//===- ClangAttrEmitter.cpp - Generate Clang attribute handling =-*- C++ -*--=// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // These tablegen backends emit Clang attribute processing code // //===----------------------------------------------------------------------===// #include "TableGenBackends.h" #include "ASTTableGen.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSet.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/StringMatcher.h" #include "llvm/TableGen/TableGenBackend.h" #include #include #include #include #include #include #include #include #include #include #include #include using namespace llvm; namespace { class FlattenedSpelling { std::string V, N, NS; bool K = false; public: FlattenedSpelling(const std::string &Variety, const std::string &Name, const std::string &Namespace, bool KnownToGCC) : V(Variety), N(Name), NS(Namespace), K(KnownToGCC) {} explicit FlattenedSpelling(const Record &Spelling) : V(std::string(Spelling.getValueAsString("Variety"))), N(std::string(Spelling.getValueAsString("Name"))) { assert(V != "GCC" && V != "Clang" && "Given a GCC spelling, which means this hasn't been flattened!"); if (V == "CXX11" || V == "C2x" || V == "Pragma") NS = std::string(Spelling.getValueAsString("Namespace")); } const std::string &variety() const { return V; } const std::string &name() const { return N; } const std::string &nameSpace() const { return NS; } bool knownToGCC() const { return K; } }; } // end anonymous namespace static std::vector GetFlattenedSpellings(const Record &Attr) { std::vector Spellings = Attr.getValueAsListOfDefs("Spellings"); std::vector Ret; for (const auto &Spelling : Spellings) { StringRef Variety = Spelling->getValueAsString("Variety"); StringRef Name = Spelling->getValueAsString("Name"); if (Variety == "GCC") { Ret.emplace_back("GNU", std::string(Name), "", true); Ret.emplace_back("CXX11", std::string(Name), "gnu", true); if (Spelling->getValueAsBit("AllowInC")) Ret.emplace_back("C2x", std::string(Name), "gnu", true); } else if (Variety == "Clang") { Ret.emplace_back("GNU", std::string(Name), "", false); Ret.emplace_back("CXX11", std::string(Name), "clang", false); if (Spelling->getValueAsBit("AllowInC")) Ret.emplace_back("C2x", std::string(Name), "clang", false); } else Ret.push_back(FlattenedSpelling(*Spelling)); } return Ret; } static std::string ReadPCHRecord(StringRef type) { return StringSwitch(type) .EndsWith("Decl *", "Record.GetLocalDeclAs<" + std::string(type.data(), 0, type.size() - 1) + ">(Record.readInt())") .Case("TypeSourceInfo *", "Record.readTypeSourceInfo()") .Case("Expr *", "Record.readExpr()") .Case("IdentifierInfo *", "Record.readIdentifier()") .Case("StringRef", "Record.readString()") .Case("ParamIdx", "ParamIdx::deserialize(Record.readInt())") .Case("OMPTraitInfo *", "Record.readOMPTraitInfo()") .Default("Record.readInt()"); } // Get a type that is suitable for storing an object of the specified type. static StringRef getStorageType(StringRef type) { return StringSwitch(type) .Case("StringRef", "std::string") .Default(type); } // Assumes that the way to get the value is SA->getname() static std::string WritePCHRecord(StringRef type, StringRef name) { return "Record." + StringSwitch(type) .EndsWith("Decl *", "AddDeclRef(" + std::string(name) + ");\n") .Case("TypeSourceInfo *", "AddTypeSourceInfo(" + std::string(name) + ");\n") .Case("Expr *", "AddStmt(" + std::string(name) + ");\n") .Case("IdentifierInfo *", "AddIdentifierRef(" + std::string(name) + ");\n") .Case("StringRef", "AddString(" + std::string(name) + ");\n") .Case("ParamIdx", "push_back(" + std::string(name) + ".serialize());\n") .Case("OMPTraitInfo *", "writeOMPTraitInfo(" + std::string(name) + ");\n") .Default("push_back(" + std::string(name) + ");\n"); } // Normalize attribute name by removing leading and trailing // underscores. For example, __foo, foo__, __foo__ would // become foo. static StringRef NormalizeAttrName(StringRef AttrName) { AttrName.consume_front("__"); AttrName.consume_back("__"); return AttrName; } // Normalize the name by removing any and all leading and trailing underscores. // This is different from NormalizeAttrName in that it also handles names like // _pascal and __pascal. static StringRef NormalizeNameForSpellingComparison(StringRef Name) { return Name.trim("_"); } // Normalize the spelling of a GNU attribute (i.e. "x" in "__attribute__((x))"), // removing "__" if it appears at the beginning and end of the attribute's name. static StringRef NormalizeGNUAttrSpelling(StringRef AttrSpelling) { if (AttrSpelling.startswith("__") && AttrSpelling.endswith("__")) { AttrSpelling = AttrSpelling.substr(2, AttrSpelling.size() - 4); } return AttrSpelling; } typedef std::vector> ParsedAttrMap; static ParsedAttrMap getParsedAttrList(const RecordKeeper &Records, ParsedAttrMap *Dupes = nullptr) { std::vector Attrs = Records.getAllDerivedDefinitions("Attr"); std::set Seen; ParsedAttrMap R; for (const auto *Attr : Attrs) { if (Attr->getValueAsBit("SemaHandler")) { std::string AN; if (Attr->isSubClassOf("TargetSpecificAttr") && !Attr->isValueUnset("ParseKind")) { AN = std::string(Attr->getValueAsString("ParseKind")); // If this attribute has already been handled, it does not need to be // handled again. if (Seen.find(AN) != Seen.end()) { if (Dupes) Dupes->push_back(std::make_pair(AN, Attr)); continue; } Seen.insert(AN); } else AN = NormalizeAttrName(Attr->getName()).str(); R.push_back(std::make_pair(AN, Attr)); } } return R; } namespace { class Argument { std::string lowerName, upperName; StringRef attrName; bool isOpt; bool Fake; public: Argument(const Record &Arg, StringRef Attr) : lowerName(std::string(Arg.getValueAsString("Name"))), upperName(lowerName), attrName(Attr), isOpt(false), Fake(false) { if (!lowerName.empty()) { lowerName[0] = std::tolower(lowerName[0]); upperName[0] = std::toupper(upperName[0]); } // Work around MinGW's macro definition of 'interface' to 'struct'. We // have an attribute argument called 'Interface', so only the lower case // name conflicts with the macro definition. if (lowerName == "interface") lowerName = "interface_"; } virtual ~Argument() = default; StringRef getLowerName() const { return lowerName; } StringRef getUpperName() const { return upperName; } StringRef getAttrName() const { return attrName; } bool isOptional() const { return isOpt; } void setOptional(bool set) { isOpt = set; } bool isFake() const { return Fake; } void setFake(bool fake) { Fake = fake; } // These functions print the argument contents formatted in different ways. virtual void writeAccessors(raw_ostream &OS) const = 0; virtual void writeAccessorDefinitions(raw_ostream &OS) const {} virtual void writeASTVisitorTraversal(raw_ostream &OS) const {} virtual void writeCloneArgs(raw_ostream &OS) const = 0; virtual void writeTemplateInstantiationArgs(raw_ostream &OS) const = 0; virtual void writeTemplateInstantiation(raw_ostream &OS) const {} virtual void writeCtorBody(raw_ostream &OS) const {} virtual void writeCtorInitializers(raw_ostream &OS) const = 0; virtual void writeCtorDefaultInitializers(raw_ostream &OS) const = 0; virtual void writeCtorParameters(raw_ostream &OS) const = 0; virtual void writeDeclarations(raw_ostream &OS) const = 0; virtual void writePCHReadArgs(raw_ostream &OS) const = 0; virtual void writePCHReadDecls(raw_ostream &OS) const = 0; virtual void writePCHWrite(raw_ostream &OS) const = 0; virtual std::string getIsOmitted() const { return "false"; } virtual void writeValue(raw_ostream &OS) const = 0; virtual void writeDump(raw_ostream &OS) const = 0; virtual void writeDumpChildren(raw_ostream &OS) const {} virtual void writeHasChildren(raw_ostream &OS) const { OS << "false"; } virtual bool isEnumArg() const { return false; } virtual bool isVariadicEnumArg() const { return false; } virtual bool isVariadic() const { return false; } virtual void writeImplicitCtorArgs(raw_ostream &OS) const { OS << getUpperName(); } }; class SimpleArgument : public Argument { std::string type; public: SimpleArgument(const Record &Arg, StringRef Attr, std::string T) : Argument(Arg, Attr), type(std::move(T)) {} std::string getType() const { return type; } void writeAccessors(raw_ostream &OS) const override { OS << " " << type << " get" << getUpperName() << "() const {\n"; OS << " return " << getLowerName() << ";\n"; OS << " }"; } void writeCloneArgs(raw_ostream &OS) const override { OS << getLowerName(); } void writeTemplateInstantiationArgs(raw_ostream &OS) const override { OS << "A->get" << getUpperName() << "()"; } void writeCtorInitializers(raw_ostream &OS) const override { OS << getLowerName() << "(" << getUpperName() << ")"; } void writeCtorDefaultInitializers(raw_ostream &OS) const override { OS << getLowerName() << "()"; } void writeCtorParameters(raw_ostream &OS) const override { OS << type << " " << getUpperName(); } void writeDeclarations(raw_ostream &OS) const override { OS << type << " " << getLowerName() << ";"; } void writePCHReadDecls(raw_ostream &OS) const override { std::string read = ReadPCHRecord(type); OS << " " << type << " " << getLowerName() << " = " << read << ";\n"; } void writePCHReadArgs(raw_ostream &OS) const override { OS << getLowerName(); } void writePCHWrite(raw_ostream &OS) const override { OS << " " << WritePCHRecord(type, "SA->get" + std::string(getUpperName()) + "()"); } std::string getIsOmitted() const override { if (type == "IdentifierInfo *") return "!get" + getUpperName().str() + "()"; if (type == "TypeSourceInfo *") return "!get" + getUpperName().str() + "Loc()"; if (type == "ParamIdx") return "!get" + getUpperName().str() + "().isValid()"; return "false"; } void writeValue(raw_ostream &OS) const override { if (type == "FunctionDecl *") OS << "\" << get" << getUpperName() << "()->getNameInfo().getAsString() << \""; else if (type == "IdentifierInfo *") // Some non-optional (comma required) identifier arguments can be the // empty string but are then recorded as a nullptr. OS << "\" << (get" << getUpperName() << "() ? get" << getUpperName() << "()->getName() : \"\") << \""; else if (type == "VarDecl *") OS << "\" << get" << getUpperName() << "()->getName() << \""; else if (type == "TypeSourceInfo *") OS << "\" << get" << getUpperName() << "().getAsString() << \""; else if (type == "ParamIdx") OS << "\" << get" << getUpperName() << "().getSourceIndex() << \""; else OS << "\" << get" << getUpperName() << "() << \""; } void writeDump(raw_ostream &OS) const override { if (StringRef(type).endswith("Decl *")) { OS << " OS << \" \";\n"; OS << " dumpBareDeclRef(SA->get" << getUpperName() << "());\n"; } else if (type == "IdentifierInfo *") { // Some non-optional (comma required) identifier arguments can be the // empty string but are then recorded as a nullptr. OS << " if (SA->get" << getUpperName() << "())\n" << " OS << \" \" << SA->get" << getUpperName() << "()->getName();\n"; } else if (type == "TypeSourceInfo *") { if (isOptional()) OS << " if (SA->get" << getUpperName() << "Loc())"; OS << " OS << \" \" << SA->get" << getUpperName() << "().getAsString();\n"; } else if (type == "bool") { OS << " if (SA->get" << getUpperName() << "()) OS << \" " << getUpperName() << "\";\n"; } else if (type == "int" || type == "unsigned") { OS << " OS << \" \" << SA->get" << getUpperName() << "();\n"; } else if (type == "ParamIdx") { if (isOptional()) OS << " if (SA->get" << getUpperName() << "().isValid())\n "; OS << " OS << \" \" << SA->get" << getUpperName() << "().getSourceIndex();\n"; } else if (type == "OMPTraitInfo *") { OS << " OS << \" \" << SA->get" << getUpperName() << "();\n"; } else { llvm_unreachable("Unknown SimpleArgument type!"); } } }; class DefaultSimpleArgument : public SimpleArgument { int64_t Default; public: DefaultSimpleArgument(const Record &Arg, StringRef Attr, std::string T, int64_t Default) : SimpleArgument(Arg, Attr, T), Default(Default) {} void writeAccessors(raw_ostream &OS) const override { SimpleArgument::writeAccessors(OS); OS << "\n\n static const " << getType() << " Default" << getUpperName() << " = "; if (getType() == "bool") OS << (Default != 0 ? "true" : "false"); else OS << Default; OS << ";"; } }; class StringArgument : public Argument { public: StringArgument(const Record &Arg, StringRef Attr) : Argument(Arg, Attr) {} void writeAccessors(raw_ostream &OS) const override { OS << " llvm::StringRef get" << getUpperName() << "() const {\n"; OS << " return llvm::StringRef(" << getLowerName() << ", " << getLowerName() << "Length);\n"; OS << " }\n"; OS << " unsigned get" << getUpperName() << "Length() const {\n"; OS << " return " << getLowerName() << "Length;\n"; OS << " }\n"; OS << " void set" << getUpperName() << "(ASTContext &C, llvm::StringRef S) {\n"; OS << " " << getLowerName() << "Length = S.size();\n"; OS << " this->" << getLowerName() << " = new (C, 1) char [" << getLowerName() << "Length];\n"; OS << " if (!S.empty())\n"; OS << " std::memcpy(this->" << getLowerName() << ", S.data(), " << getLowerName() << "Length);\n"; OS << " }"; } void writeCloneArgs(raw_ostream &OS) const override { OS << "get" << getUpperName() << "()"; } void writeTemplateInstantiationArgs(raw_ostream &OS) const override { OS << "A->get" << getUpperName() << "()"; } void writeCtorBody(raw_ostream &OS) const override { OS << " if (!" << getUpperName() << ".empty())\n"; OS << " std::memcpy(" << getLowerName() << ", " << getUpperName() << ".data(), " << getLowerName() << "Length);\n"; } void writeCtorInitializers(raw_ostream &OS) const override { OS << getLowerName() << "Length(" << getUpperName() << ".size())," << getLowerName() << "(new (Ctx, 1) char[" << getLowerName() << "Length])"; } void writeCtorDefaultInitializers(raw_ostream &OS) const override { OS << getLowerName() << "Length(0)," << getLowerName() << "(nullptr)"; } void writeCtorParameters(raw_ostream &OS) const override { OS << "llvm::StringRef " << getUpperName(); } void writeDeclarations(raw_ostream &OS) const override { OS << "unsigned " << getLowerName() << "Length;\n"; OS << "char *" << getLowerName() << ";"; } void writePCHReadDecls(raw_ostream &OS) const override { OS << " std::string " << getLowerName() << "= Record.readString();\n"; } void writePCHReadArgs(raw_ostream &OS) const override { OS << getLowerName(); } void writePCHWrite(raw_ostream &OS) const override { OS << " Record.AddString(SA->get" << getUpperName() << "());\n"; } void writeValue(raw_ostream &OS) const override { OS << "\\\"\" << get" << getUpperName() << "() << \"\\\""; } void writeDump(raw_ostream &OS) const override { OS << " OS << \" \\\"\" << SA->get" << getUpperName() << "() << \"\\\"\";\n"; } }; class AlignedArgument : public Argument { public: AlignedArgument(const Record &Arg, StringRef Attr) : Argument(Arg, Attr) {} void writeAccessors(raw_ostream &OS) const override { OS << " bool is" << getUpperName() << "Dependent() const;\n"; OS << " bool is" << getUpperName() << "ErrorDependent() const;\n"; OS << " unsigned get" << getUpperName() << "(ASTContext &Ctx) const;\n"; OS << " bool is" << getUpperName() << "Expr() const {\n"; OS << " return is" << getLowerName() << "Expr;\n"; OS << " }\n"; OS << " Expr *get" << getUpperName() << "Expr() const {\n"; OS << " assert(is" << getLowerName() << "Expr);\n"; OS << " return " << getLowerName() << "Expr;\n"; OS << " }\n"; OS << " TypeSourceInfo *get" << getUpperName() << "Type() const {\n"; OS << " assert(!is" << getLowerName() << "Expr);\n"; OS << " return " << getLowerName() << "Type;\n"; OS << " }"; } void writeAccessorDefinitions(raw_ostream &OS) const override { OS << "bool " << getAttrName() << "Attr::is" << getUpperName() << "Dependent() const {\n"; OS << " if (is" << getLowerName() << "Expr)\n"; OS << " return " << getLowerName() << "Expr && (" << getLowerName() << "Expr->isValueDependent() || " << getLowerName() << "Expr->isTypeDependent());\n"; OS << " else\n"; OS << " return " << getLowerName() << "Type->getType()->isDependentType();\n"; OS << "}\n"; OS << "bool " << getAttrName() << "Attr::is" << getUpperName() << "ErrorDependent() const {\n"; OS << " if (is" << getLowerName() << "Expr)\n"; OS << " return " << getLowerName() << "Expr && " << getLowerName() << "Expr->containsErrors();\n"; OS << " return " << getLowerName() << "Type->getType()->containsErrors();\n"; OS << "}\n"; // FIXME: Do not do the calculation here // FIXME: Handle types correctly // A null pointer means maximum alignment OS << "unsigned " << getAttrName() << "Attr::get" << getUpperName() << "(ASTContext &Ctx) const {\n"; OS << " assert(!is" << getUpperName() << "Dependent());\n"; OS << " if (is" << getLowerName() << "Expr)\n"; OS << " return " << getLowerName() << "Expr ? " << getLowerName() << "Expr->EvaluateKnownConstInt(Ctx).getZExtValue()" << " * Ctx.getCharWidth() : " << "Ctx.getTargetDefaultAlignForAttributeAligned();\n"; OS << " else\n"; OS << " return 0; // FIXME\n"; OS << "}\n"; } void writeASTVisitorTraversal(raw_ostream &OS) const override { StringRef Name = getUpperName(); OS << " if (A->is" << Name << "Expr()) {\n" << " if (!getDerived().TraverseStmt(A->get" << Name << "Expr()))\n" << " return false;\n" << " } else if (auto *TSI = A->get" << Name << "Type()) {\n" << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n" << " return false;\n" << " }\n"; } void writeCloneArgs(raw_ostream &OS) const override { OS << "is" << getLowerName() << "Expr, is" << getLowerName() << "Expr ? static_cast(" << getLowerName() << "Expr) : " << getLowerName() << "Type"; } void writeTemplateInstantiationArgs(raw_ostream &OS) const override { // FIXME: move the definition in Sema::InstantiateAttrs to here. // In the meantime, aligned attributes are cloned. } void writeCtorBody(raw_ostream &OS) const override { OS << " if (is" << getLowerName() << "Expr)\n"; OS << " " << getLowerName() << "Expr = reinterpret_cast(" << getUpperName() << ");\n"; OS << " else\n"; OS << " " << getLowerName() << "Type = reinterpret_cast(" << getUpperName() << ");\n"; } void writeCtorInitializers(raw_ostream &OS) const override { OS << "is" << getLowerName() << "Expr(Is" << getUpperName() << "Expr)"; } void writeCtorDefaultInitializers(raw_ostream &OS) const override { OS << "is" << getLowerName() << "Expr(false)"; } void writeCtorParameters(raw_ostream &OS) const override { OS << "bool Is" << getUpperName() << "Expr, void *" << getUpperName(); } void writeImplicitCtorArgs(raw_ostream &OS) const override { OS << "Is" << getUpperName() << "Expr, " << getUpperName(); } void writeDeclarations(raw_ostream &OS) const override { OS << "bool is" << getLowerName() << "Expr;\n"; OS << "union {\n"; OS << "Expr *" << getLowerName() << "Expr;\n"; OS << "TypeSourceInfo *" << getLowerName() << "Type;\n"; OS << "};"; } void writePCHReadArgs(raw_ostream &OS) const override { OS << "is" << getLowerName() << "Expr, " << getLowerName() << "Ptr"; } void writePCHReadDecls(raw_ostream &OS) const override { OS << " bool is" << getLowerName() << "Expr = Record.readInt();\n"; OS << " void *" << getLowerName() << "Ptr;\n"; OS << " if (is" << getLowerName() << "Expr)\n"; OS << " " << getLowerName() << "Ptr = Record.readExpr();\n"; OS << " else\n"; OS << " " << getLowerName() << "Ptr = Record.readTypeSourceInfo();\n"; } void writePCHWrite(raw_ostream &OS) const override { OS << " Record.push_back(SA->is" << getUpperName() << "Expr());\n"; OS << " if (SA->is" << getUpperName() << "Expr())\n"; OS << " Record.AddStmt(SA->get" << getUpperName() << "Expr());\n"; OS << " else\n"; OS << " Record.AddTypeSourceInfo(SA->get" << getUpperName() << "Type());\n"; } std::string getIsOmitted() const override { return "!is" + getLowerName().str() + "Expr || !" + getLowerName().str() + "Expr"; } void writeValue(raw_ostream &OS) const override { OS << "\";\n"; OS << " " << getLowerName() << "Expr->printPretty(OS, nullptr, Policy);\n"; OS << " OS << \""; } void writeDump(raw_ostream &OS) const override { OS << " if (!SA->is" << getUpperName() << "Expr())\n"; OS << " dumpType(SA->get" << getUpperName() << "Type()->getType());\n"; } void writeDumpChildren(raw_ostream &OS) const override { OS << " if (SA->is" << getUpperName() << "Expr())\n"; OS << " Visit(SA->get" << getUpperName() << "Expr());\n"; } void writeHasChildren(raw_ostream &OS) const override { OS << "SA->is" << getUpperName() << "Expr()"; } }; class VariadicArgument : public Argument { std::string Type, ArgName, ArgSizeName, RangeName; protected: // Assumed to receive a parameter: raw_ostream OS. virtual void writeValueImpl(raw_ostream &OS) const { OS << " OS << Val;\n"; } // Assumed to receive a parameter: raw_ostream OS. virtual void writeDumpImpl(raw_ostream &OS) const { OS << " OS << \" \" << Val;\n"; } public: VariadicArgument(const Record &Arg, StringRef Attr, std::string T) : Argument(Arg, Attr), Type(std::move(T)), ArgName(getLowerName().str() + "_"), ArgSizeName(ArgName + "Size"), RangeName(std::string(getLowerName())) {} const std::string &getType() const { return Type; } const std::string &getArgName() const { return ArgName; } const std::string &getArgSizeName() const { return ArgSizeName; } bool isVariadic() const override { return true; } void writeAccessors(raw_ostream &OS) const override { std::string IteratorType = getLowerName().str() + "_iterator"; std::string BeginFn = getLowerName().str() + "_begin()"; std::string EndFn = getLowerName().str() + "_end()"; OS << " typedef " << Type << "* " << IteratorType << ";\n"; OS << " " << IteratorType << " " << BeginFn << " const {" << " return " << ArgName << "; }\n"; OS << " " << IteratorType << " " << EndFn << " const {" << " return " << ArgName << " + " << ArgSizeName << "; }\n"; OS << " unsigned " << getLowerName() << "_size() const {" << " return " << ArgSizeName << "; }\n"; OS << " llvm::iterator_range<" << IteratorType << "> " << RangeName << "() const { return llvm::make_range(" << BeginFn << ", " << EndFn << "); }\n"; } void writeCloneArgs(raw_ostream &OS) const override { OS << ArgName << ", " << ArgSizeName; } void writeTemplateInstantiationArgs(raw_ostream &OS) const override { // This isn't elegant, but we have to go through public methods... OS << "A->" << getLowerName() << "_begin(), " << "A->" << getLowerName() << "_size()"; } void writeASTVisitorTraversal(raw_ostream &OS) const override { // FIXME: Traverse the elements. } void writeCtorBody(raw_ostream &OS) const override { OS << " std::copy(" << getUpperName() << ", " << getUpperName() << " + " << ArgSizeName << ", " << ArgName << ");\n"; } void writeCtorInitializers(raw_ostream &OS) const override { OS << ArgSizeName << "(" << getUpperName() << "Size), " << ArgName << "(new (Ctx, 16) " << getType() << "[" << ArgSizeName << "])"; } void writeCtorDefaultInitializers(raw_ostream &OS) const override { OS << ArgSizeName << "(0), " << ArgName << "(nullptr)"; } void writeCtorParameters(raw_ostream &OS) const override { OS << getType() << " *" << getUpperName() << ", unsigned " << getUpperName() << "Size"; } void writeImplicitCtorArgs(raw_ostream &OS) const override { OS << getUpperName() << ", " << getUpperName() << "Size"; } void writeDeclarations(raw_ostream &OS) const override { OS << " unsigned " << ArgSizeName << ";\n"; OS << " " << getType() << " *" << ArgName << ";"; } void writePCHReadDecls(raw_ostream &OS) const override { OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n"; OS << " SmallVector<" << getType() << ", 4> " << getLowerName() << ";\n"; OS << " " << getLowerName() << ".reserve(" << getLowerName() << "Size);\n"; // If we can't store the values in the current type (if it's something // like StringRef), store them in a different type and convert the // container afterwards. std::string StorageType = std::string(getStorageType(getType())); std::string StorageName = std::string(getLowerName()); if (StorageType != getType()) { StorageName += "Storage"; OS << " SmallVector<" << StorageType << ", 4> " << StorageName << ";\n"; OS << " " << StorageName << ".reserve(" << getLowerName() << "Size);\n"; } OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n"; std::string read = ReadPCHRecord(Type); OS << " " << StorageName << ".push_back(" << read << ");\n"; if (StorageType != getType()) { OS << " for (unsigned i = 0; i != " << getLowerName() << "Size; ++i)\n"; OS << " " << getLowerName() << ".push_back(" << StorageName << "[i]);\n"; } } void writePCHReadArgs(raw_ostream &OS) const override { OS << getLowerName() << ".data(), " << getLowerName() << "Size"; } void writePCHWrite(raw_ostream &OS) const override { OS << " Record.push_back(SA->" << getLowerName() << "_size());\n"; OS << " for (auto &Val : SA->" << RangeName << "())\n"; OS << " " << WritePCHRecord(Type, "Val"); } void writeValue(raw_ostream &OS) const override { OS << "\";\n"; OS << " for (const auto &Val : " << RangeName << "()) {\n" << " DelimitAttributeArgument(OS, IsFirstArgument);\n"; writeValueImpl(OS); OS << " }\n"; OS << " OS << \""; } void writeDump(raw_ostream &OS) const override { OS << " for (const auto &Val : SA->" << RangeName << "())\n"; writeDumpImpl(OS); } }; class VariadicParamIdxArgument : public VariadicArgument { public: VariadicParamIdxArgument(const Record &Arg, StringRef Attr) : VariadicArgument(Arg, Attr, "ParamIdx") {} public: void writeValueImpl(raw_ostream &OS) const override { OS << " OS << Val.getSourceIndex();\n"; } void writeDumpImpl(raw_ostream &OS) const override { OS << " OS << \" \" << Val.getSourceIndex();\n"; } }; struct VariadicParamOrParamIdxArgument : public VariadicArgument { VariadicParamOrParamIdxArgument(const Record &Arg, StringRef Attr) : VariadicArgument(Arg, Attr, "int") {} }; // Unique the enums, but maintain the original declaration ordering. std::vector uniqueEnumsInOrder(const std::vector &enums) { std::vector uniques; SmallDenseSet unique_set; for (const auto &i : enums) { if (unique_set.insert(i).second) uniques.push_back(i); } return uniques; } class EnumArgument : public Argument { std::string type; std::vector values, enums, uniques; public: EnumArgument(const Record &Arg, StringRef Attr) : Argument(Arg, Attr), type(std::string(Arg.getValueAsString("Type"))), values(Arg.getValueAsListOfStrings("Values")), enums(Arg.getValueAsListOfStrings("Enums")), uniques(uniqueEnumsInOrder(enums)) { // FIXME: Emit a proper error assert(!uniques.empty()); } bool isEnumArg() const override { return true; } void writeAccessors(raw_ostream &OS) const override { OS << " " << type << " get" << getUpperName() << "() const {\n"; OS << " return " << getLowerName() << ";\n"; OS << " }"; } void writeCloneArgs(raw_ostream &OS) const override { OS << getLowerName(); } void writeTemplateInstantiationArgs(raw_ostream &OS) const override { OS << "A->get" << getUpperName() << "()"; } void writeCtorInitializers(raw_ostream &OS) const override { OS << getLowerName() << "(" << getUpperName() << ")"; } void writeCtorDefaultInitializers(raw_ostream &OS) const override { OS << getLowerName() << "(" << type << "(0))"; } void writeCtorParameters(raw_ostream &OS) const override { OS << type << " " << getUpperName(); } void writeDeclarations(raw_ostream &OS) const override { auto i = uniques.cbegin(), e = uniques.cend(); // The last one needs to not have a comma. --e; OS << "public:\n"; OS << " enum " << type << " {\n"; for (; i != e; ++i) OS << " " << *i << ",\n"; OS << " " << *e << "\n"; OS << " };\n"; OS << "private:\n"; OS << " " << type << " " << getLowerName() << ";"; } void writePCHReadDecls(raw_ostream &OS) const override { OS << " " << getAttrName() << "Attr::" << type << " " << getLowerName() << "(static_cast<" << getAttrName() << "Attr::" << type << ">(Record.readInt()));\n"; } void writePCHReadArgs(raw_ostream &OS) const override { OS << getLowerName(); } void writePCHWrite(raw_ostream &OS) const override { OS << "Record.push_back(SA->get" << getUpperName() << "());\n"; } void writeValue(raw_ostream &OS) const override { // FIXME: this isn't 100% correct -- some enum arguments require printing // as a string literal, while others require printing as an identifier. // Tablegen currently does not distinguish between the two forms. OS << "\\\"\" << " << getAttrName() << "Attr::Convert" << type << "ToStr(get" << getUpperName() << "()) << \"\\\""; } void writeDump(raw_ostream &OS) const override { OS << " switch(SA->get" << getUpperName() << "()) {\n"; for (const auto &I : uniques) { OS << " case " << getAttrName() << "Attr::" << I << ":\n"; OS << " OS << \" " << I << "\";\n"; OS << " break;\n"; } OS << " }\n"; } void writeConversion(raw_ostream &OS, bool Header) const { if (Header) { OS << " static bool ConvertStrTo" << type << "(StringRef Val, " << type << " &Out);\n"; OS << " static const char *Convert" << type << "ToStr(" << type << " Val);\n"; return; } OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << type << "(StringRef Val, " << type << " &Out) {\n"; OS << " Optional<" << type << "> R = llvm::StringSwitch>(Val)\n"; for (size_t I = 0; I < enums.size(); ++I) { OS << " .Case(\"" << values[I] << "\", "; OS << getAttrName() << "Attr::" << enums[I] << ")\n"; } OS << " .Default(Optional<" << type << ">());\n"; OS << " if (R) {\n"; OS << " Out = *R;\n return true;\n }\n"; OS << " return false;\n"; OS << "}\n\n"; // Mapping from enumeration values back to enumeration strings isn't // trivial because some enumeration values have multiple named // enumerators, such as type_visibility(internal) and // type_visibility(hidden) both mapping to TypeVisibilityAttr::Hidden. OS << "const char *" << getAttrName() << "Attr::Convert" << type << "ToStr(" << type << " Val) {\n" << " switch(Val) {\n"; SmallDenseSet Uniques; for (size_t I = 0; I < enums.size(); ++I) { if (Uniques.insert(enums[I]).second) OS << " case " << getAttrName() << "Attr::" << enums[I] << ": return \"" << values[I] << "\";\n"; } OS << " }\n" << " llvm_unreachable(\"No enumerator with that value\");\n" << "}\n"; } }; class VariadicEnumArgument: public VariadicArgument { std::string type, QualifiedTypeName; std::vector values, enums, uniques; protected: void writeValueImpl(raw_ostream &OS) const override { // FIXME: this isn't 100% correct -- some enum arguments require printing // as a string literal, while others require printing as an identifier. // Tablegen currently does not distinguish between the two forms. OS << " OS << \"\\\"\" << " << getAttrName() << "Attr::Convert" << type << "ToStr(Val)" << "<< \"\\\"\";\n"; } public: VariadicEnumArgument(const Record &Arg, StringRef Attr) : VariadicArgument(Arg, Attr, std::string(Arg.getValueAsString("Type"))), type(std::string(Arg.getValueAsString("Type"))), values(Arg.getValueAsListOfStrings("Values")), enums(Arg.getValueAsListOfStrings("Enums")), uniques(uniqueEnumsInOrder(enums)) { QualifiedTypeName = getAttrName().str() + "Attr::" + type; // FIXME: Emit a proper error assert(!uniques.empty()); } bool isVariadicEnumArg() const override { return true; } void writeDeclarations(raw_ostream &OS) const override { auto i = uniques.cbegin(), e = uniques.cend(); // The last one needs to not have a comma. --e; OS << "public:\n"; OS << " enum " << type << " {\n"; for (; i != e; ++i) OS << " " << *i << ",\n"; OS << " " << *e << "\n"; OS << " };\n"; OS << "private:\n"; VariadicArgument::writeDeclarations(OS); } void writeDump(raw_ostream &OS) const override { OS << " for (" << getAttrName() << "Attr::" << getLowerName() << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->" << getLowerName() << "_end(); I != E; ++I) {\n"; OS << " switch(*I) {\n"; for (const auto &UI : uniques) { OS << " case " << getAttrName() << "Attr::" << UI << ":\n"; OS << " OS << \" " << UI << "\";\n"; OS << " break;\n"; } OS << " }\n"; OS << " }\n"; } void writePCHReadDecls(raw_ostream &OS) const override { OS << " unsigned " << getLowerName() << "Size = Record.readInt();\n"; OS << " SmallVector<" << QualifiedTypeName << ", 4> " << getLowerName() << ";\n"; OS << " " << getLowerName() << ".reserve(" << getLowerName() << "Size);\n"; OS << " for (unsigned i = " << getLowerName() << "Size; i; --i)\n"; OS << " " << getLowerName() << ".push_back(" << "static_cast<" << QualifiedTypeName << ">(Record.readInt()));\n"; } void writePCHWrite(raw_ostream &OS) const override { OS << " Record.push_back(SA->" << getLowerName() << "_size());\n"; OS << " for (" << getAttrName() << "Attr::" << getLowerName() << "_iterator i = SA->" << getLowerName() << "_begin(), e = SA->" << getLowerName() << "_end(); i != e; ++i)\n"; OS << " " << WritePCHRecord(QualifiedTypeName, "(*i)"); } void writeConversion(raw_ostream &OS, bool Header) const { if (Header) { OS << " static bool ConvertStrTo" << type << "(StringRef Val, " << type << " &Out);\n"; OS << " static const char *Convert" << type << "ToStr(" << type << " Val);\n"; return; } OS << "bool " << getAttrName() << "Attr::ConvertStrTo" << type << "(StringRef Val, "; OS << type << " &Out) {\n"; OS << " Optional<" << type << "> R = llvm::StringSwitch>(Val)\n"; for (size_t I = 0; I < enums.size(); ++I) { OS << " .Case(\"" << values[I] << "\", "; OS << getAttrName() << "Attr::" << enums[I] << ")\n"; } OS << " .Default(Optional<" << type << ">());\n"; OS << " if (R) {\n"; OS << " Out = *R;\n return true;\n }\n"; OS << " return false;\n"; OS << "}\n\n"; OS << "const char *" << getAttrName() << "Attr::Convert" << type << "ToStr(" << type << " Val) {\n" << " switch(Val) {\n"; SmallDenseSet Uniques; for (size_t I = 0; I < enums.size(); ++I) { if (Uniques.insert(enums[I]).second) OS << " case " << getAttrName() << "Attr::" << enums[I] << ": return \"" << values[I] << "\";\n"; } OS << " }\n" << " llvm_unreachable(\"No enumerator with that value\");\n" << "}\n"; } }; class VersionArgument : public Argument { public: VersionArgument(const Record &Arg, StringRef Attr) : Argument(Arg, Attr) {} void writeAccessors(raw_ostream &OS) const override { OS << " VersionTuple get" << getUpperName() << "() const {\n"; OS << " return " << getLowerName() << ";\n"; OS << " }\n"; OS << " void set" << getUpperName() << "(ASTContext &C, VersionTuple V) {\n"; OS << " " << getLowerName() << " = V;\n"; OS << " }"; } void writeCloneArgs(raw_ostream &OS) const override { OS << "get" << getUpperName() << "()"; } void writeTemplateInstantiationArgs(raw_ostream &OS) const override { OS << "A->get" << getUpperName() << "()"; } void writeCtorInitializers(raw_ostream &OS) const override { OS << getLowerName() << "(" << getUpperName() << ")"; } void writeCtorDefaultInitializers(raw_ostream &OS) const override { OS << getLowerName() << "()"; } void writeCtorParameters(raw_ostream &OS) const override { OS << "VersionTuple " << getUpperName(); } void writeDeclarations(raw_ostream &OS) const override { OS << "VersionTuple " << getLowerName() << ";\n"; } void writePCHReadDecls(raw_ostream &OS) const override { OS << " VersionTuple " << getLowerName() << "= Record.readVersionTuple();\n"; } void writePCHReadArgs(raw_ostream &OS) const override { OS << getLowerName(); } void writePCHWrite(raw_ostream &OS) const override { OS << " Record.AddVersionTuple(SA->get" << getUpperName() << "());\n"; } void writeValue(raw_ostream &OS) const override { OS << getLowerName() << "=\" << get" << getUpperName() << "() << \""; } void writeDump(raw_ostream &OS) const override { OS << " OS << \" \" << SA->get" << getUpperName() << "();\n"; } }; class ExprArgument : public SimpleArgument { public: ExprArgument(const Record &Arg, StringRef Attr) : SimpleArgument(Arg, Attr, "Expr *") {} void writeASTVisitorTraversal(raw_ostream &OS) const override { OS << " if (!" << "getDerived().TraverseStmt(A->get" << getUpperName() << "()))\n"; OS << " return false;\n"; } void writeTemplateInstantiationArgs(raw_ostream &OS) const override { OS << "tempInst" << getUpperName(); } void writeTemplateInstantiation(raw_ostream &OS) const override { OS << " " << getType() << " tempInst" << getUpperName() << ";\n"; OS << " {\n"; OS << " EnterExpressionEvaluationContext " << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n"; OS << " ExprResult " << "Result = S.SubstExpr(" << "A->get" << getUpperName() << "(), TemplateArgs);\n"; OS << " if (Result.isInvalid())\n"; OS << " return nullptr;\n"; OS << " tempInst" << getUpperName() << " = Result.get();\n"; OS << " }\n"; } void writeDump(raw_ostream &OS) const override {} void writeDumpChildren(raw_ostream &OS) const override { OS << " Visit(SA->get" << getUpperName() << "());\n"; } void writeHasChildren(raw_ostream &OS) const override { OS << "true"; } }; class VariadicExprArgument : public VariadicArgument { public: VariadicExprArgument(const Record &Arg, StringRef Attr) : VariadicArgument(Arg, Attr, "Expr *") {} void writeASTVisitorTraversal(raw_ostream &OS) const override { OS << " {\n"; OS << " " << getType() << " *I = A->" << getLowerName() << "_begin();\n"; OS << " " << getType() << " *E = A->" << getLowerName() << "_end();\n"; OS << " for (; I != E; ++I) {\n"; OS << " if (!getDerived().TraverseStmt(*I))\n"; OS << " return false;\n"; OS << " }\n"; OS << " }\n"; } void writeTemplateInstantiationArgs(raw_ostream &OS) const override { OS << "tempInst" << getUpperName() << ", " << "A->" << getLowerName() << "_size()"; } void writeTemplateInstantiation(raw_ostream &OS) const override { OS << " auto *tempInst" << getUpperName() << " = new (C, 16) " << getType() << "[A->" << getLowerName() << "_size()];\n"; OS << " {\n"; OS << " EnterExpressionEvaluationContext " << "Unevaluated(S, Sema::ExpressionEvaluationContext::Unevaluated);\n"; OS << " " << getType() << " *TI = tempInst" << getUpperName() << ";\n"; OS << " " << getType() << " *I = A->" << getLowerName() << "_begin();\n"; OS << " " << getType() << " *E = A->" << getLowerName() << "_end();\n"; OS << " for (; I != E; ++I, ++TI) {\n"; OS << " ExprResult Result = S.SubstExpr(*I, TemplateArgs);\n"; OS << " if (Result.isInvalid())\n"; OS << " return nullptr;\n"; OS << " *TI = Result.get();\n"; OS << " }\n"; OS << " }\n"; } void writeDump(raw_ostream &OS) const override {} void writeDumpChildren(raw_ostream &OS) const override { OS << " for (" << getAttrName() << "Attr::" << getLowerName() << "_iterator I = SA->" << getLowerName() << "_begin(), E = SA->" << getLowerName() << "_end(); I != E; ++I)\n"; OS << " Visit(*I);\n"; } void writeHasChildren(raw_ostream &OS) const override { OS << "SA->" << getLowerName() << "_begin() != " << "SA->" << getLowerName() << "_end()"; } }; class VariadicIdentifierArgument : public VariadicArgument { public: VariadicIdentifierArgument(const Record &Arg, StringRef Attr) : VariadicArgument(Arg, Attr, "IdentifierInfo *") {} }; class VariadicStringArgument : public VariadicArgument { public: VariadicStringArgument(const Record &Arg, StringRef Attr) : VariadicArgument(Arg, Attr, "StringRef") {} void writeCtorBody(raw_ostream &OS) const override { OS << " for (size_t I = 0, E = " << getArgSizeName() << "; I != E;\n" " ++I) {\n" " StringRef Ref = " << getUpperName() << "[I];\n" " if (!Ref.empty()) {\n" " char *Mem = new (Ctx, 1) char[Ref.size()];\n" " std::memcpy(Mem, Ref.data(), Ref.size());\n" " " << getArgName() << "[I] = StringRef(Mem, Ref.size());\n" " }\n" " }\n"; } void writeValueImpl(raw_ostream &OS) const override { OS << " OS << \"\\\"\" << Val << \"\\\"\";\n"; } }; class TypeArgument : public SimpleArgument { public: TypeArgument(const Record &Arg, StringRef Attr) : SimpleArgument(Arg, Attr, "TypeSourceInfo *") {} void writeAccessors(raw_ostream &OS) const override { OS << " QualType get" << getUpperName() << "() const {\n"; OS << " return " << getLowerName() << "->getType();\n"; OS << " }"; OS << " " << getType() << " get" << getUpperName() << "Loc() const {\n"; OS << " return " << getLowerName() << ";\n"; OS << " }"; } void writeASTVisitorTraversal(raw_ostream &OS) const override { OS << " if (auto *TSI = A->get" << getUpperName() << "Loc())\n"; OS << " if (!getDerived().TraverseTypeLoc(TSI->getTypeLoc()))\n"; OS << " return false;\n"; } void writeTemplateInstantiation(raw_ostream &OS) const override { OS << " " << getType() << " tempInst" << getUpperName() << " =\n"; OS << " S.SubstType(A->get" << getUpperName() << "Loc(), " << "TemplateArgs, A->getLoc(), A->getAttrName());\n"; OS << " if (!tempInst" << getUpperName() << ")\n"; OS << " return nullptr;\n"; } void writeTemplateInstantiationArgs(raw_ostream &OS) const override { OS << "tempInst" << getUpperName(); } void writePCHWrite(raw_ostream &OS) const override { OS << " " << WritePCHRecord(getType(), "SA->get" + std::string(getUpperName()) + "Loc()"); } }; } // end anonymous namespace static std::unique_ptr createArgument(const Record &Arg, StringRef Attr, const Record *Search = nullptr) { if (!Search) Search = &Arg; std::unique_ptr Ptr; llvm::StringRef ArgName = Search->getName(); if (ArgName == "AlignedArgument") Ptr = std::make_unique(Arg, Attr); else if (ArgName == "EnumArgument") Ptr = std::make_unique(Arg, Attr); else if (ArgName == "ExprArgument") Ptr = std::make_unique(Arg, Attr); else if (ArgName == "DeclArgument") Ptr = std::make_unique( Arg, Attr, (Arg.getValueAsDef("Kind")->getName() + "Decl *").str()); else if (ArgName == "IdentifierArgument") Ptr = std::make_unique(Arg, Attr, "IdentifierInfo *"); else if (ArgName == "DefaultBoolArgument") Ptr = std::make_unique( Arg, Attr, "bool", Arg.getValueAsBit("Default")); else if (ArgName == "BoolArgument") Ptr = std::make_unique(Arg, Attr, "bool"); else if (ArgName == "DefaultIntArgument") Ptr = std::make_unique( Arg, Attr, "int", Arg.getValueAsInt("Default")); else if (ArgName == "IntArgument") Ptr = std::make_unique(Arg, Attr, "int"); else if (ArgName == "StringArgument") Ptr = std::make_unique(Arg, Attr); else if (ArgName == "TypeArgument") Ptr = std::make_unique(Arg, Attr); else if (ArgName == "UnsignedArgument") Ptr = std::make_unique(Arg, Attr, "unsigned"); else if (ArgName == "VariadicUnsignedArgument") Ptr = std::make_unique(Arg, Attr, "unsigned"); else if (ArgName == "VariadicStringArgument") Ptr = std::make_unique(Arg, Attr); else if (ArgName == "VariadicEnumArgument") Ptr = std::make_unique(Arg, Attr); else if (ArgName == "VariadicExprArgument") Ptr = std::make_unique(Arg, Attr); else if (ArgName == "VariadicParamIdxArgument") Ptr = std::make_unique(Arg, Attr); else if (ArgName == "VariadicParamOrParamIdxArgument") Ptr = std::make_unique(Arg, Attr); else if (ArgName == "ParamIdxArgument") Ptr = std::make_unique(Arg, Attr, "ParamIdx"); else if (ArgName == "VariadicIdentifierArgument") Ptr = std::make_unique(Arg, Attr); else if (ArgName == "VersionArgument") Ptr = std::make_unique(Arg, Attr); else if (ArgName == "OMPTraitInfoArgument") Ptr = std::make_unique(Arg, Attr, "OMPTraitInfo *"); if (!Ptr) { // Search in reverse order so that the most-derived type is handled first. ArrayRef> Bases = Search->getSuperClasses(); for (const auto &Base : llvm::reverse(Bases)) { if ((Ptr = createArgument(Arg, Attr, Base.first))) break; } } if (Ptr && Arg.getValueAsBit("Optional")) Ptr->setOptional(true); if (Ptr && Arg.getValueAsBit("Fake")) Ptr->setFake(true); return Ptr; } static void writeAvailabilityValue(raw_ostream &OS) { OS << "\" << getPlatform()->getName();\n" << " if (getStrict()) OS << \", strict\";\n" << " if (!getIntroduced().empty()) OS << \", introduced=\" << getIntroduced();\n" << " if (!getDeprecated().empty()) OS << \", deprecated=\" << getDeprecated();\n" << " if (!getObsoleted().empty()) OS << \", obsoleted=\" << getObsoleted();\n" << " if (getUnavailable()) OS << \", unavailable\";\n" << " OS << \""; } static void writeDeprecatedAttrValue(raw_ostream &OS, std::string &Variety) { OS << "\\\"\" << getMessage() << \"\\\"\";\n"; // Only GNU deprecated has an optional fixit argument at the second position. if (Variety == "GNU") OS << " if (!getReplacement().empty()) OS << \", \\\"\"" " << getReplacement() << \"\\\"\";\n"; OS << " OS << \""; } static void writeGetSpellingFunction(const Record &R, raw_ostream &OS) { std::vector Spellings = GetFlattenedSpellings(R); OS << "const char *" << R.getName() << "Attr::getSpelling() const {\n"; if (Spellings.empty()) { OS << " return \"(No spelling)\";\n}\n\n"; return; } OS << " switch (getAttributeSpellingListIndex()) {\n" " default:\n" " llvm_unreachable(\"Unknown attribute spelling!\");\n" " return \"(No spelling)\";\n"; for (unsigned I = 0; I < Spellings.size(); ++I) OS << " case " << I << ":\n" " return \"" << Spellings[I].name() << "\";\n"; // End of the switch statement. OS << " }\n"; // End of the getSpelling function. OS << "}\n\n"; } static void writePrettyPrintFunction(const Record &R, const std::vector> &Args, raw_ostream &OS) { std::vector Spellings = GetFlattenedSpellings(R); OS << "void " << R.getName() << "Attr::printPretty(" << "raw_ostream &OS, const PrintingPolicy &Policy) const {\n"; if (Spellings.empty()) { OS << "}\n\n"; return; } OS << " bool IsFirstArgument = true; (void)IsFirstArgument;\n" << " unsigned TrailingOmittedArgs = 0; (void)TrailingOmittedArgs;\n" << " switch (getAttributeSpellingListIndex()) {\n" << " default:\n" << " llvm_unreachable(\"Unknown attribute spelling!\");\n" << " break;\n"; for (unsigned I = 0; I < Spellings.size(); ++ I) { llvm::SmallString<16> Prefix; llvm::SmallString<8> Suffix; // The actual spelling of the name and namespace (if applicable) // of an attribute without considering prefix and suffix. llvm::SmallString<64> Spelling; std::string Name = Spellings[I].name(); std::string Variety = Spellings[I].variety(); if (Variety == "GNU") { Prefix = " __attribute__(("; Suffix = "))"; } else if (Variety == "CXX11" || Variety == "C2x") { Prefix = " [["; Suffix = "]]"; std::string Namespace = Spellings[I].nameSpace(); if (!Namespace.empty()) { Spelling += Namespace; Spelling += "::"; } } else if (Variety == "Declspec") { Prefix = " __declspec("; Suffix = ")"; } else if (Variety == "Microsoft") { Prefix = "["; Suffix = "]"; } else if (Variety == "Keyword") { Prefix = " "; Suffix = ""; } else if (Variety == "Pragma") { Prefix = "#pragma "; Suffix = "\n"; std::string Namespace = Spellings[I].nameSpace(); if (!Namespace.empty()) { Spelling += Namespace; Spelling += " "; } } else { llvm_unreachable("Unknown attribute syntax variety!"); } Spelling += Name; OS << " case " << I << " : {\n" << " OS << \"" << Prefix << Spelling << "\";\n"; if (Variety == "Pragma") { OS << " printPrettyPragma(OS, Policy);\n"; OS << " OS << \"\\n\";"; OS << " break;\n"; OS << " }\n"; continue; } if (Spelling == "availability") { OS << " OS << \"("; writeAvailabilityValue(OS); OS << ")\";\n"; } else if (Spelling == "deprecated" || Spelling == "gnu::deprecated") { OS << " OS << \"("; writeDeprecatedAttrValue(OS, Variety); OS << ")\";\n"; } else { // To avoid printing parentheses around an empty argument list or // printing spurious commas at the end of an argument list, we need to // determine where the last provided non-fake argument is. unsigned NonFakeArgs = 0; bool FoundNonOptArg = false; for (const auto &arg : llvm::reverse(Args)) { if (arg->isFake()) continue; ++NonFakeArgs; if (FoundNonOptArg) continue; // FIXME: arg->getIsOmitted() == "false" means we haven't implemented // any way to detect whether the argument was omitted. if (!arg->isOptional() || arg->getIsOmitted() == "false") { FoundNonOptArg = true; continue; } OS << " if (" << arg->getIsOmitted() << ")\n" << " ++TrailingOmittedArgs;\n"; } unsigned ArgIndex = 0; for (const auto &arg : Args) { if (arg->isFake()) continue; std::string IsOmitted = arg->getIsOmitted(); if (arg->isOptional() && IsOmitted != "false") OS << " if (!(" << IsOmitted << ")) {\n"; // Variadic arguments print their own leading comma. if (!arg->isVariadic()) OS << " DelimitAttributeArgument(OS, IsFirstArgument);\n"; OS << " OS << \""; arg->writeValue(OS); OS << "\";\n"; if (arg->isOptional() && IsOmitted != "false") OS << " }\n"; ++ArgIndex; } if (ArgIndex != 0) OS << " if (!IsFirstArgument)\n" << " OS << \")\";\n"; } OS << " OS << \"" << Suffix << "\";\n" << " break;\n" << " }\n"; } // End of the switch statement. OS << "}\n"; // End of the print function. OS << "}\n\n"; } /// Return the index of a spelling in a spelling list. static unsigned getSpellingListIndex(const std::vector &SpellingList, const FlattenedSpelling &Spelling) { assert(!SpellingList.empty() && "Spelling list is empty!"); for (unsigned Index = 0; Index < SpellingList.size(); ++Index) { const FlattenedSpelling &S = SpellingList[Index]; if (S.variety() != Spelling.variety()) continue; if (S.nameSpace() != Spelling.nameSpace()) continue; if (S.name() != Spelling.name()) continue; return Index; } llvm_unreachable("Unknown spelling!"); } static void writeAttrAccessorDefinition(const Record &R, raw_ostream &OS) { std::vector Accessors = R.getValueAsListOfDefs("Accessors"); if (Accessors.empty()) return; const std::vector SpellingList = GetFlattenedSpellings(R); assert(!SpellingList.empty() && "Attribute with empty spelling list can't have accessors!"); for (const auto *Accessor : Accessors) { const StringRef Name = Accessor->getValueAsString("Name"); std::vector Spellings = GetFlattenedSpellings(*Accessor); OS << " bool " << Name << "() const { return getAttributeSpellingListIndex() == "; for (unsigned Index = 0; Index < Spellings.size(); ++Index) { OS << getSpellingListIndex(SpellingList, Spellings[Index]); if (Index != Spellings.size() - 1) OS << " ||\n getAttributeSpellingListIndex() == "; else OS << "; }\n"; } } } static bool SpellingNamesAreCommon(const std::vector& Spellings) { assert(!Spellings.empty() && "An empty list of spellings was provided"); std::string FirstName = std::string(NormalizeNameForSpellingComparison(Spellings.front().name())); for (const auto &Spelling : llvm::make_range(std::next(Spellings.begin()), Spellings.end())) { std::string Name = std::string(NormalizeNameForSpellingComparison(Spelling.name())); if (Name != FirstName) return false; } return true; } typedef std::map SemanticSpellingMap; static std::string CreateSemanticSpellings(const std::vector &Spellings, SemanticSpellingMap &Map) { // The enumerants are automatically generated based on the variety, // namespace (if present) and name for each attribute spelling. However, // care is taken to avoid trampling on the reserved namespace due to // underscores. std::string Ret(" enum Spelling {\n"); std::set Uniques; unsigned Idx = 0; // If we have a need to have this many spellings we likely need to add an // extra bit to the SpellingIndex in AttributeCommonInfo, then increase the // value of SpellingNotCalculated there and here. assert(Spellings.size() < 15 && "Too many spellings, would step on SpellingNotCalculated in " "AttributeCommonInfo"); for (auto I = Spellings.begin(), E = Spellings.end(); I != E; ++I, ++Idx) { const FlattenedSpelling &S = *I; const std::string &Variety = S.variety(); const std::string &Spelling = S.name(); const std::string &Namespace = S.nameSpace(); std::string EnumName; EnumName += (Variety + "_"); if (!Namespace.empty()) EnumName += (NormalizeNameForSpellingComparison(Namespace).str() + "_"); EnumName += NormalizeNameForSpellingComparison(Spelling); // Even if the name is not unique, this spelling index corresponds to a // particular enumerant name that we've calculated. Map[Idx] = EnumName; // Since we have been stripping underscores to avoid trampling on the // reserved namespace, we may have inadvertently created duplicate // enumerant names. These duplicates are not considered part of the // semantic spelling, and can be elided. if (Uniques.find(EnumName) != Uniques.end()) continue; Uniques.insert(EnumName); if (I != Spellings.begin()) Ret += ",\n"; // Duplicate spellings are not considered part of the semantic spelling // enumeration, but the spelling index and semantic spelling values are // meant to be equivalent, so we must specify a concrete value for each // enumerator. Ret += " " + EnumName + " = " + llvm::utostr(Idx); } Ret += ",\n SpellingNotCalculated = 15\n"; Ret += "\n };\n\n"; return Ret; } void WriteSemanticSpellingSwitch(const std::string &VarName, const SemanticSpellingMap &Map, raw_ostream &OS) { OS << " switch (" << VarName << ") {\n default: " << "llvm_unreachable(\"Unknown spelling list index\");\n"; for (const auto &I : Map) OS << " case " << I.first << ": return " << I.second << ";\n"; OS << " }\n"; } // Emits the LateParsed property for attributes. static void emitClangAttrLateParsedList(RecordKeeper &Records, raw_ostream &OS) { OS << "#if defined(CLANG_ATTR_LATE_PARSED_LIST)\n"; std::vector Attrs = Records.getAllDerivedDefinitions("Attr"); for (const auto *Attr : Attrs) { bool LateParsed = Attr->getValueAsBit("LateParsed"); if (LateParsed) { std::vector Spellings = GetFlattenedSpellings(*Attr); // FIXME: Handle non-GNU attributes for (const auto &I : Spellings) { if (I.variety() != "GNU") continue; OS << ".Case(\"" << I.name() << "\", " << LateParsed << ")\n"; } } } OS << "#endif // CLANG_ATTR_LATE_PARSED_LIST\n\n"; } static bool hasGNUorCXX11Spelling(const Record &Attribute) { std::vector Spellings = GetFlattenedSpellings(Attribute); for (const auto &I : Spellings) { if (I.variety() == "GNU" || I.variety() == "CXX11") return true; } return false; } namespace { struct AttributeSubjectMatchRule { const Record *MetaSubject; const Record *Constraint; AttributeSubjectMatchRule(const Record *MetaSubject, const Record *Constraint) : MetaSubject(MetaSubject), Constraint(Constraint) { assert(MetaSubject && "Missing subject"); } bool isSubRule() const { return Constraint != nullptr; } std::vector getSubjects() const { return (Constraint ? Constraint : MetaSubject) ->getValueAsListOfDefs("Subjects"); } std::vector getLangOpts() const { if (Constraint) { // Lookup the options in the sub-rule first, in case the sub-rule // overrides the rules options. std::vector Opts = Constraint->getValueAsListOfDefs("LangOpts"); if (!Opts.empty()) return Opts; } return MetaSubject->getValueAsListOfDefs("LangOpts"); } // Abstract rules are used only for sub-rules bool isAbstractRule() const { return getSubjects().empty(); } StringRef getName() const { return (Constraint ? Constraint : MetaSubject)->getValueAsString("Name"); } bool isNegatedSubRule() const { assert(isSubRule() && "Not a sub-rule"); return Constraint->getValueAsBit("Negated"); } std::string getSpelling() const { std::string Result = std::string(MetaSubject->getValueAsString("Name")); if (isSubRule()) { Result += '('; if (isNegatedSubRule()) Result += "unless("; Result += getName(); if (isNegatedSubRule()) Result += ')'; Result += ')'; } return Result; } std::string getEnumValueName() const { SmallString<128> Result; Result += "SubjectMatchRule_"; Result += MetaSubject->getValueAsString("Name"); if (isSubRule()) { Result += "_"; if (isNegatedSubRule()) Result += "not_"; Result += Constraint->getValueAsString("Name"); } if (isAbstractRule()) Result += "_abstract"; return std::string(Result.str()); } std::string getEnumValue() const { return "attr::" + getEnumValueName(); } static const char *EnumName; }; const char *AttributeSubjectMatchRule::EnumName = "attr::SubjectMatchRule"; struct PragmaClangAttributeSupport { std::vector Rules; class RuleOrAggregateRuleSet { std::vector Rules; bool IsRule; RuleOrAggregateRuleSet(ArrayRef Rules, bool IsRule) : Rules(Rules), IsRule(IsRule) {} public: bool isRule() const { return IsRule; } const AttributeSubjectMatchRule &getRule() const { assert(IsRule && "not a rule!"); return Rules[0]; } ArrayRef getAggregateRuleSet() const { return Rules; } static RuleOrAggregateRuleSet getRule(const AttributeSubjectMatchRule &Rule) { return RuleOrAggregateRuleSet(Rule, /*IsRule=*/true); } static RuleOrAggregateRuleSet getAggregateRuleSet(ArrayRef Rules) { return RuleOrAggregateRuleSet(Rules, /*IsRule=*/false); } }; llvm::DenseMap SubjectsToRules; PragmaClangAttributeSupport(RecordKeeper &Records); bool isAttributedSupported(const Record &Attribute); void emitMatchRuleList(raw_ostream &OS); void generateStrictConformsTo(const Record &Attr, raw_ostream &OS); void generateParsingHelpers(raw_ostream &OS); }; } // end anonymous namespace static bool isSupportedPragmaClangAttributeSubject(const Record &Subject) { // FIXME: #pragma clang attribute does not currently support statement // attributes, so test whether the subject is one that appertains to a // declaration node. However, it may be reasonable for support for statement // attributes to be added. if (Subject.isSubClassOf("DeclNode") || Subject.isSubClassOf("DeclBase") || Subject.getName() == "DeclBase") return true; if (Subject.isSubClassOf("SubsetSubject")) return isSupportedPragmaClangAttributeSubject( *Subject.getValueAsDef("Base")); return false; } static bool doesDeclDeriveFrom(const Record *D, const Record *Base) { const Record *CurrentBase = D->getValueAsOptionalDef(BaseFieldName); if (!CurrentBase) return false; if (CurrentBase == Base) return true; return doesDeclDeriveFrom(CurrentBase, Base); } PragmaClangAttributeSupport::PragmaClangAttributeSupport( RecordKeeper &Records) { std::vector MetaSubjects = Records.getAllDerivedDefinitions("AttrSubjectMatcherRule"); auto MapFromSubjectsToRules = [this](const Record *SubjectContainer, const Record *MetaSubject, const Record *Constraint) { Rules.emplace_back(MetaSubject, Constraint); std::vector ApplicableSubjects = SubjectContainer->getValueAsListOfDefs("Subjects"); for (const auto *Subject : ApplicableSubjects) { bool Inserted = SubjectsToRules .try_emplace(Subject, RuleOrAggregateRuleSet::getRule( AttributeSubjectMatchRule(MetaSubject, Constraint))) .second; if (!Inserted) { PrintFatalError("Attribute subject match rules should not represent" "same attribute subjects."); } } }; for (const auto *MetaSubject : MetaSubjects) { MapFromSubjectsToRules(MetaSubject, MetaSubject, /*Constraints=*/nullptr); std::vector Constraints = MetaSubject->getValueAsListOfDefs("Constraints"); for (const auto *Constraint : Constraints) MapFromSubjectsToRules(Constraint, MetaSubject, Constraint); } std::vector Aggregates = Records.getAllDerivedDefinitions("AttrSubjectMatcherAggregateRule"); std::vector DeclNodes = Records.getAllDerivedDefinitions(DeclNodeClassName); for (const auto *Aggregate : Aggregates) { Record *SubjectDecl = Aggregate->getValueAsDef("Subject"); // Gather sub-classes of the aggregate subject that act as attribute // subject rules. std::vector Rules; for (const auto *D : DeclNodes) { if (doesDeclDeriveFrom(D, SubjectDecl)) { auto It = SubjectsToRules.find(D); if (It == SubjectsToRules.end()) continue; if (!It->second.isRule() || It->second.getRule().isSubRule()) continue; // Assume that the rule will be included as well. Rules.push_back(It->second.getRule()); } } bool Inserted = SubjectsToRules .try_emplace(SubjectDecl, RuleOrAggregateRuleSet::getAggregateRuleSet(Rules)) .second; if (!Inserted) { PrintFatalError("Attribute subject match rules should not represent" "same attribute subjects."); } } } static PragmaClangAttributeSupport & getPragmaAttributeSupport(RecordKeeper &Records) { static PragmaClangAttributeSupport Instance(Records); return Instance; } void PragmaClangAttributeSupport::emitMatchRuleList(raw_ostream &OS) { OS << "#ifndef ATTR_MATCH_SUB_RULE\n"; OS << "#define ATTR_MATCH_SUB_RULE(Value, Spelling, IsAbstract, Parent, " "IsNegated) " << "ATTR_MATCH_RULE(Value, Spelling, IsAbstract)\n"; OS << "#endif\n"; for (const auto &Rule : Rules) { OS << (Rule.isSubRule() ? "ATTR_MATCH_SUB_RULE" : "ATTR_MATCH_RULE") << '('; OS << Rule.getEnumValueName() << ", \"" << Rule.getSpelling() << "\", " << Rule.isAbstractRule(); if (Rule.isSubRule()) OS << ", " << AttributeSubjectMatchRule(Rule.MetaSubject, nullptr).getEnumValue() << ", " << Rule.isNegatedSubRule(); OS << ")\n"; } OS << "#undef ATTR_MATCH_SUB_RULE\n"; } bool PragmaClangAttributeSupport::isAttributedSupported( const Record &Attribute) { // If the attribute explicitly specified whether to support #pragma clang // attribute, use that setting. bool Unset; bool SpecifiedResult = Attribute.getValueAsBitOrUnset("PragmaAttributeSupport", Unset); if (!Unset) return SpecifiedResult; // Opt-out rules: // An attribute requires delayed parsing (LateParsed is on) if (Attribute.getValueAsBit("LateParsed")) return false; // An attribute has no GNU/CXX11 spelling if (!hasGNUorCXX11Spelling(Attribute)) return false; // An attribute subject list has a subject that isn't covered by one of the // subject match rules or has no subjects at all. if (Attribute.isValueUnset("Subjects")) return false; const Record *SubjectObj = Attribute.getValueAsDef("Subjects"); std::vector Subjects = SubjectObj->getValueAsListOfDefs("Subjects"); bool HasAtLeastOneValidSubject = false; for (const auto *Subject : Subjects) { if (!isSupportedPragmaClangAttributeSubject(*Subject)) continue; if (SubjectsToRules.find(Subject) == SubjectsToRules.end()) return false; HasAtLeastOneValidSubject = true; } return HasAtLeastOneValidSubject; } static std::string GenerateTestExpression(ArrayRef LangOpts) { std::string Test; for (auto *E : LangOpts) { if (!Test.empty()) Test += " || "; const StringRef Code = E->getValueAsString("CustomCode"); if (!Code.empty()) { Test += "("; Test += Code; Test += ")"; if (!E->getValueAsString("Name").empty()) { PrintWarning( E->getLoc(), "non-empty 'Name' field ignored because 'CustomCode' was supplied"); } } else { Test += "LangOpts."; Test += E->getValueAsString("Name"); } } if (Test.empty()) return "true"; return Test; } void PragmaClangAttributeSupport::generateStrictConformsTo(const Record &Attr, raw_ostream &OS) { if (!isAttributedSupported(Attr) || Attr.isValueUnset("Subjects")) return; // Generate a function that constructs a set of matching rules that describe // to which declarations the attribute should apply to. OS << "void getPragmaAttributeMatchRules(" << "llvm::SmallVectorImpl> &MatchRules, const LangOptions &LangOpts) const override {\n"; const Record *SubjectObj = Attr.getValueAsDef("Subjects"); std::vector Subjects = SubjectObj->getValueAsListOfDefs("Subjects"); for (const auto *Subject : Subjects) { if (!isSupportedPragmaClangAttributeSubject(*Subject)) continue; auto It = SubjectsToRules.find(Subject); assert(It != SubjectsToRules.end() && "This attribute is unsupported by #pragma clang attribute"); for (const auto &Rule : It->getSecond().getAggregateRuleSet()) { // The rule might be language specific, so only subtract it from the given // rules if the specific language options are specified. std::vector LangOpts = Rule.getLangOpts(); OS << " MatchRules.push_back(std::make_pair(" << Rule.getEnumValue() << ", /*IsSupported=*/" << GenerateTestExpression(LangOpts) << "));\n"; } } OS << "}\n\n"; } void PragmaClangAttributeSupport::generateParsingHelpers(raw_ostream &OS) { // Generate routines that check the names of sub-rules. OS << "Optional " "defaultIsAttributeSubjectMatchSubRuleFor(StringRef, bool) {\n"; OS << " return None;\n"; OS << "}\n\n"; std::map> SubMatchRules; for (const auto &Rule : Rules) { if (!Rule.isSubRule()) continue; SubMatchRules[Rule.MetaSubject].push_back(Rule); } for (const auto &SubMatchRule : SubMatchRules) { OS << "Optional isAttributeSubjectMatchSubRuleFor_" << SubMatchRule.first->getValueAsString("Name") << "(StringRef Name, bool IsUnless) {\n"; OS << " if (IsUnless)\n"; OS << " return " "llvm::StringSwitch>(Name).\n"; for (const auto &Rule : SubMatchRule.second) { if (Rule.isNegatedSubRule()) OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue() << ").\n"; } OS << " Default(None);\n"; OS << " return " "llvm::StringSwitch>(Name).\n"; for (const auto &Rule : SubMatchRule.second) { if (!Rule.isNegatedSubRule()) OS << " Case(\"" << Rule.getName() << "\", " << Rule.getEnumValue() << ").\n"; } OS << " Default(None);\n"; OS << "}\n\n"; } // Generate the function that checks for the top-level rules. OS << "std::pair, " "Optional (*)(StringRef, " "bool)> isAttributeSubjectMatchRule(StringRef Name) {\n"; OS << " return " "llvm::StringSwitch, " "Optional (*) (StringRef, " "bool)>>(Name).\n"; for (const auto &Rule : Rules) { if (Rule.isSubRule()) continue; std::string SubRuleFunction; if (SubMatchRules.count(Rule.MetaSubject)) SubRuleFunction = ("isAttributeSubjectMatchSubRuleFor_" + Rule.getName()).str(); else SubRuleFunction = "defaultIsAttributeSubjectMatchSubRuleFor"; OS << " Case(\"" << Rule.getName() << "\", std::make_pair(" << Rule.getEnumValue() << ", " << SubRuleFunction << ")).\n"; } OS << " Default(std::make_pair(None, " "defaultIsAttributeSubjectMatchSubRuleFor));\n"; OS << "}\n\n"; // Generate the function that checks for the submatch rules. OS << "const char *validAttributeSubjectMatchSubRules(" << AttributeSubjectMatchRule::EnumName << " Rule) {\n"; OS << " switch (Rule) {\n"; for (const auto &SubMatchRule : SubMatchRules) { OS << " case " << AttributeSubjectMatchRule(SubMatchRule.first, nullptr).getEnumValue() << ":\n"; OS << " return \"'"; bool IsFirst = true; for (const auto &Rule : SubMatchRule.second) { if (!IsFirst) OS << ", '"; IsFirst = false; if (Rule.isNegatedSubRule()) OS << "unless("; OS << Rule.getName(); if (Rule.isNegatedSubRule()) OS << ')'; OS << "'"; } OS << "\";\n"; } OS << " default: return nullptr;\n"; OS << " }\n"; OS << "}\n\n"; } template static void forEachUniqueSpelling(const Record &Attr, Fn &&F) { std::vector Spellings = GetFlattenedSpellings(Attr); SmallDenseSet Seen; for (const FlattenedSpelling &S : Spellings) { if (Seen.insert(S.name()).second) F(S); } } /// Emits the first-argument-is-type property for attributes. static void emitClangAttrTypeArgList(RecordKeeper &Records, raw_ostream &OS) { OS << "#if defined(CLANG_ATTR_TYPE_ARG_LIST)\n"; std::vector Attrs = Records.getAllDerivedDefinitions("Attr"); for (const auto *Attr : Attrs) { // Determine whether the first argument is a type. std::vector Args = Attr->getValueAsListOfDefs("Args"); if (Args.empty()) continue; if (Args[0]->getSuperClasses().back().first->getName() != "TypeArgument") continue; // All these spellings take a single type argument. forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) { OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n"; }); } OS << "#endif // CLANG_ATTR_TYPE_ARG_LIST\n\n"; } /// Emits the parse-arguments-in-unevaluated-context property for /// attributes. static void emitClangAttrArgContextList(RecordKeeper &Records, raw_ostream &OS) { OS << "#if defined(CLANG_ATTR_ARG_CONTEXT_LIST)\n"; ParsedAttrMap Attrs = getParsedAttrList(Records); for (const auto &I : Attrs) { const Record &Attr = *I.second; if (!Attr.getValueAsBit("ParseArgumentsAsUnevaluated")) continue; // All these spellings take are parsed unevaluated. forEachUniqueSpelling(Attr, [&](const FlattenedSpelling &S) { OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n"; }); } OS << "#endif // CLANG_ATTR_ARG_CONTEXT_LIST\n\n"; } static bool isIdentifierArgument(Record *Arg) { return !Arg->getSuperClasses().empty() && llvm::StringSwitch(Arg->getSuperClasses().back().first->getName()) .Case("IdentifierArgument", true) .Case("EnumArgument", true) .Case("VariadicEnumArgument", true) .Default(false); } static bool isVariadicIdentifierArgument(Record *Arg) { return !Arg->getSuperClasses().empty() && llvm::StringSwitch( Arg->getSuperClasses().back().first->getName()) .Case("VariadicIdentifierArgument", true) .Case("VariadicParamOrParamIdxArgument", true) .Default(false); } static void emitClangAttrVariadicIdentifierArgList(RecordKeeper &Records, raw_ostream &OS) { OS << "#if defined(CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST)\n"; std::vector Attrs = Records.getAllDerivedDefinitions("Attr"); for (const auto *A : Attrs) { // Determine whether the first argument is a variadic identifier. std::vector Args = A->getValueAsListOfDefs("Args"); if (Args.empty() || !isVariadicIdentifierArgument(Args[0])) continue; // All these spellings take an identifier argument. forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) { OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n"; }); } OS << "#endif // CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST\n\n"; } // Emits the first-argument-is-identifier property for attributes. static void emitClangAttrIdentifierArgList(RecordKeeper &Records, raw_ostream &OS) { OS << "#if defined(CLANG_ATTR_IDENTIFIER_ARG_LIST)\n"; std::vector Attrs = Records.getAllDerivedDefinitions("Attr"); for (const auto *Attr : Attrs) { // Determine whether the first argument is an identifier. std::vector Args = Attr->getValueAsListOfDefs("Args"); if (Args.empty() || !isIdentifierArgument(Args[0])) continue; // All these spellings take an identifier argument. forEachUniqueSpelling(*Attr, [&](const FlattenedSpelling &S) { OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n"; }); } OS << "#endif // CLANG_ATTR_IDENTIFIER_ARG_LIST\n\n"; } static bool keywordThisIsaIdentifierInArgument(const Record *Arg) { return !Arg->getSuperClasses().empty() && llvm::StringSwitch( Arg->getSuperClasses().back().first->getName()) .Case("VariadicParamOrParamIdxArgument", true) .Default(false); } static void emitClangAttrThisIsaIdentifierArgList(RecordKeeper &Records, raw_ostream &OS) { OS << "#if defined(CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST)\n"; std::vector Attrs = Records.getAllDerivedDefinitions("Attr"); for (const auto *A : Attrs) { // Determine whether the first argument is a variadic identifier. std::vector Args = A->getValueAsListOfDefs("Args"); if (Args.empty() || !keywordThisIsaIdentifierInArgument(Args[0])) continue; // All these spellings take an identifier argument. forEachUniqueSpelling(*A, [&](const FlattenedSpelling &S) { OS << ".Case(\"" << S.name() << "\", " << "true" << ")\n"; }); } OS << "#endif // CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST\n\n"; } static void emitAttributes(RecordKeeper &Records, raw_ostream &OS, bool Header) { std::vector Attrs = Records.getAllDerivedDefinitions("Attr"); ParsedAttrMap AttrMap = getParsedAttrList(Records); // Helper to print the starting character of an attribute argument. If there // hasn't been an argument yet, it prints an opening parenthese; otherwise it // prints a comma. OS << "static inline void DelimitAttributeArgument(" << "raw_ostream& OS, bool& IsFirst) {\n" << " if (IsFirst) {\n" << " IsFirst = false;\n" << " OS << \"(\";\n" << " } else\n" << " OS << \", \";\n" << "}\n"; for (const auto *Attr : Attrs) { const Record &R = *Attr; // FIXME: Currently, documentation is generated as-needed due to the fact // that there is no way to allow a generated project "reach into" the docs // directory (for instance, it may be an out-of-tree build). However, we want // to ensure that every attribute has a Documentation field, and produce an // error if it has been neglected. Otherwise, the on-demand generation which // happens server-side will fail. This code is ensuring that functionality, // even though this Emitter doesn't technically need the documentation. // When attribute documentation can be generated as part of the build // itself, this code can be removed. (void)R.getValueAsListOfDefs("Documentation"); if (!R.getValueAsBit("ASTNode")) continue; ArrayRef> Supers = R.getSuperClasses(); assert(!Supers.empty() && "Forgot to specify a superclass for the attr"); std::string SuperName; bool Inheritable = false; for (const auto &Super : llvm::reverse(Supers)) { const Record *R = Super.first; if (R->getName() != "TargetSpecificAttr" && R->getName() != "DeclOrTypeAttr" && SuperName.empty()) SuperName = std::string(R->getName()); if (R->getName() == "InheritableAttr") Inheritable = true; } if (Header) OS << "class " << R.getName() << "Attr : public " << SuperName << " {\n"; else OS << "\n// " << R.getName() << "Attr implementation\n\n"; std::vector ArgRecords = R.getValueAsListOfDefs("Args"); std::vector> Args; Args.reserve(ArgRecords.size()); bool HasOptArg = false; bool HasFakeArg = false; for (const auto *ArgRecord : ArgRecords) { Args.emplace_back(createArgument(*ArgRecord, R.getName())); if (Header) { Args.back()->writeDeclarations(OS); OS << "\n\n"; } // For these purposes, fake takes priority over optional. if (Args.back()->isFake()) { HasFakeArg = true; } else if (Args.back()->isOptional()) { HasOptArg = true; } } if (Header) OS << "public:\n"; std::vector Spellings = GetFlattenedSpellings(R); // If there are zero or one spellings, all spelling-related functionality // can be elided. If all of the spellings share the same name, the spelling // functionality can also be elided. bool ElideSpelling = (Spellings.size() <= 1) || SpellingNamesAreCommon(Spellings); // This maps spelling index values to semantic Spelling enumerants. SemanticSpellingMap SemanticToSyntacticMap; std::string SpellingEnum; if (Spellings.size() > 1) SpellingEnum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap); if (Header) OS << SpellingEnum; const auto &ParsedAttrSpellingItr = llvm::find_if( AttrMap, [R](const std::pair &P) { return &R == P.second; }); // Emit CreateImplicit factory methods. auto emitCreate = [&](bool Implicit, bool emitFake) { if (Header) OS << " static "; OS << R.getName() << "Attr *"; if (!Header) OS << R.getName() << "Attr::"; OS << "Create"; if (Implicit) OS << "Implicit"; OS << "("; OS << "ASTContext &Ctx"; for (auto const &ai : Args) { if (ai->isFake() && !emitFake) continue; OS << ", "; ai->writeCtorParameters(OS); } OS << ", const AttributeCommonInfo &CommonInfo"; if (Header && Implicit) OS << " = {SourceRange{}}"; OS << ")"; if (Header) { OS << ";\n"; return; } OS << " {\n"; OS << " auto *A = new (Ctx) " << R.getName(); OS << "Attr(Ctx, CommonInfo"; for (auto const &ai : Args) { if (ai->isFake() && !emitFake) continue; OS << ", "; ai->writeImplicitCtorArgs(OS); } OS << ");\n"; if (Implicit) { OS << " A->setImplicit(true);\n"; } if (Implicit || ElideSpelling) { OS << " if (!A->isAttributeSpellingListCalculated() && " "!A->getAttrName())\n"; OS << " A->setAttributeSpellingListIndex(0);\n"; } OS << " return A;\n}\n\n"; }; auto emitCreateNoCI = [&](bool Implicit, bool emitFake) { if (Header) OS << " static "; OS << R.getName() << "Attr *"; if (!Header) OS << R.getName() << "Attr::"; OS << "Create"; if (Implicit) OS << "Implicit"; OS << "("; OS << "ASTContext &Ctx"; for (auto const &ai : Args) { if (ai->isFake() && !emitFake) continue; OS << ", "; ai->writeCtorParameters(OS); } OS << ", SourceRange Range, AttributeCommonInfo::Syntax Syntax"; if (!ElideSpelling) { OS << ", " << R.getName() << "Attr::Spelling S"; if (Header) OS << " = static_cast(SpellingNotCalculated)"; } OS << ")"; if (Header) { OS << ";\n"; return; } OS << " {\n"; OS << " AttributeCommonInfo I(Range, "; if (ParsedAttrSpellingItr != std::end(AttrMap)) OS << "AT_" << ParsedAttrSpellingItr->first; else OS << "NoSemaHandlerAttribute"; OS << ", Syntax"; if (!ElideSpelling) OS << ", S"; OS << ");\n"; OS << " return Create"; if (Implicit) OS << "Implicit"; OS << "(Ctx"; for (auto const &ai : Args) { if (ai->isFake() && !emitFake) continue; OS << ", "; ai->writeImplicitCtorArgs(OS); } OS << ", I);\n"; OS << "}\n\n"; }; auto emitCreates = [&](bool emitFake) { emitCreate(true, emitFake); emitCreate(false, emitFake); emitCreateNoCI(true, emitFake); emitCreateNoCI(false, emitFake); }; if (Header) OS << " // Factory methods\n"; // Emit a CreateImplicit that takes all the arguments. emitCreates(true); // Emit a CreateImplicit that takes all the non-fake arguments. if (HasFakeArg) emitCreates(false); // Emit constructors. auto emitCtor = [&](bool emitOpt, bool emitFake) { auto shouldEmitArg = [=](const std::unique_ptr &arg) { if (arg->isFake()) return emitFake; if (arg->isOptional()) return emitOpt; return true; }; if (Header) OS << " "; else OS << R.getName() << "Attr::"; OS << R.getName() << "Attr(ASTContext &Ctx, const AttributeCommonInfo &CommonInfo"; OS << '\n'; for (auto const &ai : Args) { if (!shouldEmitArg(ai)) continue; OS << " , "; ai->writeCtorParameters(OS); OS << "\n"; } OS << " )"; if (Header) { OS << ";\n"; return; } OS << "\n : " << SuperName << "(Ctx, CommonInfo, "; OS << "attr::" << R.getName() << ", " << (R.getValueAsBit("LateParsed") ? "true" : "false"); if (Inheritable) { OS << ", " << (R.getValueAsBit("InheritEvenIfAlreadyPresent") ? "true" : "false"); } OS << ")\n"; for (auto const &ai : Args) { OS << " , "; if (!shouldEmitArg(ai)) { ai->writeCtorDefaultInitializers(OS); } else { ai->writeCtorInitializers(OS); } OS << "\n"; } OS << " {\n"; for (auto const &ai : Args) { if (!shouldEmitArg(ai)) continue; ai->writeCtorBody(OS); } OS << "}\n\n"; }; if (Header) OS << "\n // Constructors\n"; // Emit a constructor that includes all the arguments. // This is necessary for cloning. emitCtor(true, true); // Emit a constructor that takes all the non-fake arguments. if (HasFakeArg) emitCtor(true, false); // Emit a constructor that takes all the non-fake, non-optional arguments. if (HasOptArg) emitCtor(false, false); if (Header) { OS << '\n'; OS << " " << R.getName() << "Attr *clone(ASTContext &C) const;\n"; OS << " void printPretty(raw_ostream &OS,\n" << " const PrintingPolicy &Policy) const;\n"; OS << " const char *getSpelling() const;\n"; } if (!ElideSpelling) { assert(!SemanticToSyntacticMap.empty() && "Empty semantic mapping list"); if (Header) OS << " Spelling getSemanticSpelling() const;\n"; else { OS << R.getName() << "Attr::Spelling " << R.getName() << "Attr::getSemanticSpelling() const {\n"; WriteSemanticSpellingSwitch("getAttributeSpellingListIndex()", SemanticToSyntacticMap, OS); OS << "}\n"; } } if (Header) writeAttrAccessorDefinition(R, OS); for (auto const &ai : Args) { if (Header) { ai->writeAccessors(OS); } else { ai->writeAccessorDefinitions(OS); } OS << "\n\n"; // Don't write conversion routines for fake arguments. if (ai->isFake()) continue; if (ai->isEnumArg()) static_cast(ai.get())->writeConversion(OS, Header); else if (ai->isVariadicEnumArg()) static_cast(ai.get())->writeConversion( OS, Header); } if (Header) { OS << R.getValueAsString("AdditionalMembers"); OS << "\n\n"; OS << " static bool classof(const Attr *A) { return A->getKind() == " << "attr::" << R.getName() << "; }\n"; OS << "};\n\n"; } else { OS << R.getName() << "Attr *" << R.getName() << "Attr::clone(ASTContext &C) const {\n"; OS << " auto *A = new (C) " << R.getName() << "Attr(C, *this"; for (auto const &ai : Args) { OS << ", "; ai->writeCloneArgs(OS); } OS << ");\n"; OS << " A->Inherited = Inherited;\n"; OS << " A->IsPackExpansion = IsPackExpansion;\n"; OS << " A->setImplicit(Implicit);\n"; OS << " return A;\n}\n\n"; writePrettyPrintFunction(R, Args, OS); writeGetSpellingFunction(R, OS); } } } // Emits the class definitions for attributes. void clang::EmitClangAttrClass(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Attribute classes' definitions", OS); OS << "#ifndef LLVM_CLANG_ATTR_CLASSES_INC\n"; OS << "#define LLVM_CLANG_ATTR_CLASSES_INC\n\n"; emitAttributes(Records, OS, true); OS << "#endif // LLVM_CLANG_ATTR_CLASSES_INC\n"; } // Emits the class method definitions for attributes. void clang::EmitClangAttrImpl(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Attribute classes' member function definitions", OS); emitAttributes(Records, OS, false); std::vector Attrs = Records.getAllDerivedDefinitions("Attr"); // Instead of relying on virtual dispatch we just create a huge dispatch // switch. This is both smaller and faster than virtual functions. auto EmitFunc = [&](const char *Method) { OS << " switch (getKind()) {\n"; for (const auto *Attr : Attrs) { const Record &R = *Attr; if (!R.getValueAsBit("ASTNode")) continue; OS << " case attr::" << R.getName() << ":\n"; OS << " return cast<" << R.getName() << "Attr>(this)->" << Method << ";\n"; } OS << " }\n"; OS << " llvm_unreachable(\"Unexpected attribute kind!\");\n"; OS << "}\n\n"; }; OS << "const char *Attr::getSpelling() const {\n"; EmitFunc("getSpelling()"); OS << "Attr *Attr::clone(ASTContext &C) const {\n"; EmitFunc("clone(C)"); OS << "void Attr::printPretty(raw_ostream &OS, " "const PrintingPolicy &Policy) const {\n"; EmitFunc("printPretty(OS, Policy)"); } static void emitAttrList(raw_ostream &OS, StringRef Class, const std::vector &AttrList) { for (auto Cur : AttrList) { OS << Class << "(" << Cur->getName() << ")\n"; } } // Determines if an attribute has a Pragma spelling. static bool AttrHasPragmaSpelling(const Record *R) { std::vector Spellings = GetFlattenedSpellings(*R); return llvm::find_if(Spellings, [](const FlattenedSpelling &S) { return S.variety() == "Pragma"; }) != Spellings.end(); } namespace { struct AttrClassDescriptor { const char * const MacroName; const char * const TableGenName; }; } // end anonymous namespace static const AttrClassDescriptor AttrClassDescriptors[] = { { "ATTR", "Attr" }, { "TYPE_ATTR", "TypeAttr" }, { "STMT_ATTR", "StmtAttr" }, { "DECL_OR_STMT_ATTR", "DeclOrStmtAttr" }, { "INHERITABLE_ATTR", "InheritableAttr" }, { "DECL_OR_TYPE_ATTR", "DeclOrTypeAttr" }, { "INHERITABLE_PARAM_ATTR", "InheritableParamAttr" }, { "PARAMETER_ABI_ATTR", "ParameterABIAttr" } }; static void emitDefaultDefine(raw_ostream &OS, StringRef name, const char *superName) { OS << "#ifndef " << name << "\n"; OS << "#define " << name << "(NAME) "; if (superName) OS << superName << "(NAME)"; OS << "\n#endif\n\n"; } namespace { /// A class of attributes. struct AttrClass { const AttrClassDescriptor &Descriptor; Record *TheRecord; AttrClass *SuperClass = nullptr; std::vector SubClasses; std::vector Attrs; AttrClass(const AttrClassDescriptor &Descriptor, Record *R) : Descriptor(Descriptor), TheRecord(R) {} void emitDefaultDefines(raw_ostream &OS) const { // Default the macro unless this is a root class (i.e. Attr). if (SuperClass) { emitDefaultDefine(OS, Descriptor.MacroName, SuperClass->Descriptor.MacroName); } } void emitUndefs(raw_ostream &OS) const { OS << "#undef " << Descriptor.MacroName << "\n"; } void emitAttrList(raw_ostream &OS) const { for (auto SubClass : SubClasses) { SubClass->emitAttrList(OS); } ::emitAttrList(OS, Descriptor.MacroName, Attrs); } void classifyAttrOnRoot(Record *Attr) { bool result = classifyAttr(Attr); assert(result && "failed to classify on root"); (void) result; } void emitAttrRange(raw_ostream &OS) const { OS << "ATTR_RANGE(" << Descriptor.TableGenName << ", " << getFirstAttr()->getName() << ", " << getLastAttr()->getName() << ")\n"; } private: bool classifyAttr(Record *Attr) { // Check all the subclasses. for (auto SubClass : SubClasses) { if (SubClass->classifyAttr(Attr)) return true; } // It's not more specific than this class, but it might still belong here. if (Attr->isSubClassOf(TheRecord)) { Attrs.push_back(Attr); return true; } return false; } Record *getFirstAttr() const { if (!SubClasses.empty()) return SubClasses.front()->getFirstAttr(); return Attrs.front(); } Record *getLastAttr() const { if (!Attrs.empty()) return Attrs.back(); return SubClasses.back()->getLastAttr(); } }; /// The entire hierarchy of attribute classes. class AttrClassHierarchy { std::vector> Classes; public: AttrClassHierarchy(RecordKeeper &Records) { // Find records for all the classes. for (auto &Descriptor : AttrClassDescriptors) { Record *ClassRecord = Records.getClass(Descriptor.TableGenName); AttrClass *Class = new AttrClass(Descriptor, ClassRecord); Classes.emplace_back(Class); } // Link up the hierarchy. for (auto &Class : Classes) { if (AttrClass *SuperClass = findSuperClass(Class->TheRecord)) { Class->SuperClass = SuperClass; SuperClass->SubClasses.push_back(Class.get()); } } #ifndef NDEBUG for (auto i = Classes.begin(), e = Classes.end(); i != e; ++i) { assert((i == Classes.begin()) == ((*i)->SuperClass == nullptr) && "only the first class should be a root class!"); } #endif } void emitDefaultDefines(raw_ostream &OS) const { for (auto &Class : Classes) { Class->emitDefaultDefines(OS); } } void emitUndefs(raw_ostream &OS) const { for (auto &Class : Classes) { Class->emitUndefs(OS); } } void emitAttrLists(raw_ostream &OS) const { // Just start from the root class. Classes[0]->emitAttrList(OS); } void emitAttrRanges(raw_ostream &OS) const { for (auto &Class : Classes) Class->emitAttrRange(OS); } void classifyAttr(Record *Attr) { // Add the attribute to the root class. Classes[0]->classifyAttrOnRoot(Attr); } private: AttrClass *findClassByRecord(Record *R) const { for (auto &Class : Classes) { if (Class->TheRecord == R) return Class.get(); } return nullptr; } AttrClass *findSuperClass(Record *R) const { // TableGen flattens the superclass list, so we just need to walk it // in reverse. auto SuperClasses = R->getSuperClasses(); for (signed i = 0, e = SuperClasses.size(); i != e; ++i) { auto SuperClass = findClassByRecord(SuperClasses[e - i - 1].first); if (SuperClass) return SuperClass; } return nullptr; } }; } // end anonymous namespace namespace clang { // Emits the enumeration list for attributes. void EmitClangAttrList(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("List of all attributes that Clang recognizes", OS); AttrClassHierarchy Hierarchy(Records); // Add defaulting macro definitions. Hierarchy.emitDefaultDefines(OS); emitDefaultDefine(OS, "PRAGMA_SPELLING_ATTR", nullptr); std::vector Attrs = Records.getAllDerivedDefinitions("Attr"); std::vector PragmaAttrs; for (auto *Attr : Attrs) { if (!Attr->getValueAsBit("ASTNode")) continue; // Add the attribute to the ad-hoc groups. if (AttrHasPragmaSpelling(Attr)) PragmaAttrs.push_back(Attr); // Place it in the hierarchy. Hierarchy.classifyAttr(Attr); } // Emit the main attribute list. Hierarchy.emitAttrLists(OS); // Emit the ad hoc groups. emitAttrList(OS, "PRAGMA_SPELLING_ATTR", PragmaAttrs); // Emit the attribute ranges. OS << "#ifdef ATTR_RANGE\n"; Hierarchy.emitAttrRanges(OS); OS << "#undef ATTR_RANGE\n"; OS << "#endif\n"; Hierarchy.emitUndefs(OS); OS << "#undef PRAGMA_SPELLING_ATTR\n"; } // Emits the enumeration list for attributes. void EmitClangAttrSubjectMatchRuleList(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader( "List of all attribute subject matching rules that Clang recognizes", OS); PragmaClangAttributeSupport &PragmaAttributeSupport = getPragmaAttributeSupport(Records); emitDefaultDefine(OS, "ATTR_MATCH_RULE", nullptr); PragmaAttributeSupport.emitMatchRuleList(OS); OS << "#undef ATTR_MATCH_RULE\n"; } // Emits the code to read an attribute from a precompiled header. void EmitClangAttrPCHRead(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Attribute deserialization code", OS); Record *InhClass = Records.getClass("InheritableAttr"); std::vector Attrs = Records.getAllDerivedDefinitions("Attr"), ArgRecords; std::vector> Args; OS << " switch (Kind) {\n"; for (const auto *Attr : Attrs) { const Record &R = *Attr; if (!R.getValueAsBit("ASTNode")) continue; OS << " case attr::" << R.getName() << ": {\n"; if (R.isSubClassOf(InhClass)) OS << " bool isInherited = Record.readInt();\n"; OS << " bool isImplicit = Record.readInt();\n"; OS << " bool isPackExpansion = Record.readInt();\n"; ArgRecords = R.getValueAsListOfDefs("Args"); Args.clear(); for (const auto *Arg : ArgRecords) { Args.emplace_back(createArgument(*Arg, R.getName())); Args.back()->writePCHReadDecls(OS); } OS << " New = new (Context) " << R.getName() << "Attr(Context, Info"; for (auto const &ri : Args) { OS << ", "; ri->writePCHReadArgs(OS); } OS << ");\n"; if (R.isSubClassOf(InhClass)) OS << " cast(New)->setInherited(isInherited);\n"; OS << " New->setImplicit(isImplicit);\n"; OS << " New->setPackExpansion(isPackExpansion);\n"; OS << " break;\n"; OS << " }\n"; } OS << " }\n"; } // Emits the code to write an attribute to a precompiled header. void EmitClangAttrPCHWrite(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Attribute serialization code", OS); Record *InhClass = Records.getClass("InheritableAttr"); std::vector Attrs = Records.getAllDerivedDefinitions("Attr"), Args; OS << " switch (A->getKind()) {\n"; for (const auto *Attr : Attrs) { const Record &R = *Attr; if (!R.getValueAsBit("ASTNode")) continue; OS << " case attr::" << R.getName() << ": {\n"; Args = R.getValueAsListOfDefs("Args"); if (R.isSubClassOf(InhClass) || !Args.empty()) OS << " const auto *SA = cast<" << R.getName() << "Attr>(A);\n"; if (R.isSubClassOf(InhClass)) OS << " Record.push_back(SA->isInherited());\n"; OS << " Record.push_back(A->isImplicit());\n"; OS << " Record.push_back(A->isPackExpansion());\n"; for (const auto *Arg : Args) createArgument(*Arg, R.getName())->writePCHWrite(OS); OS << " break;\n"; OS << " }\n"; } OS << " }\n"; } // Helper function for GenerateTargetSpecificAttrChecks that alters the 'Test' // parameter with only a single check type, if applicable. static bool GenerateTargetSpecificAttrCheck(const Record *R, std::string &Test, std::string *FnName, StringRef ListName, StringRef CheckAgainst, StringRef Scope) { if (!R->isValueUnset(ListName)) { Test += " && ("; std::vector Items = R->getValueAsListOfStrings(ListName); for (auto I = Items.begin(), E = Items.end(); I != E; ++I) { StringRef Part = *I; Test += CheckAgainst; Test += " == "; Test += Scope; Test += Part; if (I + 1 != E) Test += " || "; if (FnName) *FnName += Part; } Test += ")"; return true; } return false; } // Generate a conditional expression to check if the current target satisfies // the conditions for a TargetSpecificAttr record, and append the code for // those checks to the Test string. If the FnName string pointer is non-null, // append a unique suffix to distinguish this set of target checks from other // TargetSpecificAttr records. static bool GenerateTargetSpecificAttrChecks(const Record *R, std::vector &Arches, std::string &Test, std::string *FnName) { bool AnyTargetChecks = false; // It is assumed that there will be an llvm::Triple object // named "T" and a TargetInfo object named "Target" within // scope that can be used to determine whether the attribute exists in // a given target. Test += "true"; // If one or more architectures is specified, check those. Arches are handled // differently because GenerateTargetRequirements needs to combine the list // with ParseKind. if (!Arches.empty()) { AnyTargetChecks = true; Test += " && ("; for (auto I = Arches.begin(), E = Arches.end(); I != E; ++I) { StringRef Part = *I; Test += "T.getArch() == llvm::Triple::"; Test += Part; if (I + 1 != E) Test += " || "; if (FnName) *FnName += Part; } Test += ")"; } // If the attribute is specific to particular OSes, check those. AnyTargetChecks |= GenerateTargetSpecificAttrCheck( R, Test, FnName, "OSes", "T.getOS()", "llvm::Triple::"); // If one or more object formats is specified, check those. AnyTargetChecks |= GenerateTargetSpecificAttrCheck(R, Test, FnName, "ObjectFormats", "T.getObjectFormat()", "llvm::Triple::"); // If custom code is specified, emit it. StringRef Code = R->getValueAsString("CustomCode"); if (!Code.empty()) { AnyTargetChecks = true; Test += " && ("; Test += Code; Test += ")"; } return AnyTargetChecks; } static void GenerateHasAttrSpellingStringSwitch( const std::vector &Attrs, raw_ostream &OS, const std::string &Variety = "", const std::string &Scope = "") { for (const auto *Attr : Attrs) { // C++11-style attributes have specific version information associated with // them. If the attribute has no scope, the version information must not // have the default value (1), as that's incorrect. Instead, the unscoped // attribute version information should be taken from the SD-6 standing // document, which can be found at: // https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations // // C2x-style attributes have the same kind of version information // associated with them. The unscoped attribute version information should // be taken from the specification of the attribute in the C Standard. int Version = 1; if (Variety == "CXX11" || Variety == "C2x") { std::vector Spellings = Attr->getValueAsListOfDefs("Spellings"); for (const auto &Spelling : Spellings) { if (Spelling->getValueAsString("Variety") == Variety) { Version = static_cast(Spelling->getValueAsInt("Version")); if (Scope.empty() && Version == 1) PrintError(Spelling->getLoc(), "Standard attributes must have " "valid version information."); break; } } } std::string Test; if (Attr->isSubClassOf("TargetSpecificAttr")) { const Record *R = Attr->getValueAsDef("Target"); std::vector Arches = R->getValueAsListOfStrings("Arches"); GenerateTargetSpecificAttrChecks(R, Arches, Test, nullptr); // If this is the C++11 variety, also add in the LangOpts test. if (Variety == "CXX11") Test += " && LangOpts.CPlusPlus11"; else if (Variety == "C2x") Test += " && LangOpts.DoubleSquareBracketAttributes"; } else if (Variety == "CXX11") // C++11 mode should be checked against LangOpts, which is presumed to be // present in the caller. Test = "LangOpts.CPlusPlus11"; else if (Variety == "C2x") Test = "LangOpts.DoubleSquareBracketAttributes"; std::string TestStr = !Test.empty() ? Test + " ? " + llvm::itostr(Version) + " : 0" : "1"; std::vector Spellings = GetFlattenedSpellings(*Attr); for (const auto &S : Spellings) if (Variety.empty() || (Variety == S.variety() && (Scope.empty() || Scope == S.nameSpace()))) OS << " .Case(\"" << S.name() << "\", " << TestStr << ")\n"; } OS << " .Default(0);\n"; } // Emits the list of spellings for attributes. void EmitClangAttrHasAttrImpl(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Code to implement the __has_attribute logic", OS); // Separate all of the attributes out into four group: generic, C++11, GNU, // and declspecs. Then generate a big switch statement for each of them. std::vector Attrs = Records.getAllDerivedDefinitions("Attr"); std::vector Declspec, Microsoft, GNU, Pragma; std::map> CXX, C2x; // Walk over the list of all attributes, and split them out based on the // spelling variety. for (auto *R : Attrs) { std::vector Spellings = GetFlattenedSpellings(*R); for (const auto &SI : Spellings) { const std::string &Variety = SI.variety(); if (Variety == "GNU") GNU.push_back(R); else if (Variety == "Declspec") Declspec.push_back(R); else if (Variety == "Microsoft") Microsoft.push_back(R); else if (Variety == "CXX11") CXX[SI.nameSpace()].push_back(R); else if (Variety == "C2x") C2x[SI.nameSpace()].push_back(R); else if (Variety == "Pragma") Pragma.push_back(R); } } OS << "const llvm::Triple &T = Target.getTriple();\n"; OS << "switch (Syntax) {\n"; OS << "case AttrSyntax::GNU:\n"; OS << " return llvm::StringSwitch(Name)\n"; GenerateHasAttrSpellingStringSwitch(GNU, OS, "GNU"); OS << "case AttrSyntax::Declspec:\n"; OS << " return llvm::StringSwitch(Name)\n"; GenerateHasAttrSpellingStringSwitch(Declspec, OS, "Declspec"); OS << "case AttrSyntax::Microsoft:\n"; OS << " return llvm::StringSwitch(Name)\n"; GenerateHasAttrSpellingStringSwitch(Microsoft, OS, "Microsoft"); OS << "case AttrSyntax::Pragma:\n"; OS << " return llvm::StringSwitch(Name)\n"; GenerateHasAttrSpellingStringSwitch(Pragma, OS, "Pragma"); auto fn = [&OS](const char *Spelling, const char *Variety, const std::map> &List) { OS << "case AttrSyntax::" << Variety << ": {\n"; // C++11-style attributes are further split out based on the Scope. for (auto I = List.cbegin(), E = List.cend(); I != E; ++I) { if (I != List.cbegin()) OS << " else "; if (I->first.empty()) OS << "if (ScopeName == \"\") {\n"; else OS << "if (ScopeName == \"" << I->first << "\") {\n"; OS << " return llvm::StringSwitch(Name)\n"; GenerateHasAttrSpellingStringSwitch(I->second, OS, Spelling, I->first); OS << "}"; } OS << "\n} break;\n"; }; fn("CXX11", "CXX", CXX); fn("C2x", "C", C2x); OS << "}\n"; } void EmitClangAttrSpellingListIndex(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Code to translate different attribute spellings " "into internal identifiers", OS); OS << " switch (getParsedKind()) {\n"; OS << " case IgnoredAttribute:\n"; OS << " case UnknownAttribute:\n"; OS << " case NoSemaHandlerAttribute:\n"; OS << " llvm_unreachable(\"Ignored/unknown shouldn't get here\");\n"; ParsedAttrMap Attrs = getParsedAttrList(Records); for (const auto &I : Attrs) { const Record &R = *I.second; std::vector Spellings = GetFlattenedSpellings(R); OS << " case AT_" << I.first << ": {\n"; for (unsigned I = 0; I < Spellings.size(); ++ I) { OS << " if (Name == \"" << Spellings[I].name() << "\" && " << "getSyntax() == AttributeCommonInfo::AS_" << Spellings[I].variety() << " && Scope == \"" << Spellings[I].nameSpace() << "\")\n" << " return " << I << ";\n"; } OS << " break;\n"; OS << " }\n"; } OS << " }\n"; OS << " return 0;\n"; } // Emits code used by RecursiveASTVisitor to visit attributes void EmitClangAttrASTVisitor(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Used by RecursiveASTVisitor to visit attributes.", OS); std::vector Attrs = Records.getAllDerivedDefinitions("Attr"); // Write method declarations for Traverse* methods. // We emit this here because we only generate methods for attributes that // are declared as ASTNodes. OS << "#ifdef ATTR_VISITOR_DECLS_ONLY\n\n"; for (const auto *Attr : Attrs) { const Record &R = *Attr; if (!R.getValueAsBit("ASTNode")) continue; OS << " bool Traverse" << R.getName() << "Attr(" << R.getName() << "Attr *A);\n"; OS << " bool Visit" << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n" << " return true; \n" << " }\n"; } OS << "\n#else // ATTR_VISITOR_DECLS_ONLY\n\n"; // Write individual Traverse* methods for each attribute class. for (const auto *Attr : Attrs) { const Record &R = *Attr; if (!R.getValueAsBit("ASTNode")) continue; OS << "template \n" << "bool VISITORCLASS::Traverse" << R.getName() << "Attr(" << R.getName() << "Attr *A) {\n" << " if (!getDerived().VisitAttr(A))\n" << " return false;\n" << " if (!getDerived().Visit" << R.getName() << "Attr(A))\n" << " return false;\n"; std::vector ArgRecords = R.getValueAsListOfDefs("Args"); for (const auto *Arg : ArgRecords) createArgument(*Arg, R.getName())->writeASTVisitorTraversal(OS); OS << " return true;\n"; OS << "}\n\n"; } // Write generic Traverse routine OS << "template \n" << "bool VISITORCLASS::TraverseAttr(Attr *A) {\n" << " if (!A)\n" << " return true;\n" << "\n" << " switch (A->getKind()) {\n"; for (const auto *Attr : Attrs) { const Record &R = *Attr; if (!R.getValueAsBit("ASTNode")) continue; OS << " case attr::" << R.getName() << ":\n" << " return getDerived().Traverse" << R.getName() << "Attr(" << "cast<" << R.getName() << "Attr>(A));\n"; } OS << " }\n"; // end switch OS << " llvm_unreachable(\"bad attribute kind\");\n"; OS << "}\n"; // end function OS << "#endif // ATTR_VISITOR_DECLS_ONLY\n"; } void EmitClangAttrTemplateInstantiateHelper(const std::vector &Attrs, raw_ostream &OS, bool AppliesToDecl) { OS << " switch (At->getKind()) {\n"; for (const auto *Attr : Attrs) { const Record &R = *Attr; if (!R.getValueAsBit("ASTNode")) continue; OS << " case attr::" << R.getName() << ": {\n"; bool ShouldClone = R.getValueAsBit("Clone") && (!AppliesToDecl || R.getValueAsBit("MeaningfulToClassTemplateDefinition")); if (!ShouldClone) { OS << " return nullptr;\n"; OS << " }\n"; continue; } OS << " const auto *A = cast<" << R.getName() << "Attr>(At);\n"; bool TDependent = R.getValueAsBit("TemplateDependent"); if (!TDependent) { OS << " return A->clone(C);\n"; OS << " }\n"; continue; } std::vector ArgRecords = R.getValueAsListOfDefs("Args"); std::vector> Args; Args.reserve(ArgRecords.size()); for (const auto *ArgRecord : ArgRecords) Args.emplace_back(createArgument(*ArgRecord, R.getName())); for (auto const &ai : Args) ai->writeTemplateInstantiation(OS); OS << " return new (C) " << R.getName() << "Attr(C, *A"; for (auto const &ai : Args) { OS << ", "; ai->writeTemplateInstantiationArgs(OS); } OS << ");\n" << " }\n"; } OS << " } // end switch\n" << " llvm_unreachable(\"Unknown attribute!\");\n" << " return nullptr;\n"; } // Emits code to instantiate dependent attributes on templates. void EmitClangAttrTemplateInstantiate(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Template instantiation code for attributes", OS); std::vector Attrs = Records.getAllDerivedDefinitions("Attr"); OS << "namespace clang {\n" << "namespace sema {\n\n" << "Attr *instantiateTemplateAttribute(const Attr *At, ASTContext &C, " << "Sema &S,\n" << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n"; EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/false); OS << "}\n\n" << "Attr *instantiateTemplateAttributeForDecl(const Attr *At,\n" << " ASTContext &C, Sema &S,\n" << " const MultiLevelTemplateArgumentList &TemplateArgs) {\n"; EmitClangAttrTemplateInstantiateHelper(Attrs, OS, /*AppliesToDecl*/true); OS << "}\n\n" << "} // end namespace sema\n" << "} // end namespace clang\n"; } // Emits the list of parsed attributes. void EmitClangAttrParsedAttrList(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("List of all attributes that Clang recognizes", OS); OS << "#ifndef PARSED_ATTR\n"; OS << "#define PARSED_ATTR(NAME) NAME\n"; OS << "#endif\n\n"; ParsedAttrMap Names = getParsedAttrList(Records); for (const auto &I : Names) { OS << "PARSED_ATTR(" << I.first << ")\n"; } } static bool isArgVariadic(const Record &R, StringRef AttrName) { return createArgument(R, AttrName)->isVariadic(); } static void emitArgInfo(const Record &R, raw_ostream &OS) { // This function will count the number of arguments specified for the // attribute and emit the number of required arguments followed by the // number of optional arguments. std::vector Args = R.getValueAsListOfDefs("Args"); unsigned ArgCount = 0, OptCount = 0; bool HasVariadic = false; for (const auto *Arg : Args) { // If the arg is fake, it's the user's job to supply it: general parsing // logic shouldn't need to know anything about it. if (Arg->getValueAsBit("Fake")) continue; Arg->getValueAsBit("Optional") ? ++OptCount : ++ArgCount; if (!HasVariadic && isArgVariadic(*Arg, R.getName())) HasVariadic = true; } // If there is a variadic argument, we will set the optional argument count // to its largest value. Since it's currently a 4-bit number, we set it to 15. OS << " NumArgs = " << ArgCount << ";\n"; OS << " OptArgs = " << (HasVariadic ? 15 : OptCount) << ";\n"; } static std::string GetDiagnosticSpelling(const Record &R) { std::string Ret = std::string(R.getValueAsString("DiagSpelling")); if (!Ret.empty()) return Ret; // If we couldn't find the DiagSpelling in this object, we can check to see // if the object is one that has a base, and if it is, loop up to the Base // member recursively. if (auto Base = R.getValueAsOptionalDef(BaseFieldName)) return GetDiagnosticSpelling(*Base); return ""; } static std::string CalculateDiagnostic(const Record &S) { // If the SubjectList object has a custom diagnostic associated with it, // return that directly. const StringRef CustomDiag = S.getValueAsString("CustomDiag"); if (!CustomDiag.empty()) return ("\"" + Twine(CustomDiag) + "\"").str(); std::vector DiagList; std::vector Subjects = S.getValueAsListOfDefs("Subjects"); for (const auto *Subject : Subjects) { const Record &R = *Subject; // Get the diagnostic text from the Decl or Stmt node given. std::string V = GetDiagnosticSpelling(R); if (V.empty()) { PrintError(R.getLoc(), "Could not determine diagnostic spelling for the node: " + R.getName() + "; please add one to DeclNodes.td"); } else { // The node may contain a list of elements itself, so split the elements // by a comma, and trim any whitespace. SmallVector Frags; llvm::SplitString(V, Frags, ","); for (auto Str : Frags) { DiagList.push_back(std::string(Str.trim())); } } } if (DiagList.empty()) { PrintFatalError(S.getLoc(), "Could not deduce diagnostic argument for Attr subjects"); return ""; } // FIXME: this is not particularly good for localization purposes and ideally // should be part of the diagnostics engine itself with some sort of list // specifier. // A single member of the list can be returned directly. if (DiagList.size() == 1) return '"' + DiagList.front() + '"'; if (DiagList.size() == 2) return '"' + DiagList[0] + " and " + DiagList[1] + '"'; // If there are more than two in the list, we serialize the first N - 1 // elements with a comma. This leaves the string in the state: foo, bar, // baz (but misses quux). We can then add ", and " for the last element // manually. std::string Diag = llvm::join(DiagList.begin(), DiagList.end() - 1, ", "); return '"' + Diag + ", and " + *(DiagList.end() - 1) + '"'; } static std::string GetSubjectWithSuffix(const Record *R) { const std::string &B = std::string(R->getName()); if (B == "DeclBase") return "Decl"; return B + "Decl"; } static std::string functionNameForCustomAppertainsTo(const Record &Subject) { return "is" + Subject.getName().str(); } static void GenerateCustomAppertainsTo(const Record &Subject, raw_ostream &OS) { std::string FnName = functionNameForCustomAppertainsTo(Subject); // If this code has already been generated, we don't need to do anything. static std::set CustomSubjectSet; auto I = CustomSubjectSet.find(FnName); if (I != CustomSubjectSet.end()) return; // This only works with non-root Decls. Record *Base = Subject.getValueAsDef(BaseFieldName); // Not currently support custom subjects within custom subjects. if (Base->isSubClassOf("SubsetSubject")) { PrintFatalError(Subject.getLoc(), "SubsetSubjects within SubsetSubjects is not supported"); return; } OS << "static bool " << FnName << "(const Decl *D) {\n"; OS << " if (const auto *S = dyn_cast<"; OS << GetSubjectWithSuffix(Base); OS << ">(D))\n"; OS << " return " << Subject.getValueAsString("CheckCode") << ";\n"; OS << " return false;\n"; OS << "}\n\n"; CustomSubjectSet.insert(FnName); } static void GenerateAppertainsTo(const Record &Attr, raw_ostream &OS) { // If the attribute does not contain a Subjects definition, then use the // default appertainsTo logic. if (Attr.isValueUnset("Subjects")) return; const Record *SubjectObj = Attr.getValueAsDef("Subjects"); std::vector Subjects = SubjectObj->getValueAsListOfDefs("Subjects"); // If the list of subjects is empty, it is assumed that the attribute // appertains to everything. if (Subjects.empty()) return; bool Warn = SubjectObj->getValueAsDef("Diag")->getValueAsBit("Warn"); // Split the subjects into declaration subjects and statement subjects. // FIXME: subset subjects are added to the declaration list until there are // enough statement attributes with custom subject needs to warrant // the implementation effort. std::vector DeclSubjects, StmtSubjects; llvm::copy_if( Subjects, std::back_inserter(DeclSubjects), [](const Record *R) { return R->isSubClassOf("SubsetSubject") || !R->isSubClassOf("StmtNode"); }); llvm::copy_if(Subjects, std::back_inserter(StmtSubjects), [](const Record *R) { return R->isSubClassOf("StmtNode"); }); // We should have sorted all of the subjects into two lists. // FIXME: this assertion will be wrong if we ever add type attribute subjects. assert(DeclSubjects.size() + StmtSubjects.size() == Subjects.size()); if (DeclSubjects.empty()) { // If there are no decl subjects but there are stmt subjects, diagnose // trying to apply a statement attribute to a declaration. if (!StmtSubjects.empty()) { OS << "bool diagAppertainsToDecl(Sema &S, const ParsedAttr &AL, "; OS << "const Decl *D) const override {\n"; OS << " S.Diag(AL.getLoc(), diag::err_stmt_attribute_invalid_on_decl)\n"; OS << " << AL << D->getLocation();\n"; OS << " return false;\n"; OS << "}\n\n"; } } else { // Otherwise, generate an appertainsTo check specific to this attribute // which checks all of the given subjects against the Decl passed in. OS << "bool diagAppertainsToDecl(Sema &S, "; OS << "const ParsedAttr &Attr, const Decl *D) const override {\n"; OS << " if ("; for (auto I = DeclSubjects.begin(), E = DeclSubjects.end(); I != E; ++I) { // If the subject has custom code associated with it, use the generated // function for it. The function cannot be inlined into this check (yet) // because it requires the subject to be of a specific type, and were that // information inlined here, it would not support an attribute with // multiple custom subjects. if ((*I)->isSubClassOf("SubsetSubject")) OS << "!" << functionNameForCustomAppertainsTo(**I) << "(D)"; else OS << "!isa<" << GetSubjectWithSuffix(*I) << ">(D)"; if (I + 1 != E) OS << " && "; } OS << ") {\n"; OS << " S.Diag(Attr.getLoc(), diag::"; OS << (Warn ? "warn_attribute_wrong_decl_type_str" : "err_attribute_wrong_decl_type_str"); OS << ")\n"; OS << " << Attr << "; OS << CalculateDiagnostic(*SubjectObj) << ";\n"; OS << " return false;\n"; OS << " }\n"; OS << " return true;\n"; OS << "}\n\n"; } if (StmtSubjects.empty()) { // If there are no stmt subjects but there are decl subjects, diagnose // trying to apply a declaration attribute to a statement. if (!DeclSubjects.empty()) { OS << "bool diagAppertainsToStmt(Sema &S, const ParsedAttr &AL, "; OS << "const Stmt *St) const override {\n"; OS << " S.Diag(AL.getLoc(), diag::err_decl_attribute_invalid_on_stmt)\n"; OS << " << AL << St->getBeginLoc();\n"; OS << " return false;\n"; OS << "}\n\n"; } } else { // Now, do the same for statements. OS << "bool diagAppertainsToStmt(Sema &S, "; OS << "const ParsedAttr &Attr, const Stmt *St) const override {\n"; OS << " if ("; for (auto I = StmtSubjects.begin(), E = StmtSubjects.end(); I != E; ++I) { OS << "!isa<" << (*I)->getName() << ">(St)"; if (I + 1 != E) OS << " && "; } OS << ") {\n"; OS << " S.Diag(Attr.getLoc(), diag::"; OS << (Warn ? "warn_attribute_wrong_decl_type_str" : "err_attribute_wrong_decl_type_str"); OS << ")\n"; OS << " << Attr << "; OS << CalculateDiagnostic(*SubjectObj) << ";\n"; OS << " return false;\n"; OS << " }\n"; OS << " return true;\n"; OS << "}\n\n"; } } // Generates the mutual exclusion checks. The checks for parsed attributes are // written into OS and the checks for merging declaration attributes are // written into MergeOS. static void GenerateMutualExclusionsChecks(const Record &Attr, const RecordKeeper &Records, raw_ostream &OS, raw_ostream &MergeDeclOS, raw_ostream &MergeStmtOS) { // Find all of the definitions that inherit from MutualExclusions and include // the given attribute in the list of exclusions to generate the // diagMutualExclusion() check. std::vector ExclusionsList = Records.getAllDerivedDefinitions("MutualExclusions"); // We don't do any of this magic for type attributes yet. if (Attr.isSubClassOf("TypeAttr")) return; // This means the attribute is either a statement attribute, a decl // attribute, or both; find out which. bool CurAttrIsStmtAttr = Attr.isSubClassOf("StmtAttr") || Attr.isSubClassOf("DeclOrStmtAttr"); bool CurAttrIsDeclAttr = !CurAttrIsStmtAttr || Attr.isSubClassOf("DeclOrStmtAttr"); std::vector DeclAttrs, StmtAttrs; for (const Record *Exclusion : ExclusionsList) { std::vector MutuallyExclusiveAttrs = Exclusion->getValueAsListOfDefs("Exclusions"); auto IsCurAttr = [Attr](const Record *R) { return R->getName() == Attr.getName(); }; if (llvm::any_of(MutuallyExclusiveAttrs, IsCurAttr)) { // This list of exclusions includes the attribute we're looking for, so // add the exclusive attributes to the proper list for checking. for (const Record *AttrToExclude : MutuallyExclusiveAttrs) { if (IsCurAttr(AttrToExclude)) continue; if (CurAttrIsStmtAttr) StmtAttrs.push_back((AttrToExclude->getName() + "Attr").str()); if (CurAttrIsDeclAttr) DeclAttrs.push_back((AttrToExclude->getName() + "Attr").str()); } } } // If there are any decl or stmt attributes, silence -Woverloaded-virtual // warnings for them both. if (!DeclAttrs.empty() || !StmtAttrs.empty()) OS << " using ParsedAttrInfo::diagMutualExclusion;\n\n"; // If we discovered any decl or stmt attributes to test for, generate the // predicates for them now. if (!DeclAttrs.empty()) { // Generate the ParsedAttrInfo subclass logic for declarations. OS << " bool diagMutualExclusion(Sema &S, const ParsedAttr &AL, " << "const Decl *D) const override {\n"; for (const std::string &A : DeclAttrs) { OS << " if (const auto *A = D->getAttr<" << A << ">()) {\n"; OS << " S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)" << " << AL << A;\n"; OS << " S.Diag(A->getLocation(), diag::note_conflicting_attribute);"; OS << " \nreturn false;\n"; OS << " }\n"; } OS << " return true;\n"; OS << " }\n\n"; // Also generate the declaration attribute merging logic if the current // attribute is one that can be inheritted on a declaration. It is assumed // this code will be executed in the context of a function with parameters: // Sema &S, Decl *D, Attr *A and that returns a bool (false on diagnostic, // true on success). if (Attr.isSubClassOf("InheritableAttr")) { MergeDeclOS << " if (const auto *Second = dyn_cast<" << (Attr.getName() + "Attr").str() << ">(A)) {\n"; for (const std::string &A : DeclAttrs) { MergeDeclOS << " if (const auto *First = D->getAttr<" << A << ">()) {\n"; MergeDeclOS << " S.Diag(First->getLocation(), " << "diag::err_attributes_are_not_compatible) << First << " << "Second;\n"; MergeDeclOS << " S.Diag(Second->getLocation(), " << "diag::note_conflicting_attribute);\n"; MergeDeclOS << " return false;\n"; MergeDeclOS << " }\n"; } MergeDeclOS << " return true;\n"; MergeDeclOS << " }\n"; } } // Statement attributes are a bit different from declarations. With // declarations, each attribute is added to the declaration as it is // processed, and so you can look on the Decl * itself to see if there is a // conflicting attribute. Statement attributes are processed as a group // because AttributedStmt needs to tail-allocate all of the attribute nodes // at once. This means we cannot check whether the statement already contains // an attribute to check for the conflict. Instead, we need to check whether // the given list of semantic attributes contain any conflicts. It is assumed // this code will be executed in the context of a function with parameters: // Sema &S, const SmallVectorImpl &C. The code will be within a // loop which loops over the container C with a loop variable named A to // represent the current attribute to check for conflicts. // // FIXME: it would be nice not to walk over the list of potential attributes // to apply to the statement more than once, but statements typically don't // have long lists of attributes on them, so re-walking the list should not // be an expensive operation. if (!StmtAttrs.empty()) { MergeStmtOS << " if (const auto *Second = dyn_cast<" << (Attr.getName() + "Attr").str() << ">(A)) {\n"; MergeStmtOS << " auto Iter = llvm::find_if(C, [](const Attr *Check) " << "{ return isa<"; interleave( StmtAttrs, [&](const std::string &Name) { MergeStmtOS << Name; }, [&] { MergeStmtOS << ", "; }); MergeStmtOS << ">(Check); });\n"; MergeStmtOS << " if (Iter != C.end()) {\n"; MergeStmtOS << " S.Diag((*Iter)->getLocation(), " << "diag::err_attributes_are_not_compatible) << *Iter << " << "Second;\n"; MergeStmtOS << " S.Diag(Second->getLocation(), " << "diag::note_conflicting_attribute);\n"; MergeStmtOS << " return false;\n"; MergeStmtOS << " }\n"; MergeStmtOS << " }\n"; } } static void emitAttributeMatchRules(PragmaClangAttributeSupport &PragmaAttributeSupport, raw_ostream &OS) { OS << "static bool checkAttributeMatchRuleAppliesTo(const Decl *D, " << AttributeSubjectMatchRule::EnumName << " rule) {\n"; OS << " switch (rule) {\n"; for (const auto &Rule : PragmaAttributeSupport.Rules) { if (Rule.isAbstractRule()) { OS << " case " << Rule.getEnumValue() << ":\n"; OS << " assert(false && \"Abstract matcher rule isn't allowed\");\n"; OS << " return false;\n"; continue; } std::vector Subjects = Rule.getSubjects(); assert(!Subjects.empty() && "Missing subjects"); OS << " case " << Rule.getEnumValue() << ":\n"; OS << " return "; for (auto I = Subjects.begin(), E = Subjects.end(); I != E; ++I) { // If the subject has custom code associated with it, use the function // that was generated for GenerateAppertainsTo to check if the declaration // is valid. if ((*I)->isSubClassOf("SubsetSubject")) OS << functionNameForCustomAppertainsTo(**I) << "(D)"; else OS << "isa<" << GetSubjectWithSuffix(*I) << ">(D)"; if (I + 1 != E) OS << " || "; } OS << ";\n"; } OS << " }\n"; OS << " llvm_unreachable(\"Invalid match rule\");\nreturn false;\n"; OS << "}\n\n"; } static void GenerateLangOptRequirements(const Record &R, raw_ostream &OS) { // If the attribute has an empty or unset list of language requirements, // use the default handler. std::vector LangOpts = R.getValueAsListOfDefs("LangOpts"); if (LangOpts.empty()) return; OS << "bool diagLangOpts(Sema &S, const ParsedAttr &Attr) "; OS << "const override {\n"; OS << " auto &LangOpts = S.LangOpts;\n"; OS << " if (" << GenerateTestExpression(LangOpts) << ")\n"; OS << " return true;\n\n"; OS << " S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) "; OS << "<< Attr;\n"; OS << " return false;\n"; OS << "}\n\n"; } static void GenerateTargetRequirements(const Record &Attr, const ParsedAttrMap &Dupes, raw_ostream &OS) { // If the attribute is not a target specific attribute, use the default // target handler. if (!Attr.isSubClassOf("TargetSpecificAttr")) return; // Get the list of architectures to be tested for. const Record *R = Attr.getValueAsDef("Target"); std::vector Arches = R->getValueAsListOfStrings("Arches"); // If there are other attributes which share the same parsed attribute kind, // such as target-specific attributes with a shared spelling, collapse the // duplicate architectures. This is required because a shared target-specific // attribute has only one ParsedAttr::Kind enumeration value, but it // applies to multiple target architectures. In order for the attribute to be // considered valid, all of its architectures need to be included. if (!Attr.isValueUnset("ParseKind")) { const StringRef APK = Attr.getValueAsString("ParseKind"); for (const auto &I : Dupes) { if (I.first == APK) { std::vector DA = I.second->getValueAsDef("Target")->getValueAsListOfStrings( "Arches"); Arches.insert(Arches.end(), DA.begin(), DA.end()); } } } std::string FnName = "isTarget"; std::string Test; bool UsesT = GenerateTargetSpecificAttrChecks(R, Arches, Test, &FnName); OS << "bool existsInTarget(const TargetInfo &Target) const override {\n"; if (UsesT) OS << " const llvm::Triple &T = Target.getTriple(); (void)T;\n"; OS << " return " << Test << ";\n"; OS << "}\n\n"; } static void GenerateSpellingIndexToSemanticSpelling(const Record &Attr, raw_ostream &OS) { // If the attribute does not have a semantic form, we can bail out early. if (!Attr.getValueAsBit("ASTNode")) return; std::vector Spellings = GetFlattenedSpellings(Attr); // If there are zero or one spellings, or all of the spellings share the same // name, we can also bail out early. if (Spellings.size() <= 1 || SpellingNamesAreCommon(Spellings)) return; // Generate the enumeration we will use for the mapping. SemanticSpellingMap SemanticToSyntacticMap; std::string Enum = CreateSemanticSpellings(Spellings, SemanticToSyntacticMap); std::string Name = Attr.getName().str() + "AttrSpellingMap"; OS << "unsigned spellingIndexToSemanticSpelling("; OS << "const ParsedAttr &Attr) const override {\n"; OS << Enum; OS << " unsigned Idx = Attr.getAttributeSpellingListIndex();\n"; WriteSemanticSpellingSwitch("Idx", SemanticToSyntacticMap, OS); OS << "}\n\n"; } static void GenerateHandleDeclAttribute(const Record &Attr, raw_ostream &OS) { // Only generate if Attr can be handled simply. if (!Attr.getValueAsBit("SimpleHandler")) return; // Generate a function which just converts from ParsedAttr to the Attr type. OS << "AttrHandling handleDeclAttribute(Sema &S, Decl *D,"; OS << "const ParsedAttr &Attr) const override {\n"; OS << " D->addAttr(::new (S.Context) " << Attr.getName(); OS << "Attr(S.Context, Attr));\n"; OS << " return AttributeApplied;\n"; OS << "}\n\n"; } static bool IsKnownToGCC(const Record &Attr) { // Look at the spellings for this subject; if there are any spellings which // claim to be known to GCC, the attribute is known to GCC. return llvm::any_of( GetFlattenedSpellings(Attr), [](const FlattenedSpelling &S) { return S.knownToGCC(); }); } /// Emits the parsed attribute helpers void EmitClangAttrParsedAttrImpl(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Parsed attribute helpers", OS); OS << "#if !defined(WANT_DECL_MERGE_LOGIC) && " << "!defined(WANT_STMT_MERGE_LOGIC)\n"; PragmaClangAttributeSupport &PragmaAttributeSupport = getPragmaAttributeSupport(Records); // Get the list of parsed attributes, and accept the optional list of // duplicates due to the ParseKind. ParsedAttrMap Dupes; ParsedAttrMap Attrs = getParsedAttrList(Records, &Dupes); // Generate all of the custom appertainsTo functions that the attributes // will be using. for (auto I : Attrs) { const Record &Attr = *I.second; if (Attr.isValueUnset("Subjects")) continue; const Record *SubjectObj = Attr.getValueAsDef("Subjects"); for (auto Subject : SubjectObj->getValueAsListOfDefs("Subjects")) if (Subject->isSubClassOf("SubsetSubject")) GenerateCustomAppertainsTo(*Subject, OS); } // This stream is used to collect all of the declaration attribute merging // logic for performing mutual exclusion checks. This gets emitted at the // end of the file in a helper function of its own. std::string DeclMergeChecks, StmtMergeChecks; raw_string_ostream MergeDeclOS(DeclMergeChecks), MergeStmtOS(StmtMergeChecks); // Generate a ParsedAttrInfo struct for each of the attributes. for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) { // TODO: If the attribute's kind appears in the list of duplicates, that is // because it is a target-specific attribute that appears multiple times. // It would be beneficial to test whether the duplicates are "similar // enough" to each other to not cause problems. For instance, check that // the spellings are identical, and custom parsing rules match, etc. // We need to generate struct instances based off ParsedAttrInfo from // ParsedAttr.cpp. const std::string &AttrName = I->first; const Record &Attr = *I->second; auto Spellings = GetFlattenedSpellings(Attr); if (!Spellings.empty()) { OS << "static constexpr ParsedAttrInfo::Spelling " << I->first << "Spellings[] = {\n"; for (const auto &S : Spellings) { const std::string &RawSpelling = S.name(); std::string Spelling; if (!S.nameSpace().empty()) Spelling += S.nameSpace() + "::"; if (S.variety() == "GNU") Spelling += NormalizeGNUAttrSpelling(RawSpelling); else Spelling += RawSpelling; OS << " {AttributeCommonInfo::AS_" << S.variety(); OS << ", \"" << Spelling << "\"},\n"; } OS << "};\n"; } OS << "struct ParsedAttrInfo" << I->first << " final : public ParsedAttrInfo {\n"; OS << " ParsedAttrInfo" << I->first << "() {\n"; OS << " AttrKind = ParsedAttr::AT_" << AttrName << ";\n"; emitArgInfo(Attr, OS); OS << " HasCustomParsing = "; OS << Attr.getValueAsBit("HasCustomParsing") << ";\n"; OS << " IsTargetSpecific = "; OS << Attr.isSubClassOf("TargetSpecificAttr") << ";\n"; OS << " IsType = "; OS << (Attr.isSubClassOf("TypeAttr") || Attr.isSubClassOf("DeclOrTypeAttr")) << ";\n"; OS << " IsStmt = "; OS << (Attr.isSubClassOf("StmtAttr") || Attr.isSubClassOf("DeclOrStmtAttr")) << ";\n"; OS << " IsKnownToGCC = "; OS << IsKnownToGCC(Attr) << ";\n"; OS << " IsSupportedByPragmaAttribute = "; OS << PragmaAttributeSupport.isAttributedSupported(*I->second) << ";\n"; if (!Spellings.empty()) OS << " Spellings = " << I->first << "Spellings;\n"; OS << " }\n"; GenerateAppertainsTo(Attr, OS); GenerateMutualExclusionsChecks(Attr, Records, OS, MergeDeclOS, MergeStmtOS); GenerateLangOptRequirements(Attr, OS); GenerateTargetRequirements(Attr, Dupes, OS); GenerateSpellingIndexToSemanticSpelling(Attr, OS); PragmaAttributeSupport.generateStrictConformsTo(*I->second, OS); GenerateHandleDeclAttribute(Attr, OS); OS << "static const ParsedAttrInfo" << I->first << " Instance;\n"; OS << "};\n"; OS << "const ParsedAttrInfo" << I->first << " ParsedAttrInfo" << I->first << "::Instance;\n"; } OS << "static const ParsedAttrInfo *AttrInfoMap[] = {\n"; for (auto I = Attrs.begin(), E = Attrs.end(); I != E; ++I) { OS << "&ParsedAttrInfo" << I->first << "::Instance,\n"; } OS << "};\n\n"; // Generate the attribute match rules. emitAttributeMatchRules(PragmaAttributeSupport, OS); OS << "#elif defined(WANT_DECL_MERGE_LOGIC)\n\n"; // Write out the declaration merging check logic. OS << "static bool DiagnoseMutualExclusions(Sema &S, const NamedDecl *D, " << "const Attr *A) {\n"; OS << MergeDeclOS.str(); OS << " return true;\n"; OS << "}\n\n"; OS << "#elif defined(WANT_STMT_MERGE_LOGIC)\n\n"; // Write out the statement merging check logic. OS << "static bool DiagnoseMutualExclusions(Sema &S, " << "const SmallVectorImpl &C) {\n"; OS << " for (const Attr *A : C) {\n"; OS << MergeStmtOS.str(); OS << " }\n"; OS << " return true;\n"; OS << "}\n\n"; OS << "#endif\n"; } // Emits the kind list of parsed attributes void EmitClangAttrParsedAttrKinds(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Attribute name matcher", OS); std::vector Attrs = Records.getAllDerivedDefinitions("Attr"); std::vector GNU, Declspec, Microsoft, CXX11, Keywords, Pragma, C2x; std::set Seen; for (const auto *A : Attrs) { const Record &Attr = *A; bool SemaHandler = Attr.getValueAsBit("SemaHandler"); bool Ignored = Attr.getValueAsBit("Ignored"); if (SemaHandler || Ignored) { // Attribute spellings can be shared between target-specific attributes, // and can be shared between syntaxes for the same attribute. For // instance, an attribute can be spelled GNU<"interrupt"> for an ARM- // specific attribute, or MSP430-specific attribute. Additionally, an // attribute can be spelled GNU<"dllexport"> and Declspec<"dllexport"> // for the same semantic attribute. Ultimately, we need to map each of // these to a single AttributeCommonInfo::Kind value, but the // StringMatcher class cannot handle duplicate match strings. So we // generate a list of string to match based on the syntax, and emit // multiple string matchers depending on the syntax used. std::string AttrName; if (Attr.isSubClassOf("TargetSpecificAttr") && !Attr.isValueUnset("ParseKind")) { AttrName = std::string(Attr.getValueAsString("ParseKind")); if (Seen.find(AttrName) != Seen.end()) continue; Seen.insert(AttrName); } else AttrName = NormalizeAttrName(StringRef(Attr.getName())).str(); std::vector Spellings = GetFlattenedSpellings(Attr); for (const auto &S : Spellings) { const std::string &RawSpelling = S.name(); std::vector *Matches = nullptr; std::string Spelling; const std::string &Variety = S.variety(); if (Variety == "CXX11") { Matches = &CXX11; if (!S.nameSpace().empty()) Spelling += S.nameSpace() + "::"; } else if (Variety == "C2x") { Matches = &C2x; if (!S.nameSpace().empty()) Spelling += S.nameSpace() + "::"; } else if (Variety == "GNU") Matches = &GNU; else if (Variety == "Declspec") Matches = &Declspec; else if (Variety == "Microsoft") Matches = &Microsoft; else if (Variety == "Keyword") Matches = &Keywords; else if (Variety == "Pragma") Matches = &Pragma; assert(Matches && "Unsupported spelling variety found"); if (Variety == "GNU") Spelling += NormalizeGNUAttrSpelling(RawSpelling); else Spelling += RawSpelling; if (SemaHandler) Matches->push_back(StringMatcher::StringPair( Spelling, "return AttributeCommonInfo::AT_" + AttrName + ";")); else Matches->push_back(StringMatcher::StringPair( Spelling, "return AttributeCommonInfo::IgnoredAttribute;")); } } } OS << "static AttributeCommonInfo::Kind getAttrKind(StringRef Name, "; OS << "AttributeCommonInfo::Syntax Syntax) {\n"; OS << " if (AttributeCommonInfo::AS_GNU == Syntax) {\n"; StringMatcher("Name", GNU, OS).Emit(); OS << " } else if (AttributeCommonInfo::AS_Declspec == Syntax) {\n"; StringMatcher("Name", Declspec, OS).Emit(); OS << " } else if (AttributeCommonInfo::AS_Microsoft == Syntax) {\n"; StringMatcher("Name", Microsoft, OS).Emit(); OS << " } else if (AttributeCommonInfo::AS_CXX11 == Syntax) {\n"; StringMatcher("Name", CXX11, OS).Emit(); OS << " } else if (AttributeCommonInfo::AS_C2x == Syntax) {\n"; StringMatcher("Name", C2x, OS).Emit(); OS << " } else if (AttributeCommonInfo::AS_Keyword == Syntax || "; OS << "AttributeCommonInfo::AS_ContextSensitiveKeyword == Syntax) {\n"; StringMatcher("Name", Keywords, OS).Emit(); OS << " } else if (AttributeCommonInfo::AS_Pragma == Syntax) {\n"; StringMatcher("Name", Pragma, OS).Emit(); OS << " }\n"; OS << " return AttributeCommonInfo::UnknownAttribute;\n" << "}\n"; } // Emits the code to dump an attribute. void EmitClangAttrTextNodeDump(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Attribute text node dumper", OS); std::vector Attrs = Records.getAllDerivedDefinitions("Attr"), Args; for (const auto *Attr : Attrs) { const Record &R = *Attr; if (!R.getValueAsBit("ASTNode")) continue; // If the attribute has a semantically-meaningful name (which is determined // by whether there is a Spelling enumeration for it), then write out the // spelling used for the attribute. std::string FunctionContent; llvm::raw_string_ostream SS(FunctionContent); std::vector Spellings = GetFlattenedSpellings(R); if (Spellings.size() > 1 && !SpellingNamesAreCommon(Spellings)) SS << " OS << \" \" << A->getSpelling();\n"; Args = R.getValueAsListOfDefs("Args"); for (const auto *Arg : Args) createArgument(*Arg, R.getName())->writeDump(SS); if (SS.tell()) { OS << " void Visit" << R.getName() << "Attr(const " << R.getName() << "Attr *A) {\n"; if (!Args.empty()) OS << " const auto *SA = cast<" << R.getName() << "Attr>(A); (void)SA;\n"; OS << SS.str(); OS << " }\n"; } } } void EmitClangAttrNodeTraverse(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Attribute text node traverser", OS); std::vector Attrs = Records.getAllDerivedDefinitions("Attr"), Args; for (const auto *Attr : Attrs) { const Record &R = *Attr; if (!R.getValueAsBit("ASTNode")) continue; std::string FunctionContent; llvm::raw_string_ostream SS(FunctionContent); Args = R.getValueAsListOfDefs("Args"); for (const auto *Arg : Args) createArgument(*Arg, R.getName())->writeDumpChildren(SS); if (SS.tell()) { OS << " void Visit" << R.getName() << "Attr(const " << R.getName() << "Attr *A) {\n"; if (!Args.empty()) OS << " const auto *SA = cast<" << R.getName() << "Attr>(A); (void)SA;\n"; OS << SS.str(); OS << " }\n"; } } } void EmitClangAttrParserStringSwitches(RecordKeeper &Records, raw_ostream &OS) { emitSourceFileHeader("Parser-related llvm::StringSwitch cases", OS); emitClangAttrArgContextList(Records, OS); emitClangAttrIdentifierArgList(Records, OS); emitClangAttrVariadicIdentifierArgList(Records, OS); emitClangAttrThisIsaIdentifierArgList(Records, OS); emitClangAttrTypeArgList(Records, OS); emitClangAttrLateParsedList(Records, OS); } void EmitClangAttrSubjectMatchRulesParserStringSwitches(RecordKeeper &Records, raw_ostream &OS) { getPragmaAttributeSupport(Records).generateParsingHelpers(OS); } enum class SpellingKind { GNU, CXX11, C2x, Declspec, Microsoft, Keyword, Pragma, }; static const size_t NumSpellingKinds = (size_t)SpellingKind::Pragma + 1; class SpellingList { std::vector Spellings[NumSpellingKinds]; public: ArrayRef operator[](SpellingKind K) const { return Spellings[(size_t)K]; } void add(const Record &Attr, FlattenedSpelling Spelling) { SpellingKind Kind = StringSwitch(Spelling.variety()) .Case("GNU", SpellingKind::GNU) .Case("CXX11", SpellingKind::CXX11) .Case("C2x", SpellingKind::C2x) .Case("Declspec", SpellingKind::Declspec) .Case("Microsoft", SpellingKind::Microsoft) .Case("Keyword", SpellingKind::Keyword) .Case("Pragma", SpellingKind::Pragma); std::string Name; if (!Spelling.nameSpace().empty()) { switch (Kind) { case SpellingKind::CXX11: case SpellingKind::C2x: Name = Spelling.nameSpace() + "::"; break; case SpellingKind::Pragma: Name = Spelling.nameSpace() + " "; break; default: PrintFatalError(Attr.getLoc(), "Unexpected namespace in spelling"); } } Name += Spelling.name(); Spellings[(size_t)Kind].push_back(Name); } }; class DocumentationData { public: const Record *Documentation; const Record *Attribute; std::string Heading; SpellingList SupportedSpellings; DocumentationData(const Record &Documentation, const Record &Attribute, std::pair HeadingAndSpellings) : Documentation(&Documentation), Attribute(&Attribute), Heading(std::move(HeadingAndSpellings.first)), SupportedSpellings(std::move(HeadingAndSpellings.second)) {} }; static void WriteCategoryHeader(const Record *DocCategory, raw_ostream &OS) { const StringRef Name = DocCategory->getValueAsString("Name"); OS << Name << "\n" << std::string(Name.size(), '=') << "\n"; // If there is content, print that as well. const StringRef ContentStr = DocCategory->getValueAsString("Content"); // Trim leading and trailing newlines and spaces. OS << ContentStr.trim(); OS << "\n\n"; } static std::pair GetAttributeHeadingAndSpellings(const Record &Documentation, const Record &Attribute) { // FIXME: there is no way to have a per-spelling category for the attribute // documentation. This may not be a limiting factor since the spellings // should generally be consistently applied across the category. std::vector Spellings = GetFlattenedSpellings(Attribute); if (Spellings.empty()) PrintFatalError(Attribute.getLoc(), "Attribute has no supported spellings; cannot be " "documented"); // Determine the heading to be used for this attribute. std::string Heading = std::string(Documentation.getValueAsString("Heading")); if (Heading.empty()) { // If there's only one spelling, we can simply use that. if (Spellings.size() == 1) Heading = Spellings.begin()->name(); else { std::set Uniques; for (auto I = Spellings.begin(), E = Spellings.end(); I != E && Uniques.size() <= 1; ++I) { std::string Spelling = std::string(NormalizeNameForSpellingComparison(I->name())); Uniques.insert(Spelling); } // If the semantic map has only one spelling, that is sufficient for our // needs. if (Uniques.size() == 1) Heading = *Uniques.begin(); } } // If the heading is still empty, it is an error. if (Heading.empty()) PrintFatalError(Attribute.getLoc(), "This attribute requires a heading to be specified"); SpellingList SupportedSpellings; for (const auto &I : Spellings) SupportedSpellings.add(Attribute, I); return std::make_pair(std::move(Heading), std::move(SupportedSpellings)); } static void WriteDocumentation(RecordKeeper &Records, const DocumentationData &Doc, raw_ostream &OS) { OS << Doc.Heading << "\n" << std::string(Doc.Heading.length(), '-') << "\n"; // List what spelling syntaxes the attribute supports. OS << ".. csv-table:: Supported Syntaxes\n"; OS << " :header: \"GNU\", \"C++11\", \"C2x\", \"``__declspec``\","; OS << " \"Keyword\", \"``#pragma``\", \"``#pragma clang attribute``\"\n\n"; OS << " \""; for (size_t Kind = 0; Kind != NumSpellingKinds; ++Kind) { SpellingKind K = (SpellingKind)Kind; // TODO: List Microsoft (IDL-style attribute) spellings once we fully // support them. if (K == SpellingKind::Microsoft) continue; bool PrintedAny = false; for (StringRef Spelling : Doc.SupportedSpellings[K]) { if (PrintedAny) OS << " |br| "; OS << "``" << Spelling << "``"; PrintedAny = true; } OS << "\",\""; } if (getPragmaAttributeSupport(Records).isAttributedSupported( *Doc.Attribute)) OS << "Yes"; OS << "\"\n\n"; // If the attribute is deprecated, print a message about it, and possibly // provide a replacement attribute. if (!Doc.Documentation->isValueUnset("Deprecated")) { OS << "This attribute has been deprecated, and may be removed in a future " << "version of Clang."; const Record &Deprecated = *Doc.Documentation->getValueAsDef("Deprecated"); const StringRef Replacement = Deprecated.getValueAsString("Replacement"); if (!Replacement.empty()) OS << " This attribute has been superseded by ``" << Replacement << "``."; OS << "\n\n"; } const StringRef ContentStr = Doc.Documentation->getValueAsString("Content"); // Trim leading and trailing newlines and spaces. OS << ContentStr.trim(); OS << "\n\n\n"; } void EmitClangAttrDocs(RecordKeeper &Records, raw_ostream &OS) { // Get the documentation introduction paragraph. const Record *Documentation = Records.getDef("GlobalDocumentation"); if (!Documentation) { PrintFatalError("The Documentation top-level definition is missing, " "no documentation will be generated."); return; } OS << Documentation->getValueAsString("Intro") << "\n"; // Gather the Documentation lists from each of the attributes, based on the // category provided. std::vector Attrs = Records.getAllDerivedDefinitions("Attr"); std::map> SplitDocs; for (const auto *A : Attrs) { const Record &Attr = *A; std::vector Docs = Attr.getValueAsListOfDefs("Documentation"); for (const auto *D : Docs) { const Record &Doc = *D; const Record *Category = Doc.getValueAsDef("Category"); // If the category is "undocumented", then there cannot be any other // documentation categories (otherwise, the attribute would become // documented). const StringRef Cat = Category->getValueAsString("Name"); bool Undocumented = Cat == "Undocumented"; if (Undocumented && Docs.size() > 1) PrintFatalError(Doc.getLoc(), "Attribute is \"Undocumented\", but has multiple " "documentation categories"); if (!Undocumented) SplitDocs[Category].push_back(DocumentationData( Doc, Attr, GetAttributeHeadingAndSpellings(Doc, Attr))); } } // Having split the attributes out based on what documentation goes where, // we can begin to generate sections of documentation. for (auto &I : SplitDocs) { WriteCategoryHeader(I.first, OS); llvm::sort(I.second, [](const DocumentationData &D1, const DocumentationData &D2) { return D1.Heading < D2.Heading; }); // Walk over each of the attributes in the category and write out their // documentation. for (const auto &Doc : I.second) WriteDocumentation(Records, Doc, OS); } } void EmitTestPragmaAttributeSupportedAttributes(RecordKeeper &Records, raw_ostream &OS) { PragmaClangAttributeSupport Support = getPragmaAttributeSupport(Records); ParsedAttrMap Attrs = getParsedAttrList(Records); OS << "#pragma clang attribute supports the following attributes:\n"; for (const auto &I : Attrs) { if (!Support.isAttributedSupported(*I.second)) continue; OS << I.first; if (I.second->isValueUnset("Subjects")) { OS << " ()\n"; continue; } const Record *SubjectObj = I.second->getValueAsDef("Subjects"); std::vector Subjects = SubjectObj->getValueAsListOfDefs("Subjects"); OS << " ("; bool PrintComma = false; for (const auto &Subject : llvm::enumerate(Subjects)) { if (!isSupportedPragmaClangAttributeSubject(*Subject.value())) continue; if (PrintComma) OS << ", "; PrintComma = true; PragmaClangAttributeSupport::RuleOrAggregateRuleSet &RuleSet = Support.SubjectsToRules.find(Subject.value())->getSecond(); if (RuleSet.isRule()) { OS << RuleSet.getRule().getEnumValueName(); continue; } OS << "("; for (const auto &Rule : llvm::enumerate(RuleSet.getAggregateRuleSet())) { if (Rule.index()) OS << ", "; OS << Rule.value().getEnumValueName(); } OS << ")"; } OS << ")\n"; } OS << "End of supported attributes.\n"; } } // end namespace clang