member being initialized. Otherwise, returns null. FieldDecl *getMember() const { if (isMemberInitializer()) return Initializee.get(); return nullptr; } FieldDecl *getAnyMember() const { if (isMemberInitializer()) return Initializee.get(); if (isIndirectMemberInitializer()) return Initializee.get()->getAnonField(); return nullptr; } IndirectFieldDecl *getIndirectMember() const { if (isIndirectMemberInitializer()) return Initializee.get(); return nullptr; } SourceLocation getMemberLocation() const { return MemberOrEllipsisLocation; } /// Determine the source location of the initializer. SourceLocation getSourceLocation() const; /// Determine the source range covering the entire initializer. SourceRange getSourceRange() const LLVM_READONLY; /// Determine whether this initializer is explicitly written /// in the source code. bool isWritten() const { return IsWritten; } /// Return the source position of the initializer, counting from 0. /// If the initializer was implicit, -1 is returned. int getSourceOrder() const { return IsWritten ? static_cast(SourceOrder) : -1; } /// Set the source order of this initializer. /// /// This can only be called once for each initializer; it cannot be called /// on an initializer having a positive number of (implicit) array indices. /// /// This assumes that the initializer was written in the source code, and /// ensures that isWritten() returns true. void setSourceOrder(int Pos) { assert(!IsWritten && "setSourceOrder() used on implicit initializer"); assert(SourceOrder == 0 && "calling twice setSourceOrder() on the same initializer"); assert(Pos >= 0 && "setSourceOrder() used to make an initializer implicit"); IsWritten = true; SourceOrder = static_cast(Pos); } SourceLocation getLParenLoc() const { return LParenLoc; } SourceLocation getRParenLoc() const { return RParenLoc; } /// Get the initializer. Expr *getInit() const { return static_cast(Init); } }; /// Description of a constructor that was inherited from a base class. class InheritedConstructor { ConstructorUsingShadowDecl *Shadow = nullptr; CXXConstructorDecl *BaseCtor = nullptr; public: InheritedConstructor() = default; InheritedConstructor(ConstructorUsingShadowDecl *Shadow, CXXConstructorDecl *BaseCtor) : Shadow(Shadow), BaseCtor(BaseCtor) {} explicit operator bool() const { return Shadow; } ConstructorUsingShadowDecl *getShadowDecl() const { return Shadow; } CXXConstructorDecl *getConstructor() const { return BaseCtor; } }; /// Represents a C++ constructor within a class. /// /// For example: /// /// \code /// class X { /// public: /// explicit X(int); // represented by a CXXConstructorDecl. /// }; /// \endcode class CXXConstructorDecl final : public CXXMethodDecl, private llvm::TrailingObjects { // This class stores some data in DeclContext::CXXConstructorDeclBits // to save some space. Use the provided accessors to access it. /// \name Support for base and member initializers. /// \{ /// The arguments used to initialize the base or member. LazyCXXCtorInitializersPtr CtorInitializers; CXXConstructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited, Expr *TrailingRequiresClause); void anchor() override; size_t numTrailingObjects(OverloadToken) const { return CXXConstructorDeclBits.IsInheritingConstructor; } size_t numTrailingObjects(OverloadToken) const { return CXXConstructorDeclBits.HasTrailingExplicitSpecifier; } ExplicitSpecifier getExplicitSpecifierInternal() const { if (CXXConstructorDeclBits.HasTrailingExplicitSpecifier) return *getTrailingObjects(); return ExplicitSpecifier( nullptr, CXXConstructorDeclBits.IsSimpleExplicit ? ExplicitSpecKind::ResolvedTrue : ExplicitSpecKind::ResolvedFalse); } enum TrailingAllocKind { TAKInheritsConstructor = 1, TAKHasTailExplicit = 1 << 1, }; uint64_t getTrailingAllocKind() const { return numTrailingObjects(OverloadToken()) | (numTrailingObjects(OverloadToken()) << 1); } public: friend class ASTDeclReader; friend class ASTDeclWriter; friend TrailingObjects; static CXXConstructorDecl *CreateDeserialized(ASTContext &C, unsigned ID, uint64_t AllocKind); static CXXConstructorDecl * Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited = InheritedConstructor(), Expr *TrailingRequiresClause = nullptr); void setExplicitSpecifier(ExplicitSpecifier ES) { assert((!ES.getExpr() || CXXConstructorDeclBits.HasTrailingExplicitSpecifier) && "cannot set this explicit specifier. no trail-allocated space for " "explicit"); if (ES.getExpr()) *getCanonicalDecl()->getTrailingObjects() = ES; else CXXConstructorDeclBits.IsSimpleExplicit = ES.isExplicit(); } ExplicitSpecifier getExplicitSpecifier() { return getCanonicalDecl()->getExplicitSpecifierInternal(); } const ExplicitSpecifier getExplicitSpecifier() const { return getCanonicalDecl()->getExplicitSpecifierInternal(); } /// Return true if the declartion is already resolved to be explicit. bool isExplicit() const { return getExplicitSpecifier().isExplicit(); } /// Iterates through the member/base initializer list. using init_iterator = CXXCtorInitializer **; /// Iterates through the member/base initializer list. using init_const_iterator = CXXCtorInitializer *const *; using init_range = llvm::iterator_range; using init_const_range = llvm::iterator_range; init_range inits() { return init_range(init_begin(), init_end()); } init_const_range inits() const { return init_const_range(init_begin(), init_end()); } /// Retrieve an iterator to the first initializer. init_iterator init_begin() { const auto *ConstThis = this; return const_cast(ConstThis->init_begin()); } /// Retrieve an iterator to the first initializer. init_const_iterator init_begin() const; /// Retrieve an iterator past the last initializer. init_iterator init_end() { return init_begin() + getNumCtorInitializers(); } /// Retrieve an iterator past the last initializer. init_const_iterator init_end() const { return init_begin() + getNumCtorInitializers(); } using init_reverse_iterator = std::reverse_iterator; using init_const_reverse_iterator = std::reverse_iterator; init_reverse_iterator init_rbegin() { return init_reverse_iterator(init_end()); } init_const_reverse_iterator init_rbegin() const { return init_const_reverse_iterator(init_end()); } init_reverse_iterator init_rend() { return init_reverse_iterator(init_begin()); } init_const_reverse_iterator init_rend() const { return init_const_reverse_iterator(init_begin()); } /// Determine the number of arguments used to initialize the member /// or base. unsigned getNumCtorInitializers() const { return CXXConstructorDeclBits.NumCtorInitializers; } void setNumCtorInitializers(unsigned numCtorInitializers) { CXXConstructorDeclBits.NumCtorInitializers = numCtorInitializers; // This assert added because NumCtorInitializers is stored // in CXXConstructorDeclBits as a bitfield and its width has // been shrunk from 32 bits to fit into CXXConstructorDeclBitfields. assert(CXXConstructorDeclBits.NumCtorInitializers == numCtorInitializers && "NumCtorInitializers overflow!"); } void setCtorInitializers(CXXCtorInitializer **Initializers) { CtorInitializers = Initializers; } /// Determine whether this constructor is a delegating constructor. bool isDelegatingConstructor() const { return (getNumCtorInitializers() == 1) && init_begin()[0]->isDelegatingInitializer(); } /// When this constructor delegates to another, retrieve the target. CXXConstructorDecl *getTargetConstructor() const; /// Whether this constructor is a default /// constructor (C++ [class.ctor]p5), which can be used to /// default-initialize a class of this type. bool isDefaultConstructor() const; /// Whether this constructor is a copy constructor (C++ [class.copy]p2, /// which can be used to copy the class. /// /// \p TypeQuals will be set to the qualifiers on the /// argument type. For example, \p TypeQuals would be set to \c /// Qualifiers::Const for the following copy constructor: /// /// \code /// class X { /// public: /// X(const X&); /// }; /// \endcode bool isCopyConstructor(unsigned &TypeQuals) const; /// Whether this constructor is a copy /// constructor (C++ [class.copy]p2, which can be used to copy the /// class. bool isCopyConstructor() const { unsigned TypeQuals = 0; return isCopyConstructor(TypeQuals); } /// Determine whether this constructor is a move constructor /// (C++11 [class.copy]p3), which can be used to move values of the class. /// /// \param TypeQuals If this constructor is a move constructor, will be set /// to the type qualifiers on the referent of the first parameter's type. bool isMoveConstructor(unsigned &TypeQuals) const; /// Determine whether this constructor is a move constructor /// (C++11 [class.copy]p3), which can be used to move values of the class. bool isMoveConstructor() const { unsigned TypeQuals = 0; return isMoveConstructor(TypeQuals); } /// Determine whether this is a copy or move constructor. /// /// \param TypeQuals Will be set to the type qualifiers on the reference /// parameter, if in fact this is a copy or move constructor. bool isCopyOrMoveConstructor(unsigned &TypeQuals) const; /// Determine whether this a copy or move constructor. bool isCopyOrMoveConstructor() const { unsigned Quals; return isCopyOrMoveConstructor(Quals); } /// Whether this constructor is a /// converting constructor (C++ [class.conv.ctor]), which can be /// used for user-defined conversions. bool isConvertingConstructor(bool AllowExplicit) const; /// Determine whether this is a member template specialization that /// would copy the object to itself. Such constructors are never used to copy /// an object. bool isSpecializationCopyingObject() const; /// Determine whether this is an implicit constructor synthesized to /// model a call to a constructor inherited from a base class. bool isInheritingConstructor() const { return CXXConstructorDeclBits.IsInheritingConstructor; } /// State that this is an implicit constructor synthesized to /// model a call to a constructor inherited from a base class. void setInheritingConstructor(bool isIC = true) { CXXConstructorDeclBits.IsInheritingConstructor = isIC; } /// Get the constructor that this inheriting constructor is based on. InheritedConstructor getInheritedConstructor() const { return isInheritingConstructor() ? *getTrailingObjects() : InheritedConstructor(); } CXXConstructorDecl *getCanonicalDecl() override { return cast(FunctionDecl::getCanonicalDecl()); } const CXXConstructorDecl *getCanonicalDecl() const { return const_cast(this)->getCanonicalDecl(); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == CXXConstructor; } }; /// Represents a C++ destructor within a class. /// /// For example: /// /// \code /// class X { /// public: /// ~X(); // represented by a CXXDestructorDecl. /// }; /// \endcode class CXXDestructorDecl : public CXXMethodDecl { friend class ASTDeclReader; friend class ASTDeclWriter; // FIXME: Don't allocate storage for these except in the first declaration // of a virtual destructor. FunctionDecl *OperatorDelete = nullptr; Expr *OperatorDeleteThisArg = nullptr; CXXDestructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isInline, bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind, Expr *TrailingRequiresClause = nullptr) : CXXMethodDecl(CXXDestructor, C, RD, StartLoc, NameInfo, T, TInfo, SC_None, isInline, ConstexprKind, SourceLocation(), TrailingRequiresClause) { setImplicit(isImplicitlyDeclared); } void anchor() override; public: static CXXDestructorDecl *Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isInline, bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind, Expr *TrailingRequiresClause = nullptr); static CXXDestructorDecl *CreateDeserialized(ASTContext & C, unsigned ID); void setOperatorDelete(FunctionDecl *OD, Expr *ThisArg); const FunctionDecl *getOperatorDelete() const { return getCanonicalDecl()->OperatorDelete; } Expr *getOperatorDeleteThisArg() const { return getCanonicalDecl()->OperatorDeleteThisArg; } CXXDestructorDecl *getCanonicalDecl() override { return cast(FunctionDecl::getCanonicalDecl()); } const CXXDestructorDecl *getCanonicalDecl() const { return const_cast(this)->getCanonicalDecl(); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == CXXDestructor; } }; /// Represents a C++ conversion function within a class. /// /// For example: /// /// \code /// class X { /// public: /// operator bool(); /// }; /// \endcode class CXXConversionDecl : public CXXMethodDecl { CXXConversionDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isInline, ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind, SourceLocation EndLocation, Expr *TrailingRequiresClause = nullptr) : CXXMethodDecl(CXXConversion, C, RD, StartLoc, NameInfo, T, TInfo, SC_None, isInline, ConstexprKind, EndLocation, TrailingRequiresClause), ExplicitSpec(ES) {} void anchor() override; ExplicitSpecifier ExplicitSpec; public: friend class ASTDeclReader; friend class ASTDeclWriter; static CXXConversionDecl * Create(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, bool isInline, ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind, SourceLocation EndLocation, Expr *TrailingRequiresClause = nullptr); static CXXConversionDecl *CreateDeserialized(ASTContext &C, unsigned ID); ExplicitSpecifier getExplicitSpecifier() { return getCanonicalDecl()->ExplicitSpec; } const ExplicitSpecifier getExplicitSpecifier() const { return getCanonicalDecl()->ExplicitSpec; } /// Return true if the declartion is already resolved to be explicit. bool isExplicit() const { return getExplicitSpecifier().isExplicit(); } void setExplicitSpecifier(ExplicitSpecifier ES) { ExplicitSpec = ES; } /// Returns the type that this conversion function is converting to. QualType getConversionType() const { return getType()->castAs()->getReturnType(); } /// Determine whether this conversion function is a conversion from /// a lambda closure type to a block pointer. bool isLambdaToBlockPointerConversion() const; CXXConversionDecl *getCanonicalDecl() override { return cast(FunctionDecl::getCanonicalDecl()); } const CXXConversionDecl *getCanonicalDecl() const { return const_cast(this)->getCanonicalDecl(); } // Implement isa/cast/dyncast/etc. static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == CXXConversion; } }; /// Represents a linkage specification. /// /// For example: /// \code /// extern "C" void foo(); /// \endcode class LinkageSpecDecl : public Decl, public DeclContext { virtual void anchor(); // This class stores some data in DeclContext::LinkageSpecDeclBits to save // some space. Use the provided accessors to access it. public: /// Represents the language in a linkage specification. /// /// The values are part of the serialization ABI for /// ASTs and cannot be changed without altering that ABI. enum LanguageIDs { lang_c = 1, lang_cxx = 2 }; private: /// The source location for the extern keyword. SourceLocation ExternLoc; /// The source location for the right brace (if valid). SourceLocation RBraceLoc; LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc, SourceLocation LangLoc, LanguageIDs lang, bool HasBraces); public: static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation ExternLoc, SourceLocation LangLoc, LanguageIDs Lang, bool HasBraces); static LinkageSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID); /// Return the language specified by this linkage specification. LanguageIDs getLanguage() const { return static_cast(LinkageSpecDeclBits.Language); } /// Set the language specified by this linkage specification. void setLanguage(LanguageIDs L) { LinkageSpecDeclBits.Language = L; } /// Determines whether this linkage specification had braces in /// its syntactic form. bool hasBraces() const { assert(!RBraceLoc.isValid() || LinkageSpecDeclBits.HasBraces); return LinkageSpecDeclBits.HasBraces; } SourceLocation getExternLoc() const { return ExternLoc; } SourceLocation getRBraceLoc() const { return RBraceLoc; } void setExternLoc(SourceLocation L) { ExternLoc = L; } void setRBraceLoc(SourceLocation L) { RBraceLoc = L; LinkageSpecDeclBits.HasBraces = RBraceLoc.isValid(); } SourceLocation getEndLoc() const LLVM_READONLY { if (hasBraces()) return getRBraceLoc(); // No braces: get the end location of the (only) declaration in context // (if present). return decls_empty() ? getLocation() : decls_begin()->getEndLoc(); } SourceRange getSourceRange() const override LLVM_READONLY { return SourceRange(ExternLoc, getEndLoc()); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == LinkageSpec; } static DeclContext *castToDeclContext(const LinkageSpecDecl *D) { return static_cast(const_cast(D)); } static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) { return static_cast(const_cast(DC)); } }; /// Represents C++ using-directive. /// /// For example: /// \code /// using namespace std; /// \endcode /// /// \note UsingDirectiveDecl should be Decl not NamedDecl, but we provide /// artificial names for all using-directives in order to store /// them in DeclContext effectively. class UsingDirectiveDecl : public NamedDecl { /// The location of the \c using keyword. SourceLocation UsingLoc; /// The location of the \c namespace keyword. SourceLocation NamespaceLoc; /// The nested-name-specifier that precedes the namespace. NestedNameSpecifierLoc QualifierLoc; /// The namespace nominated by this using-directive. NamedDecl *NominatedNamespace; /// Enclosing context containing both using-directive and nominated /// namespace. DeclContext *CommonAncestor; UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc, SourceLocation NamespcLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation IdentLoc, NamedDecl *Nominated, DeclContext *CommonAncestor) : NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc), NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc), NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) {} /// Returns special DeclarationName used by using-directives. /// /// This is only used by DeclContext for storing UsingDirectiveDecls in /// its lookup structure. static DeclarationName getName() { return DeclarationName::getUsingDirectiveName(); } void anchor() override; public: friend class ASTDeclReader; // Friend for getUsingDirectiveName. friend class DeclContext; /// Retrieve the nested-name-specifier that qualifies the /// name of the namespace, with source-location information. NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } /// Retrieve the nested-name-specifier that qualifies the /// name of the namespace. NestedNameSpecifier *getQualifier() const { return QualifierLoc.getNestedNameSpecifier(); } NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; } const NamedDecl *getNominatedNamespaceAsWritten() const { return NominatedNamespace; } /// Returns the namespace nominated by this using-directive. NamespaceDecl *getNominatedNamespace(); const NamespaceDecl *getNominatedNamespace() const { return const_cast(this)->getNominatedNamespace(); } /// Returns the common ancestor context of this using-directive and /// its nominated namespace. DeclContext *getCommonAncestor() { return CommonAncestor; } const DeclContext *getCommonAncestor() const { return CommonAncestor; } /// Return the location of the \c using keyword. SourceLocation getUsingLoc() const { return UsingLoc; } // FIXME: Could omit 'Key' in name. /// Returns the location of the \c namespace keyword. SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; } /// Returns the location of this using declaration's identifier. SourceLocation getIdentLocation() const { return getLocation(); } static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc, SourceLocation NamespaceLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation IdentLoc, NamedDecl *Nominated, DeclContext *CommonAncestor); static UsingDirectiveDecl *CreateDeserialized(ASTContext &C, unsigned ID); SourceRange getSourceRange() const override LLVM_READONLY { return SourceRange(UsingLoc, getLocation()); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == UsingDirective; } }; /// Represents a C++ namespace alias. /// /// For example: /// /// \code /// namespace Foo = Bar; /// \endcode class NamespaceAliasDecl : public NamedDecl, public Redeclarable { friend class ASTDeclReader; /// The location of the \c namespace keyword. SourceLocation NamespaceLoc; /// The location of the namespace's identifier. /// /// This is accessed by TargetNameLoc. SourceLocation IdentLoc; /// The nested-name-specifier that precedes the namespace. NestedNameSpecifierLoc QualifierLoc; /// The Decl that this alias points to, either a NamespaceDecl or /// a NamespaceAliasDecl. NamedDecl *Namespace; NamespaceAliasDecl(ASTContext &C, DeclContext *DC, SourceLocation NamespaceLoc, SourceLocation AliasLoc, IdentifierInfo *Alias, NestedNameSpecifierLoc QualifierLoc, SourceLocation IdentLoc, NamedDecl *Namespace) : NamedDecl(NamespaceAlias, DC, AliasLoc, Alias), redeclarable_base(C), NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc), QualifierLoc(QualifierLoc), Namespace(Namespace) {} void anchor() override; using redeclarable_base = Redeclarable; NamespaceAliasDecl *getNextRedeclarationImpl() override; NamespaceAliasDecl *getPreviousDeclImpl() override; NamespaceAliasDecl *getMostRecentDeclImpl() override; public: static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation NamespaceLoc, SourceLocation AliasLoc, IdentifierInfo *Alias, NestedNameSpecifierLoc QualifierLoc, SourceLocation IdentLoc, NamedDecl *Namespace); static NamespaceAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID); using redecl_range = redeclarable_base::redecl_range; using redecl_iterator = redeclarable_base::redecl_iterator; using redeclarable_base::redecls_begin; using redeclarable_base::redecls_end; using redeclarable_base::redecls; using redeclarable_base::getPreviousDecl; using redeclarable_base::getMostRecentDecl; NamespaceAliasDecl *getCanonicalDecl() override { return getFirstDecl(); } const NamespaceAliasDecl *getCanonicalDecl() const { return getFirstDecl(); } /// Retrieve the nested-name-specifier that qualifies the /// name of the namespace, with source-location information. NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } /// Retrieve the nested-name-specifier that qualifies the /// name of the namespace. NestedNameSpecifier *getQualifier() const { return QualifierLoc.getNestedNameSpecifier(); } /// Retrieve the namespace declaration aliased by this directive. NamespaceDecl *getNamespace() { if (auto *AD = dyn_cast(Namespace)) return AD->getNamespace(); return cast(Namespace); } const NamespaceDecl *getNamespace() const { return const_cast(this)->getNamespace(); } /// Returns the location of the alias name, i.e. 'foo' in /// "namespace foo = ns::bar;". SourceLocation getAliasLoc() const { return getLocation(); } /// Returns the location of the \c namespace keyword. SourceLocation getNamespaceLoc() const { return NamespaceLoc; } /// Returns the location of the identifier in the named namespace. SourceLocation getTargetNameLoc() const { return IdentLoc; } /// Retrieve the namespace that this alias refers to, which /// may either be a NamespaceDecl or a NamespaceAliasDecl. NamedDecl *getAliasedNamespace() const { return Namespace; } SourceRange getSourceRange() const override LLVM_READONLY { return SourceRange(NamespaceLoc, IdentLoc); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == NamespaceAlias; } }; /// Implicit declaration of a temporary that was materialized by /// a MaterializeTemporaryExpr and lifetime-extended by a declaration class LifetimeExtendedTemporaryDecl final : public Decl, public Mergeable { friend class MaterializeTemporaryExpr; friend class ASTDeclReader; Stmt *ExprWithTemporary = nullptr; /// The declaration which lifetime-extended this reference, if any. /// Either a VarDecl, or (for a ctor-initializer) a FieldDecl. ValueDecl *ExtendingDecl = nullptr; unsigned ManglingNumber; mutable APValue *Value = nullptr; virtual void anchor(); LifetimeExtendedTemporaryDecl(Expr *Temp, ValueDecl *EDecl, unsigned Mangling) : Decl(Decl::LifetimeExtendedTemporary, EDecl->getDeclContext(), EDecl->getLocation()), ExprWithTemporary(Temp), ExtendingDecl(EDecl), ManglingNumber(Mangling) {} LifetimeExtendedTemporaryDecl(EmptyShell) : Decl(Decl::LifetimeExtendedTemporary, EmptyShell{}) {} public: static LifetimeExtendedTemporaryDecl *Create(Expr *Temp, ValueDecl *EDec, unsigned Mangling) { return new (EDec->getASTContext(), EDec->getDeclContext()) LifetimeExtendedTemporaryDecl(Temp, EDec, Mangling); } static LifetimeExtendedTemporaryDecl *CreateDeserialized(ASTContext &C, unsigned ID) { return new (C, ID) LifetimeExtendedTemporaryDecl(EmptyShell{}); } ValueDecl *getExtendingDecl() { return ExtendingDecl; } const ValueDecl *getExtendingDecl() const { return ExtendingDecl; } /// Retrieve the storage duration for the materialized temporary. StorageDuration getStorageDuration() const; /// Retrieve the expression to which the temporary materialization conversion /// was applied. This isn't necessarily the initializer of the temporary due /// to the C++98 delayed materialization rules, but /// skipRValueSubobjectAdjustments can be used to find said initializer within /// the subexpression. Expr *getTemporaryExpr() { return cast(ExprWithTemporary); } const Expr *getTemporaryExpr() const { return cast(ExprWithTemporary); } unsigned getManglingNumber() const { return ManglingNumber; } /// Get the storage for the constant value of a materialized temporary /// of static storage duration. APValue *getOrCreateValue(bool MayCreate) const; APValue *getValue() const { return Value; } // Iterators Stmt::child_range childrenExpr() { return Stmt::child_range(&ExprWithTemporary, &ExprWithTemporary + 1); } Stmt::const_child_range childrenExpr() const { return Stmt::const_child_range(&ExprWithTemporary, &ExprWithTemporary + 1); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == Decl::LifetimeExtendedTemporary; } }; /// Represents a shadow declaration implicitly introduced into a scope by a /// (resolved) using-declaration or using-enum-declaration to achieve /// the desired lookup semantics. /// /// For example: /// \code /// namespace A { /// void foo(); /// void foo(int); /// struct foo {}; /// enum bar { bar1, bar2 }; /// } /// namespace B { /// // add a UsingDecl and three UsingShadowDecls (named foo) to B. /// using A::foo; /// // adds UsingEnumDecl and two UsingShadowDecls (named bar1 and bar2) to B. /// using enum A::bar; /// } /// \endcode class UsingShadowDecl : public NamedDecl, public Redeclarable { friend class BaseUsingDecl; /// The referenced declaration. NamedDecl *Underlying = nullptr; /// The using declaration which introduced this decl or the next using /// shadow declaration contained in the aforementioned using declaration. NamedDecl *UsingOrNextShadow = nullptr; void anchor() override; using redeclarable_base = Redeclarable; UsingShadowDecl *getNextRedeclarationImpl() override { return getNextRedeclaration(); } UsingShadowDecl *getPreviousDeclImpl() override { return getPreviousDecl(); } UsingShadowDecl *getMostRecentDeclImpl() override { return getMostRecentDecl(); } protected: UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, SourceLocation Loc, DeclarationName Name, BaseUsingDecl *Introducer, NamedDecl *Target); UsingShadowDecl(Kind K, ASTContext &C, EmptyShell); public: friend class ASTDeclReader; friend class ASTDeclWriter; static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation Loc, DeclarationName Name, BaseUsingDecl *Introducer, NamedDecl *Target) { return new (C, DC) UsingShadowDecl(UsingShadow, C, DC, Loc, Name, Introducer, Target); } static UsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID); using redecl_range = redeclarable_base::redecl_range; using redecl_iterator = redeclarable_base::redecl_iterator; using redeclarable_base::redecls_begin; using redeclarable_base::redecls_end; using redeclarable_base::redecls; using redeclarable_base::getPreviousDecl; using redeclarable_base::getMostRecentDecl; using redeclarable_base::isFirstDecl; UsingShadowDecl *getCanonicalDecl() override { return getFirstDecl(); } const UsingShadowDecl *getCanonicalDecl() const { return getFirstDecl(); } /// Gets the underlying declaration which has been brought into the /// local scope. NamedDecl *getTargetDecl() const { return Underlying; } /// Sets the underlying declaration which has been brought into the /// local scope. void setTargetDecl(NamedDecl *ND) { assert(ND && "Target decl is null!"); Underlying = ND; // A UsingShadowDecl is never a friend or local extern declaration, even // if it is a shadow declaration for one. IdentifierNamespace = ND->getIdentifierNamespace() & ~(IDNS_OrdinaryFriend | IDNS_TagFriend | IDNS_LocalExtern); } /// Gets the (written or instantiated) using declaration that introduced this /// declaration. BaseUsingDecl *getIntroducer() const; /// The next using shadow declaration contained in the shadow decl /// chain of the using declaration which introduced this decl. UsingShadowDecl *getNextUsingShadowDecl() const { return dyn_cast_or_null(UsingOrNextShadow); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == Decl::UsingShadow || K == Decl::ConstructorUsingShadow; } }; /// Represents a C++ declaration that introduces decls from somewhere else. It /// provides a set of the shadow decls so introduced. class BaseUsingDecl : public NamedDecl { /// The first shadow declaration of the shadow decl chain associated /// with this using declaration. /// /// The bool member of the pair is a bool flag a derived type may use /// (UsingDecl makes use of it). llvm::PointerIntPair FirstUsingShadow; protected: BaseUsingDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N) : NamedDecl(DK, DC, L, N), FirstUsingShadow(nullptr, 0) {} private: void anchor() override; protected: /// A bool flag for use by a derived type bool getShadowFlag() const { return FirstUsingShadow.getInt(); } /// A bool flag a derived type may set void setShadowFlag(bool V) { FirstUsingShadow.setInt(V); } public: friend class ASTDeclReader; friend class ASTDeclWriter; /// Iterates through the using shadow declarations associated with /// this using declaration. class shadow_iterator { /// The current using shadow declaration. UsingShadowDecl *Current = nullptr; public: using value_type = UsingShadowDecl *; using reference = UsingShadowDecl *; using pointer = UsingShadowDecl *; using iterator_category = std::forward_iterator_tag; using difference_type = std::ptrdiff_t; shadow_iterator() = default; explicit shadow_iterator(UsingShadowDecl *C) : Current(C) {} reference operator*() const { return Current; } pointer operator->() const { return Current; } shadow_iterator &operator++() { Current = Current->getNextUsingShadowDecl(); return *this; } shadow_iterator operator++(int) { shadow_iterator tmp(*this); ++(*this); return tmp; } friend bool operator==(shadow_iterator x, shadow_iterator y) { return x.Current == y.Current; } friend bool operator!=(shadow_iterator x, shadow_iterator y) { return x.Current != y.Current; } }; using shadow_range = llvm::iterator_range; shadow_range shadows() const { return shadow_range(shadow_begin(), shadow_end()); } shadow_iterator shadow_begin() const { return shadow_iterator(FirstUsingShadow.getPointer()); } shadow_iterator shadow_end() const { return shadow_iterator(); } /// Return the number of shadowed declarations associated with this /// using declaration. unsigned shadow_size() const { return std::distance(shadow_begin(), shadow_end()); } void addShadowDecl(UsingShadowDecl *S); void removeShadowDecl(UsingShadowDecl *S); static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == Using || K == UsingEnum; } }; /// Represents a C++ using-declaration. /// /// For example: /// \code /// using someNameSpace::someIdentifier; /// \endcode class UsingDecl : public BaseUsingDecl, public Mergeable { /// The source location of the 'using' keyword itself. SourceLocation UsingLocation; /// The nested-name-specifier that precedes the name. NestedNameSpecifierLoc QualifierLoc; /// Provides source/type location info for the declaration name /// embedded in the ValueDecl base class. DeclarationNameLoc DNLoc; UsingDecl(DeclContext *DC, SourceLocation UL, NestedNameSpecifierLoc QualifierLoc, const DeclarationNameInfo &NameInfo, bool HasTypenameKeyword) : BaseUsingDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()), UsingLocation(UL), QualifierLoc(QualifierLoc), DNLoc(NameInfo.getInfo()) { setShadowFlag(HasTypenameKeyword); } void anchor() override; public: friend class ASTDeclReader; friend class ASTDeclWriter; /// Return the source location of the 'using' keyword. SourceLocation getUsingLoc() const { return UsingLocation; } /// Set the source location of the 'using' keyword. void setUsingLoc(SourceLocation L) { UsingLocation = L; } /// Retrieve the nested-name-specifier that qualifies the name, /// with source-location information. NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } /// Retrieve the nested-name-specifier that qualifies the name. NestedNameSpecifier *getQualifier() const { return QualifierLoc.getNestedNameSpecifier(); } DeclarationNameInfo getNameInfo() const { return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc); } /// Return true if it is a C++03 access declaration (no 'using'). bool isAccessDeclaration() const { return UsingLocation.isInvalid(); } /// Return true if the using declaration has 'typename'. bool hasTypename() const { return getShadowFlag(); } /// Sets whether the using declaration has 'typename'. void setTypename(bool TN) { setShadowFlag(TN); } static UsingDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation UsingL, NestedNameSpecifierLoc QualifierLoc, const DeclarationNameInfo &NameInfo, bool HasTypenameKeyword); static UsingDecl *CreateDeserialized(ASTContext &C, unsigned ID); SourceRange getSourceRange() const override LLVM_READONLY; /// Retrieves the canonical declaration of this declaration. UsingDecl *getCanonicalDecl() override { return cast(getFirstDecl()); } const UsingDecl *getCanonicalDecl() const { return cast(getFirstDecl()); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == Using; } }; /// Represents a shadow constructor declaration introduced into a /// class by a C++11 using-declaration that names a constructor. /// /// For example: /// \code /// struct Base { Base(int); }; /// struct Derived { /// using Base::Base; // creates a UsingDecl and a ConstructorUsingShadowDecl /// }; /// \endcode class ConstructorUsingShadowDecl final : public UsingShadowDecl { /// If this constructor using declaration inherted the constructor /// from an indirect base class, this is the ConstructorUsingShadowDecl /// in the named direct base class from which the declaration was inherited. ConstructorUsingShadowDecl *NominatedBaseClassShadowDecl = nullptr; /// If this constructor using declaration inherted the constructor /// from an indirect base class, this is the ConstructorUsingShadowDecl /// that will be used to construct the unique direct or virtual base class /// that receives the constructor arguments. ConstructorUsingShadowDecl *ConstructedBaseClassShadowDecl = nullptr; /// \c true if the constructor ultimately named by this using shadow /// declaration is within a virtual base class subobject of the class that /// contains this declaration. unsigned IsVirtual : 1; ConstructorUsingShadowDecl(ASTContext &C, DeclContext *DC, SourceLocation Loc, UsingDecl *Using, NamedDecl *Target, bool TargetInVirtualBase) : UsingShadowDecl(ConstructorUsingShadow, C, DC, Loc, Using->getDeclName(), Using, Target->getUnderlyingDecl()), NominatedBaseClassShadowDecl( dyn_cast(Target)), ConstructedBaseClassShadowDecl(NominatedBaseClassShadowDecl), IsVirtual(TargetInVirtualBase) { // If we found a constructor that chains to a constructor for a virtual // base, we should directly call that virtual base constructor instead. // FIXME: This logic belongs in Sema. if (NominatedBaseClassShadowDecl && NominatedBaseClassShadowDecl->constructsVirtualBase()) { ConstructedBaseClassShadowDecl = NominatedBaseClassShadowDecl->ConstructedBaseClassShadowDecl; IsVirtual = true; } } ConstructorUsingShadowDecl(ASTContext &C, EmptyShell Empty) : UsingShadowDecl(ConstructorUsingShadow, C, Empty), IsVirtual(false) {} void anchor() override; public: friend class ASTDeclReader; friend class ASTDeclWriter; static ConstructorUsingShadowDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation Loc, UsingDecl *Using, NamedDecl *Target, bool IsVirtual); static ConstructorUsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID); /// Override the UsingShadowDecl's getIntroducer, returning the UsingDecl that /// introduced this. UsingDecl *getIntroducer() const { return cast(UsingShadowDecl::getIntroducer()); } /// Returns the parent of this using shadow declaration, which /// is the class in which this is declared. //@{ const CXXRecordDecl *getParent() const { return cast(getDeclContext()); } CXXRecordDecl *getParent() { return cast(getDeclContext()); } //@} /// Get the inheriting constructor declaration for the direct base /// class from which this using shadow declaration was inherited, if there is /// one. This can be different for each redeclaration of the same shadow decl. ConstructorUsingShadowDecl *getNominatedBaseClassShadowDecl() const { return NominatedBaseClassShadowDecl; } /// Get the inheriting constructor declaration for the base class /// for which we don't have an explicit initializer, if there is one. ConstructorUsingShadowDecl *getConstructedBaseClassShadowDecl() const { return ConstructedBaseClassShadowDecl; } /// Get the base class that was named in the using declaration. This /// can be different for each redeclaration of this same shadow decl. CXXRecordDecl *getNominatedBaseClass() const; /// Get the base class whose constructor or constructor shadow /// declaration is passed the constructor arguments. CXXRecordDecl *getConstructedBaseClass() const { return cast((ConstructedBaseClassShadowDecl ? ConstructedBaseClassShadowDecl : getTargetDecl()) ->getDeclContext()); } /// Returns \c true if the constructed base class is a virtual base /// class subobject of this declaration's class. bool constructsVirtualBase() const { return IsVirtual; } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == ConstructorUsingShadow; } }; /// Represents a C++ using-enum-declaration. /// /// For example: /// \code /// using enum SomeEnumTag ; /// \endcode class UsingEnumDecl : public BaseUsingDecl, public Mergeable { /// The source location of the 'using' keyword itself. SourceLocation UsingLocation; /// Location of the 'enum' keyword. SourceLocation EnumLocation; /// The enum EnumDecl *Enum; UsingEnumDecl(DeclContext *DC, DeclarationName DN, SourceLocation UL, SourceLocation EL, SourceLocation NL, EnumDecl *ED) : BaseUsingDecl(UsingEnum, DC, NL, DN), UsingLocation(UL), EnumLocation(EL), Enum(ED) {} void anchor() override; public: friend class ASTDeclReader; friend class ASTDeclWriter; /// The source location of the 'using' keyword. SourceLocation getUsingLoc() const { return UsingLocation; } void setUsingLoc(SourceLocation L) { UsingLocation = L; } /// The source location of the 'enum' keyword. SourceLocation getEnumLoc() const { return EnumLocation; } void setEnumLoc(SourceLocation L) { EnumLocation = L; } public: EnumDecl *getEnumDecl() const { return Enum; } static UsingEnumDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation UsingL, SourceLocation EnumL, SourceLocation NameL, EnumDecl *ED); static UsingEnumDecl *CreateDeserialized(ASTContext &C, unsigned ID); SourceRange getSourceRange() const override LLVM_READONLY; /// Retrieves the canonical declaration of this declaration. UsingEnumDecl *getCanonicalDecl() override { return cast(getFirstDecl()); } const UsingEnumDecl *getCanonicalDecl() const { return cast(getFirstDecl()); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == UsingEnum; } }; /// Represents a pack of using declarations that a single /// using-declarator pack-expanded into. /// /// \code /// template struct X : T... { /// using T::operator()...; /// using T::operator T...; /// }; /// \endcode /// /// In the second case above, the UsingPackDecl will have the name /// 'operator T' (which contains an unexpanded pack), but the individual /// UsingDecls and UsingShadowDecls will have more reasonable names. class UsingPackDecl final : public NamedDecl, public Mergeable, private llvm::TrailingObjects { /// The UnresolvedUsingValueDecl or UnresolvedUsingTypenameDecl from /// which this waas instantiated. NamedDecl *InstantiatedFrom; /// The number of using-declarations created by this pack expansion. unsigned NumExpansions; UsingPackDecl(DeclContext *DC, NamedDecl *InstantiatedFrom, ArrayRef UsingDecls) : NamedDecl(UsingPack, DC, InstantiatedFrom ? InstantiatedFrom->getLocation() : SourceLocation(), InstantiatedFrom ? InstantiatedFrom->getDeclName() : DeclarationName()), InstantiatedFrom(InstantiatedFrom), NumExpansions(UsingDecls.size()) { std::uninitialized_copy(UsingDecls.begin(), UsingDecls.end(), getTrailingObjects()); } void anchor() override; public: friend class ASTDeclReader; friend class ASTDeclWriter; friend TrailingObjects; /// Get the using declaration from which this was instantiated. This will /// always be an UnresolvedUsingValueDecl or an UnresolvedUsingTypenameDecl /// that is a pack expansion. NamedDecl *getInstantiatedFromUsingDecl() const { return InstantiatedFrom; } /// Get the set of using declarations that this pack expanded into. Note that /// some of these may still be unresolved. ArrayRef expansions() const { return llvm::makeArrayRef(getTrailingObjects(), NumExpansions); } static UsingPackDecl *Create(ASTContext &C, DeclContext *DC, NamedDecl *InstantiatedFrom, ArrayRef UsingDecls); static UsingPackDecl *CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumExpansions); SourceRange getSourceRange() const override LLVM_READONLY { return InstantiatedFrom->getSourceRange(); } UsingPackDecl *getCanonicalDecl() override { return getFirstDecl(); } const UsingPackDecl *getCanonicalDecl() const { return getFirstDecl(); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == UsingPack; } }; /// Represents a dependent using declaration which was not marked with /// \c typename. /// /// Unlike non-dependent using declarations, these *only* bring through /// non-types; otherwise they would break two-phase lookup. /// /// \code /// template \ class A : public Base { /// using Base::foo; /// }; /// \endcode class UnresolvedUsingValueDecl : public ValueDecl, public Mergeable { /// The source location of the 'using' keyword SourceLocation UsingLocation; /// If this is a pack expansion, the location of the '...'. SourceLocation EllipsisLoc; /// The nested-name-specifier that precedes the name. NestedNameSpecifierLoc QualifierLoc; /// Provides source/type location info for the declaration name /// embedded in the ValueDecl base class. DeclarationNameLoc DNLoc; UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty, SourceLocation UsingLoc, NestedNameSpecifierLoc QualifierLoc, const DeclarationNameInfo &NameInfo, SourceLocation EllipsisLoc) : ValueDecl(UnresolvedUsingValue, DC, NameInfo.getLoc(), NameInfo.getName(), Ty), UsingLocation(UsingLoc), EllipsisLoc(EllipsisLoc), QualifierLoc(QualifierLoc), DNLoc(NameInfo.getInfo()) {} void anchor() override; public: friend class ASTDeclReader; friend class ASTDeclWriter; /// Returns the source location of the 'using' keyword. SourceLocation getUsingLoc() const { return UsingLocation; } /// Set the source location of the 'using' keyword. void setUsingLoc(SourceLocation L) { UsingLocation = L; } /// Return true if it is a C++03 access declaration (no 'using'). bool isAccessDeclaration() const { return UsingLocation.isInvalid(); } /// Retrieve the nested-name-specifier that qualifies the name, /// with source-location information. NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } /// Retrieve the nested-name-specifier that qualifies the name. NestedNameSpecifier *getQualifier() const { return QualifierLoc.getNestedNameSpecifier(); } DeclarationNameInfo getNameInfo() const { return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc); } /// Determine whether this is a pack expansion. bool isPackExpansion() const { return EllipsisLoc.isValid(); } /// Get the location of the ellipsis if this is a pack expansion. SourceLocation getEllipsisLoc() const { return EllipsisLoc; } static UnresolvedUsingValueDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc, NestedNameSpecifierLoc QualifierLoc, const DeclarationNameInfo &NameInfo, SourceLocation EllipsisLoc); static UnresolvedUsingValueDecl * CreateDeserialized(ASTContext &C, unsigned ID); SourceRange getSourceRange() const override LLVM_READONLY; /// Retrieves the canonical declaration of this declaration. UnresolvedUsingValueDecl *getCanonicalDecl() override { return getFirstDecl(); } const UnresolvedUsingValueDecl *getCanonicalDecl() const { return getFirstDecl(); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == UnresolvedUsingValue; } }; /// Represents a dependent using declaration which was marked with /// \c typename. /// /// \code /// template \ class A : public Base { /// using typename Base::foo; /// }; /// \endcode /// /// The type associated with an unresolved using typename decl is /// currently always a typename type. class UnresolvedUsingTypenameDecl : public TypeDecl, public Mergeable { friend class ASTDeclReader; /// The source location of the 'typename' keyword SourceLocation TypenameLocation; /// If this is a pack expansion, the location of the '...'. SourceLocation EllipsisLoc; /// The nested-name-specifier that precedes the name. NestedNameSpecifierLoc QualifierLoc; UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc, SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TargetNameLoc, IdentifierInfo *TargetName, SourceLocation EllipsisLoc) : TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName, UsingLoc), TypenameLocation(TypenameLoc), EllipsisLoc(EllipsisLoc), QualifierLoc(QualifierLoc) {} void anchor() override; public: /// Returns the source location of the 'using' keyword. SourceLocation getUsingLoc() const { return getBeginLoc(); } /// Returns the source location of the 'typename' keyword. SourceLocation getTypenameLoc() const { return TypenameLocation; } /// Retrieve the nested-name-specifier that qualifies the name, /// with source-location information. NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } /// Retrieve the nested-name-specifier that qualifies the name. NestedNameSpecifier *getQualifier() const { return QualifierLoc.getNestedNameSpecifier(); } DeclarationNameInfo getNameInfo() const { return DeclarationNameInfo(getDeclName(), getLocation()); } /// Determine whether this is a pack expansion. bool isPackExpansion() const { return EllipsisLoc.isValid(); } /// Get the location of the ellipsis if this is a pack expansion. SourceLocation getEllipsisLoc() const { return EllipsisLoc; } static UnresolvedUsingTypenameDecl * Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc, SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc, SourceLocation TargetNameLoc, DeclarationName TargetName, SourceLocation EllipsisLoc); static UnresolvedUsingTypenameDecl * CreateDeserialized(ASTContext &C, unsigned ID); /// Retrieves the canonical declaration of this declaration. UnresolvedUsingTypenameDecl *getCanonicalDecl() override { return getFirstDecl(); } const UnresolvedUsingTypenameDecl *getCanonicalDecl() const { return getFirstDecl(); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; } }; /// This node is generated when a using-declaration that was annotated with /// __attribute__((using_if_exists)) failed to resolve to a known declaration. /// In that case, Sema builds a UsingShadowDecl whose target is an instance of /// this declaration, adding it to the current scope. Referring to this /// declaration in any way is an error. class UnresolvedUsingIfExistsDecl final : public NamedDecl { UnresolvedUsingIfExistsDecl(DeclContext *DC, SourceLocation Loc, DeclarationName Name); void anchor() override; public: static UnresolvedUsingIfExistsDecl *Create(ASTContext &Ctx, DeclContext *DC, SourceLocation Loc, DeclarationName Name); static UnresolvedUsingIfExistsDecl *CreateDeserialized(ASTContext &Ctx, unsigned ID); static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == Decl::UnresolvedUsingIfExists; } }; /// Represents a C++11 static_assert declaration. class StaticAssertDecl : public Decl { llvm::PointerIntPair AssertExprAndFailed; StringLiteral *Message; SourceLocation RParenLoc; StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc, Expr *AssertExpr, StringLiteral *Message, SourceLocation RParenLoc, bool Failed) : Decl(StaticAssert, DC, StaticAssertLoc), AssertExprAndFailed(AssertExpr, Failed), Message(Message), RParenLoc(RParenLoc) {} virtual void anchor(); public: friend class ASTDeclReader; static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation StaticAssertLoc, Expr *AssertExpr, StringLiteral *Message, SourceLocation RParenLoc, bool Failed); static StaticAssertDecl *CreateDeserialized(ASTContext &C, unsigned ID); Expr *getAssertExpr() { return AssertExprAndFailed.getPointer(); } const Expr *getAssertExpr() const { return AssertExprAndFailed.getPointer(); } StringLiteral *getMessage() { return Message; } const StringLiteral *getMessage() const { return Message; } bool isFailed() const { return AssertExprAndFailed.getInt(); } SourceLocation getRParenLoc() const { return RParenLoc; } SourceRange getSourceRange() const override LLVM_READONLY { return SourceRange(getLocation(), getRParenLoc()); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == StaticAssert; } }; /// A binding in a decomposition declaration. For instance, given: /// /// int n[3]; /// auto &[a, b, c] = n; /// /// a, b, and c are BindingDecls, whose bindings are the expressions /// x[0], x[1], and x[2] respectively, where x is the implicit /// DecompositionDecl of type 'int (&)[3]'. class BindingDecl : public ValueDecl { /// The declaration that this binding binds to part of. ValueDecl *Decomp; /// The binding represented by this declaration. References to this /// declaration are effectively equivalent to this expression (except /// that it is only evaluated once at the point of declaration of the /// binding). Expr *Binding = nullptr; BindingDecl(DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id) : ValueDecl(Decl::Binding, DC, IdLoc, Id, QualType()) {} void anchor() override; public: friend class ASTDeclReader; static BindingDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation IdLoc, IdentifierInfo *Id); static BindingDecl *CreateDeserialized(ASTContext &C, unsigned ID); /// Get the expression to which this declaration is bound. This may be null /// in two different cases: while parsing the initializer for the /// decomposition declaration, and when the initializer is type-dependent. Expr *getBinding() const { return Binding; } /// Get the decomposition declaration that this binding represents a /// decomposition of. ValueDecl *getDecomposedDecl() const { return Decomp; } /// Get the variable (if any) that holds the value of evaluating the binding. /// Only present for user-defined bindings for tuple-like types. VarDecl *getHoldingVar() const; /// Set the binding for this BindingDecl, along with its declared type (which /// should be a possibly-cv-qualified form of the type of the binding, or a /// reference to such a type). void setBinding(QualType DeclaredType, Expr *Binding) { setType(DeclaredType); this->Binding = Binding; } /// Set the decomposed variable for this BindingDecl. void setDecomposedDecl(ValueDecl *Decomposed) { Decomp = Decomposed; } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == Decl::Binding; } }; /// A decomposition declaration. For instance, given: /// /// int n[3]; /// auto &[a, b, c] = n; /// /// the second line declares a DecompositionDecl of type 'int (&)[3]', and /// three BindingDecls (named a, b, and c). An instance of this class is always /// unnamed, but behaves in almost all other respects like a VarDecl. class DecompositionDecl final : public VarDecl, private llvm::TrailingObjects { /// The number of BindingDecl*s following this object. unsigned NumBindings; DecompositionDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation LSquareLoc, QualType T, TypeSourceInfo *TInfo, StorageClass SC, ArrayRef Bindings) : VarDecl(Decomposition, C, DC, StartLoc, LSquareLoc, nullptr, T, TInfo, SC), NumBindings(Bindings.size()) { std::uninitialized_copy(Bindings.begin(), Bindings.end(), getTrailingObjects()); for (auto *B : Bindings) B->setDecomposedDecl(this); } void anchor() override; public: friend class ASTDeclReader; friend TrailingObjects; static DecompositionDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc, SourceLocation LSquareLoc, QualType T, TypeSourceInfo *TInfo, StorageClass S, ArrayRef Bindings); static DecompositionDecl *CreateDeserialized(ASTContext &C, unsigned ID, unsigned NumBindings); ArrayRef bindings() const { return llvm::makeArrayRef(getTrailingObjects(), NumBindings); } void printName(raw_ostream &os) const override; static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == Decomposition; } }; /// An instance of this class represents the declaration of a property /// member. This is a Microsoft extension to C++, first introduced in /// Visual Studio .NET 2003 as a parallel to similar features in C# /// and Managed C++. /// /// A property must always be a non-static class member. /// /// A property member superficially resembles a non-static data /// member, except preceded by a property attribute: /// __declspec(property(get=GetX, put=PutX)) int x; /// Either (but not both) of the 'get' and 'put' names may be omitted. /// /// A reference to a property is always an lvalue. If the lvalue /// undergoes lvalue-to-rvalue conversion, then a getter name is /// required, and that member is called with no arguments. /// If the lvalue is assigned into, then a setter name is required, /// and that member is called with one argument, the value assigned. /// Both operations are potentially overloaded. Compound assignments /// are permitted, as are the increment and decrement operators. /// /// The getter and putter methods are permitted to be overloaded, /// although their return and parameter types are subject to certain /// restrictions according to the type of the property. /// /// A property declared using an incomplete array type may /// additionally be subscripted, adding extra parameters to the getter /// and putter methods. class MSPropertyDecl : public DeclaratorDecl { IdentifierInfo *GetterId, *SetterId; MSPropertyDecl(DeclContext *DC, SourceLocation L, DeclarationName N, QualType T, TypeSourceInfo *TInfo, SourceLocation StartL, IdentifierInfo *Getter, IdentifierInfo *Setter) : DeclaratorDecl(MSProperty, DC, L, N, T, TInfo, StartL), GetterId(Getter), SetterId(Setter) {} void anchor() override; public: friend class ASTDeclReader; static MSPropertyDecl *Create(ASTContext &C, DeclContext *DC, SourceLocation L, DeclarationName N, QualType T, TypeSourceInfo *TInfo, SourceLocation StartL, IdentifierInfo *Getter, IdentifierInfo *Setter); static MSPropertyDecl *CreateDeserialized(ASTContext &C, unsigned ID); static bool classof(const Decl *D) { return D->getKind() == MSProperty; } bool hasGetter() const { return GetterId != nullptr; } IdentifierInfo* getGetterId() const { return GetterId; } bool hasSetter() const { return SetterId != nullptr; } IdentifierInfo* getSetterId() const { return SetterId; } }; /// Parts of a decomposed MSGuidDecl. Factored out to avoid unnecessary /// dependencies on DeclCXX.h. struct MSGuidDeclParts { /// {01234567-... uint32_t Part1; /// ...-89ab-... uint16_t Part2; /// ...-cdef-... uint16_t Part3; /// ...-0123-456789abcdef} uint8_t Part4And5[8]; uint64_t getPart4And5AsUint64() const { uint64_t Val; memcpy(&Val, &Part4And5, sizeof(Part4And5)); return Val; } }; /// A global _GUID constant. These are implicitly created by UuidAttrs. /// /// struct _declspec(uuid("01234567-89ab-cdef-0123-456789abcdef")) X{}; /// /// X is a CXXRecordDecl that contains a UuidAttr that references the (unique) /// MSGuidDecl for the specified UUID. class MSGuidDecl : public ValueDecl, public Mergeable, public llvm::FoldingSetNode { public: using Parts = MSGuidDeclParts; private: /// The decomposed form of the UUID. Parts PartVal; /// The resolved value of the UUID as an APValue. Computed on demand and /// cached. mutable APValue APVal; void anchor() override; MSGuidDecl(DeclContext *DC, QualType T, Parts P); static MSGuidDecl *Create(const ASTContext &C, QualType T, Parts P); static MSGuidDecl *CreateDeserialized(ASTContext &C, unsigned ID); // Only ASTContext::getMSGuidDecl and deserialization create these. friend class ASTContext; friend class ASTReader; friend class ASTDeclReader; public: /// Print this UUID in a human-readable format. void printName(llvm::raw_ostream &OS) const override; /// Get the decomposed parts of this declaration. Parts getParts() const { return PartVal; } /// Get the value of this MSGuidDecl as an APValue. This may fail and return /// an absent APValue if the type of the declaration is not of the expected /// shape. APValue &getAsAPValue() const; static void Profile(llvm::FoldingSetNodeID &ID, Parts P) { ID.AddInteger(P.Part1); ID.AddInteger(P.Part2); ID.AddInteger(P.Part3); ID.AddInteger(P.getPart4And5AsUint64()); } void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, PartVal); } static bool classof(const Decl *D) { return classofKind(D->getKind()); } static bool classofKind(Kind K) { return K == Decl::MSGuid; } }; /// Insertion operator for diagnostics. This allows sending an AccessSpecifier /// into a diagnostic with <<. const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB, AccessSpecifier AS); } // namespace clang #endif // LLVM_CLANG_AST_DECLCXX_H