// This is an open source non-commercial project. Dear PVS-Studio, please check // it. PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com /// mbyte.c: Code specifically for handling multi-byte characters. /// Multibyte extensions partly by Sung-Hoon Baek /// /// Strings internal to Nvim are always encoded as UTF-8 (thus the legacy /// 'encoding' option is always "utf-8"). /// /// The cell width on the display needs to be determined from the character /// value. Recognizing UTF-8 bytes is easy: 0xxx.xxxx is a single-byte char, /// 10xx.xxxx is a trailing byte, 11xx.xxxx is a leading byte of a multi-byte /// character. To make things complicated, up to six composing characters /// are allowed. These are drawn on top of the first char. For most editing /// the sequence of bytes with composing characters included is considered to /// be one character. /// /// UTF-8 is used everywhere in the core. This is in registers, text /// manipulation, buffers, etc. Nvim core communicates with external plugins /// and GUIs in this encoding. /// /// The encoding of a file is specified with 'fileencoding'. Conversion /// is to be done when it's different from "utf-8". /// /// Vim scripts may contain an ":scriptencoding" command. This has an effect /// for some commands, like ":menutrans". #include #include #include #include #include #include "nvim/ascii.h" #include "nvim/vim.h" #ifdef HAVE_LOCALE_H # include #endif #include "nvim/arabic.h" #include "nvim/charset.h" #include "nvim/cursor.h" #include "nvim/eval.h" #include "nvim/fileio.h" #include "nvim/func_attr.h" #include "nvim/iconv.h" #include "nvim/mark.h" #include "nvim/mbyte.h" #include "nvim/memline.h" #include "nvim/memory.h" #include "nvim/message.h" #include "nvim/misc1.h" #include "nvim/option.h" #include "nvim/os/os.h" #include "nvim/path.h" #include "nvim/screen.h" #include "nvim/spell.h" #include "nvim/strings.h" typedef struct { int rangeStart; int rangeEnd; int step; int offset; } convertStruct; struct interval { long first; long last; }; #ifdef INCLUDE_GENERATED_DECLARATIONS # include "mbyte.c.generated.h" # include "unicode_tables.generated.h" #endif // To speed up BYTELEN(); keep a lookup table to quickly get the length in // bytes of a UTF-8 character from the first byte of a UTF-8 string. Bytes // which are illegal when used as the first byte have a 1. The NUL byte has // length 1. const uint8_t utf8len_tab[] = { // ?1 ?2 ?3 ?4 ?5 ?6 ?7 ?8 ?9 ?A ?B ?C ?D ?E ?F 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 0? 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 1? 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 2? 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 3? 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 4? 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 5? 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 6? 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 7? 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 8? 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 9? 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // A? 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // B? 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // C? 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // D? 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, // E? 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 1, 1, // F? }; // Like utf8len_tab above, but using a zero for illegal lead bytes. const uint8_t utf8len_tab_zero[] = { // ?1 ?2 ?3 ?4 ?5 ?6 ?7 ?8 ?9 ?A ?B ?C ?D ?E ?F 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 0? 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 1? 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 2? 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 3? 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 4? 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 5? 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 6? 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 7? 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 8? 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 9? 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // A? 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // B? 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // C? 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // D? 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, // E? 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 0, 0, // F? }; /* * Canonical encoding names and their properties. * "iso-8859-n" is handled by enc_canonize() directly. */ static struct { const char *name; int prop; int codepage; } enc_canon_table[] = { #define IDX_LATIN_1 0 { "latin1", ENC_8BIT + ENC_LATIN1, 1252 }, #define IDX_ISO_2 1 { "iso-8859-2", ENC_8BIT, 0 }, #define IDX_ISO_3 2 { "iso-8859-3", ENC_8BIT, 0 }, #define IDX_ISO_4 3 { "iso-8859-4", ENC_8BIT, 0 }, #define IDX_ISO_5 4 { "iso-8859-5", ENC_8BIT, 0 }, #define IDX_ISO_6 5 { "iso-8859-6", ENC_8BIT, 0 }, #define IDX_ISO_7 6 { "iso-8859-7", ENC_8BIT, 0 }, #define IDX_ISO_8 7 { "iso-8859-8", ENC_8BIT, 0 }, #define IDX_ISO_9 8 { "iso-8859-9", ENC_8BIT, 0 }, #define IDX_ISO_10 9 { "iso-8859-10", ENC_8BIT, 0 }, #define IDX_ISO_11 10 { "iso-8859-11", ENC_8BIT, 0 }, #define IDX_ISO_13 11 { "iso-8859-13", ENC_8BIT, 0 }, #define IDX_ISO_14 12 { "iso-8859-14", ENC_8BIT, 0 }, #define IDX_ISO_15 13 { "iso-8859-15", ENC_8BIT + ENC_LATIN9, 0 }, #define IDX_KOI8_R 14 { "koi8-r", ENC_8BIT, 0 }, #define IDX_KOI8_U 15 { "koi8-u", ENC_8BIT, 0 }, #define IDX_UTF8 16 { "utf-8", ENC_UNICODE, 0 }, #define IDX_UCS2 17 { "ucs-2", ENC_UNICODE + ENC_ENDIAN_B + ENC_2BYTE, 0 }, #define IDX_UCS2LE 18 { "ucs-2le", ENC_UNICODE + ENC_ENDIAN_L + ENC_2BYTE, 0 }, #define IDX_UTF16 19 { "utf-16", ENC_UNICODE + ENC_ENDIAN_B + ENC_2WORD, 0 }, #define IDX_UTF16LE 20 { "utf-16le", ENC_UNICODE + ENC_ENDIAN_L + ENC_2WORD, 0 }, #define IDX_UCS4 21 { "ucs-4", ENC_UNICODE + ENC_ENDIAN_B + ENC_4BYTE, 0 }, #define IDX_UCS4LE 22 { "ucs-4le", ENC_UNICODE + ENC_ENDIAN_L + ENC_4BYTE, 0 }, // For debugging DBCS encoding on Unix. #define IDX_DEBUG 23 { "debug", ENC_DBCS, DBCS_DEBUG }, #define IDX_EUC_JP 24 { "euc-jp", ENC_DBCS, DBCS_JPNU }, #define IDX_SJIS 25 { "sjis", ENC_DBCS, DBCS_JPN }, #define IDX_EUC_KR 26 { "euc-kr", ENC_DBCS, DBCS_KORU }, #define IDX_EUC_CN 27 { "euc-cn", ENC_DBCS, DBCS_CHSU }, #define IDX_EUC_TW 28 { "euc-tw", ENC_DBCS, DBCS_CHTU }, #define IDX_BIG5 29 { "big5", ENC_DBCS, DBCS_CHT }, // MS-DOS and MS-Windows codepages are included here, so that they can be // used on Unix too. Most of them are similar to ISO-8859 encodings, but // not exactly the same. #define IDX_CP437 30 { "cp437", ENC_8BIT, 437 }, // like iso-8859-1 #define IDX_CP737 31 { "cp737", ENC_8BIT, 737 }, // like iso-8859-7 #define IDX_CP775 32 { "cp775", ENC_8BIT, 775 }, // Baltic #define IDX_CP850 33 { "cp850", ENC_8BIT, 850 }, // like iso-8859-4 #define IDX_CP852 34 { "cp852", ENC_8BIT, 852 }, // like iso-8859-1 #define IDX_CP855 35 { "cp855", ENC_8BIT, 855 }, // like iso-8859-2 #define IDX_CP857 36 { "cp857", ENC_8BIT, 857 }, // like iso-8859-5 #define IDX_CP860 37 { "cp860", ENC_8BIT, 860 }, // like iso-8859-9 #define IDX_CP861 38 { "cp861", ENC_8BIT, 861 }, // like iso-8859-1 #define IDX_CP862 39 { "cp862", ENC_8BIT, 862 }, // like iso-8859-1 #define IDX_CP863 40 { "cp863", ENC_8BIT, 863 }, // like iso-8859-8 #define IDX_CP865 41 { "cp865", ENC_8BIT, 865 }, // like iso-8859-1 #define IDX_CP866 42 { "cp866", ENC_8BIT, 866 }, // like iso-8859-5 #define IDX_CP869 43 { "cp869", ENC_8BIT, 869 }, // like iso-8859-7 #define IDX_CP874 44 { "cp874", ENC_8BIT, 874 }, // Thai #define IDX_CP932 45 { "cp932", ENC_DBCS, DBCS_JPN }, #define IDX_CP936 46 { "cp936", ENC_DBCS, DBCS_CHS }, #define IDX_CP949 47 { "cp949", ENC_DBCS, DBCS_KOR }, #define IDX_CP950 48 { "cp950", ENC_DBCS, DBCS_CHT }, #define IDX_CP1250 49 { "cp1250", ENC_8BIT, 1250 }, // Czech, Polish, etc. #define IDX_CP1251 50 { "cp1251", ENC_8BIT, 1251 }, // Cyrillic // cp1252 is considered to be equal to latin1 #define IDX_CP1253 51 { "cp1253", ENC_8BIT, 1253 }, // Greek #define IDX_CP1254 52 { "cp1254", ENC_8BIT, 1254 }, // Turkish #define IDX_CP1255 53 { "cp1255", ENC_8BIT, 1255 }, // Hebrew #define IDX_CP1256 54 { "cp1256", ENC_8BIT, 1256 }, // Arabic #define IDX_CP1257 55 { "cp1257", ENC_8BIT, 1257 }, // Baltic #define IDX_CP1258 56 { "cp1258", ENC_8BIT, 1258 }, // Vietnamese #define IDX_MACROMAN 57 { "macroman", ENC_8BIT + ENC_MACROMAN, 0 }, // Mac OS #define IDX_HPROMAN8 58 { "hp-roman8", ENC_8BIT, 0 }, // HP Roman8 #define IDX_COUNT 59 }; /* * Aliases for encoding names. */ static struct { const char *name; int canon; } enc_alias_table[] = { { "ansi", IDX_LATIN_1 }, { "iso-8859-1", IDX_LATIN_1 }, { "latin2", IDX_ISO_2 }, { "latin3", IDX_ISO_3 }, { "latin4", IDX_ISO_4 }, { "cyrillic", IDX_ISO_5 }, { "arabic", IDX_ISO_6 }, { "greek", IDX_ISO_7 }, { "hebrew", IDX_ISO_8 }, { "latin5", IDX_ISO_9 }, { "turkish", IDX_ISO_9 }, // ? { "latin6", IDX_ISO_10 }, { "nordic", IDX_ISO_10 }, // ? { "thai", IDX_ISO_11 }, // ? { "latin7", IDX_ISO_13 }, { "latin8", IDX_ISO_14 }, { "latin9", IDX_ISO_15 }, { "utf8", IDX_UTF8 }, { "unicode", IDX_UCS2 }, { "ucs2", IDX_UCS2 }, { "ucs2be", IDX_UCS2 }, { "ucs-2be", IDX_UCS2 }, { "ucs2le", IDX_UCS2LE }, { "utf16", IDX_UTF16 }, { "utf16be", IDX_UTF16 }, { "utf-16be", IDX_UTF16 }, { "utf16le", IDX_UTF16LE }, { "ucs4", IDX_UCS4 }, { "ucs4be", IDX_UCS4 }, { "ucs-4be", IDX_UCS4 }, { "ucs4le", IDX_UCS4LE }, { "utf32", IDX_UCS4 }, { "utf-32", IDX_UCS4 }, { "utf32be", IDX_UCS4 }, { "utf-32be", IDX_UCS4 }, { "utf32le", IDX_UCS4LE }, { "utf-32le", IDX_UCS4LE }, { "932", IDX_CP932 }, { "949", IDX_CP949 }, { "936", IDX_CP936 }, { "gbk", IDX_CP936 }, { "950", IDX_CP950 }, { "eucjp", IDX_EUC_JP }, { "unix-jis", IDX_EUC_JP }, { "ujis", IDX_EUC_JP }, { "shift-jis", IDX_SJIS }, { "pck", IDX_SJIS }, // Sun: PCK { "euckr", IDX_EUC_KR }, { "5601", IDX_EUC_KR }, // Sun: KS C 5601 { "euccn", IDX_EUC_CN }, { "gb2312", IDX_EUC_CN }, { "euctw", IDX_EUC_TW }, { "japan", IDX_EUC_JP }, { "korea", IDX_EUC_KR }, { "prc", IDX_EUC_CN }, { "zh-cn", IDX_EUC_CN }, { "chinese", IDX_EUC_CN }, { "zh-tw", IDX_EUC_TW }, { "taiwan", IDX_EUC_TW }, { "cp950", IDX_BIG5 }, { "950", IDX_BIG5 }, { "mac", IDX_MACROMAN }, { "mac-roman", IDX_MACROMAN }, { NULL, 0 } }; /* * Find encoding "name" in the list of canonical encoding names. * Returns -1 if not found. */ static int enc_canon_search(const char_u *name) { int i; for (i = 0; i < IDX_COUNT; ++i) { if (STRCMP(name, enc_canon_table[i].name) == 0) { return i; } } return -1; } /* * Find canonical encoding "name" in the list and return its properties. * Returns 0 if not found. */ int enc_canon_props(const char_u *name) { int i; i = enc_canon_search(name); if (i >= 0) { return enc_canon_table[i].prop; } else if (STRNCMP(name, "2byte-", 6) == 0) { return ENC_DBCS; } else if (STRNCMP(name, "8bit-", 5) == 0 || STRNCMP(name, "iso-8859-", 9) == 0) { return ENC_8BIT; } return 0; } /* * Return the size of the BOM for the current buffer: * 0 - no BOM * 2 - UCS-2 or UTF-16 BOM * 4 - UCS-4 BOM * 3 - UTF-8 BOM */ int bomb_size(void) { int n = 0; if (curbuf->b_p_bomb && !curbuf->b_p_bin) { if (*curbuf->b_p_fenc == NUL || STRCMP(curbuf->b_p_fenc, "utf-8") == 0) { n = 3; } else if (STRNCMP(curbuf->b_p_fenc, "ucs-2", 5) == 0 || STRNCMP(curbuf->b_p_fenc, "utf-16", 6) == 0) { n = 2; } else if (STRNCMP(curbuf->b_p_fenc, "ucs-4", 5) == 0) { n = 4; } } return n; } /* * Remove all BOM from "s" by moving remaining text. */ void remove_bom(char_u *s) { char *p = (char *)s; while ((p = strchr(p, 0xef)) != NULL) { if ((uint8_t)p[1] == 0xbb && (uint8_t)p[2] == 0xbf) { STRMOVE(p, p + 3); } else { p++; } } } /* * Get class of pointer: * 0 for blank or NUL * 1 for punctuation * 2 for an (ASCII) word character * >2 for other word characters */ int mb_get_class(const char_u *p) { return mb_get_class_tab(p, curbuf->b_chartab); } int mb_get_class_tab(const char_u *p, const uint64_t *const chartab) { if (MB_BYTE2LEN(p[0]) == 1) { if (p[0] == NUL || ascii_iswhite(p[0])) { return 0; } if (vim_iswordc_tab(p[0], chartab)) { return 2; } return 1; } return utf_class_tab(utf_ptr2char(p), chartab); } /* * Return true if "c" is in "table". */ static bool intable(const struct interval *table, size_t n_items, int c) { int mid, bot, top; // first quick check for Latin1 etc. characters if (c < table[0].first) { return false; } // binary search in table bot = 0; top = (int)(n_items - 1); while (top >= bot) { mid = (bot + top) / 2; if (table[mid].last < c) { bot = mid + 1; } else if (table[mid].first > c) { top = mid - 1; } else { return true; } } return false; } /// For UTF-8 character "c" return 2 for a double-width character, 1 for others. /// Returns 4 or 6 for an unprintable character. /// Is only correct for characters >= 0x80. /// When p_ambw is "double", return 2 for a character with East Asian Width /// class 'A'(mbiguous). /// /// @note Tables `doublewidth` and `ambiguous` are generated by /// gen_unicode_tables.lua, which must be manually invoked as needed. int utf_char2cells(int c) { if (c >= 0x100) { #ifdef USE_WCHAR_FUNCTIONS // // Assume the library function wcwidth() works better than our own // stuff. It should return 1 for ambiguous width chars! // int n = wcwidth(c); if (n < 0) { return 6; // unprintable, displays } if (n > 1) { return n; } #else if (!utf_printable(c)) { return 6; // unprintable, displays } if (intable(doublewidth, ARRAY_SIZE(doublewidth), c)) { return 2; } #endif if (p_emoji && intable(emoji_width, ARRAY_SIZE(emoji_width), c)) { return 2; } } else if (c >= 0x80 && !vim_isprintc(c)) { // Characters below 0x100 are influenced by 'isprint' option. return 4; // unprintable, displays } if (c >= 0x80 && *p_ambw == 'd' && intable(ambiguous, ARRAY_SIZE(ambiguous), c)) { return 2; } return 1; } /// Return the number of display cells character at "*p" occupies. /// This doesn't take care of unprintable characters, use ptr2cells() for that. int utf_ptr2cells(const char_u *p) { int c; // Need to convert to a character number. if (*p >= 0x80) { c = utf_ptr2char(p); // An illegal byte is displayed as . if (utf_ptr2len(p) == 1 || c == NUL) { return 4; } // If the char is ASCII it must be an overlong sequence. if (c < 0x80) { return char2cells(c); } return utf_char2cells(c); } return 1; } /// Like utf_ptr2cells(), but limit string length to "size". /// For an empty string or truncated character returns 1. int utf_ptr2cells_len(const char_u *p, int size) { int c; // Need to convert to a wide character. if (size > 0 && *p >= 0x80) { if (utf_ptr2len_len(p, size) < utf8len_tab[*p]) { return 1; // truncated } c = utf_ptr2char(p); // An illegal byte is displayed as . if (utf_ptr2len(p) == 1 || c == NUL) { return 4; } // If the char is ASCII it must be an overlong sequence. if (c < 0x80) { return char2cells(c); } return utf_char2cells(c); } return 1; } /// Calculate the number of cells occupied by string `str`. /// /// @param str The source string, may not be NULL, must be a NUL-terminated /// string. /// @return The number of cells occupied by string `str` size_t mb_string2cells(const char_u *str) { size_t clen = 0; for (const char_u *p = str; *p != NUL; p += utfc_ptr2len(p)) { clen += utf_ptr2cells(p); } return clen; } /// Get the number of cells occupied by string `str` with maximum length `size` /// /// @param str The source string, may not be NULL, must be a NUL-terminated /// string. /// @param size maximum length of string. It will terminate on earlier NUL. /// @return The number of cells occupied by string `str` size_t mb_string2cells_len(const char_u *str, size_t size) FUNC_ATTR_NONNULL_ARG(1) { size_t clen = 0; for (const char_u *p = str; *p != NUL && p < str+size; p += utfc_ptr2len_len(p, size+(p-str))) { clen += utf_ptr2cells(p); } return clen; } /// Convert a UTF-8 byte sequence to a character number. /// /// If the sequence is illegal or truncated by a NUL then the first byte is /// returned. /// For an overlong sequence this may return zero. /// Does not include composing characters for obvious reasons. /// /// @param[in] p String to convert. /// /// @return Unicode codepoint or byte value. int utf_ptr2char(const char_u *const p) FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT { if (p[0] < 0x80) { // Be quick for ASCII. return p[0]; } const uint8_t len = utf8len_tab_zero[p[0]]; if (len > 1 && (p[1] & 0xc0) == 0x80) { if (len == 2) { return ((p[0] & 0x1f) << 6) + (p[1] & 0x3f); } if ((p[2] & 0xc0) == 0x80) { if (len == 3) { return (((p[0] & 0x0f) << 12) + ((p[1] & 0x3f) << 6) + (p[2] & 0x3f)); } if ((p[3] & 0xc0) == 0x80) { if (len == 4) { return (((p[0] & 0x07) << 18) + ((p[1] & 0x3f) << 12) + ((p[2] & 0x3f) << 6) + (p[3] & 0x3f)); } if ((p[4] & 0xc0) == 0x80) { if (len == 5) { return (((p[0] & 0x03) << 24) + ((p[1] & 0x3f) << 18) + ((p[2] & 0x3f) << 12) + ((p[3] & 0x3f) << 6) + (p[4] & 0x3f)); } if ((p[5] & 0xc0) == 0x80 && len == 6) { return (((p[0] & 0x01) << 30) + ((p[1] & 0x3f) << 24) + ((p[2] & 0x3f) << 18) + ((p[3] & 0x3f) << 12) + ((p[4] & 0x3f) << 6) + (p[5] & 0x3f)); } } } } } // Illegal value: just return the first byte. return p[0]; } /* * Convert a UTF-8 byte sequence to a wide character. * String is assumed to be terminated by NUL or after "n" bytes, whichever * comes first. * The function is safe in the sense that it never accesses memory beyond the * first "n" bytes of "s". * * On success, returns decoded codepoint, advances "s" to the beginning of * next character and decreases "n" accordingly. * * If end of string was reached, returns 0 and, if "n" > 0, advances "s" past * NUL byte. * * If byte sequence is illegal or incomplete, returns -1 and does not advance * "s". */ static int utf_safe_read_char_adv(const char_u **s, size_t *n) { int c; if (*n == 0) { // end of buffer return 0; } uint8_t k = utf8len_tab_zero[**s]; if (k == 1) { // ASCII character or NUL (*n)--; return *(*s)++; } if (k <= *n) { // We have a multibyte sequence and it isn't truncated by buffer // limits so utf_ptr2char() is safe to use. Or the first byte is // illegal (k=0), and it's also safe to use utf_ptr2char(). c = utf_ptr2char(*s); // On failure, utf_ptr2char() returns the first byte, so here we // check equality with the first byte. The only non-ASCII character // which equals the first byte of its own UTF-8 representation is // U+00C3 (UTF-8: 0xC3 0x83), so need to check that special case too. // It's safe even if n=1, else we would have k=2 > n. if (c != (int)(**s) || (c == 0xC3 && (*s)[1] == 0x83)) { // byte sequence was successfully decoded *s += k; *n -= k; return c; } } // byte sequence is incomplete or illegal return -1; } /* * Get character at **pp and advance *pp to the next character. * Note: composing characters are skipped! */ int mb_ptr2char_adv(const char_u **const pp) { int c; c = utf_ptr2char(*pp); *pp += utfc_ptr2len(*pp); return c; } /* * Get character at **pp and advance *pp to the next character. * Note: composing characters are returned as separate characters. */ int mb_cptr2char_adv(const char_u **pp) { int c; c = utf_ptr2char(*pp); *pp += utf_ptr2len(*pp); return c; } /* * Check if the character pointed to by "p2" is a composing character when it * comes after "p1". For Arabic sometimes "ab" is replaced with "c", which * behaves like a composing character. */ bool utf_composinglike(const char_u *p1, const char_u *p2) { int c2; c2 = utf_ptr2char(p2); if (utf_iscomposing(c2)) { return true; } if (!arabic_maycombine(c2)) { return false; } return arabic_combine(utf_ptr2char(p1), c2); } /// Convert a UTF-8 string to a wide character /// /// Also gets up to #MAX_MCO composing characters. /// /// @param[out] pcc Location where to store composing characters. Must have /// space at least for #MAX_MCO + 1 elements. /// /// @return leading character. int utfc_ptr2char(const char_u *p, int *pcc) { int len; int c; int cc; int i = 0; c = utf_ptr2char(p); len = utf_ptr2len(p); // Only accept a composing char when the first char isn't illegal. if ((len > 1 || *p < 0x80) && p[len] >= 0x80 && utf_composinglike(p, p + len)) { cc = utf_ptr2char(p + len); for (;;) { pcc[i++] = cc; if (i == MAX_MCO) { break; } len += utf_ptr2len(p + len); if (p[len] < 0x80 || !utf_iscomposing(cc = utf_ptr2char(p + len))) { break; } } } if (i < MAX_MCO) { // last composing char must be 0 pcc[i] = 0; } return c; } /* * Convert a UTF-8 byte string to a wide character. Also get up to MAX_MCO * composing characters. Use no more than p[maxlen]. * * @param [out] pcc: composing chars, last one is 0 */ int utfc_ptr2char_len(const char_u *p, int *pcc, int maxlen) { assert(maxlen > 0); int i = 0; int len = utf_ptr2len_len(p, maxlen); // Is it safe to use utf_ptr2char()? bool safe = len > 1 && len <= maxlen; int c = safe ? utf_ptr2char(p) : *p; // Only accept a composing char when the first char isn't illegal. if ((safe || c < 0x80) && len < maxlen && p[len] >= 0x80) { for (; i < MAX_MCO; i++) { int len_cc = utf_ptr2len_len(p + len, maxlen - len); safe = len_cc > 1 && len_cc <= maxlen - len; if (!safe || (pcc[i] = utf_ptr2char(p + len)) < 0x80 || !(i == 0 ? utf_composinglike(p, p+len) : utf_iscomposing(pcc[i]))) { break; } len += len_cc; } } if (i < MAX_MCO) { // last composing char must be 0 pcc[i] = 0; } return c; #undef ISCOMPOSING } /// Get the length of a UTF-8 byte sequence representing a single codepoint /// /// @param[in] p UTF-8 string. /// /// @return Sequence length, 0 for empty string and 1 for non-UTF-8 byte /// sequence. int utf_ptr2len(const char_u *const p) FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL { if (*p == NUL) { return 0; } const int len = utf8len_tab[*p]; for (int i = 1; i < len; i++) { if ((p[i] & 0xc0) != 0x80) { return 1; } } return len; } /* * Return length of UTF-8 character, obtained from the first byte. * "b" must be between 0 and 255! * Returns 1 for an invalid first byte value. */ int utf_byte2len(int b) { return utf8len_tab[b]; } /* * Get the length of UTF-8 byte sequence "p[size]". Does not include any * following composing characters. * Returns 1 for "". * Returns 1 for an illegal byte sequence (also in incomplete byte seq.). * Returns number > "size" for an incomplete byte sequence. * Never returns zero. */ int utf_ptr2len_len(const char_u *p, int size) { int len; int i; int m; len = utf8len_tab[*p]; if (len == 1) { return 1; // NUL, ascii or illegal lead byte } if (len > size) { m = size; // incomplete byte sequence. } else { m = len; } for (i = 1; i < m; ++i) { if ((p[i] & 0xc0) != 0x80) { return 1; } } return len; } /// Return the number of bytes occupied by a UTF-8 character in a string /// /// This includes following composing characters. int utfc_ptr2len(const char_u *const p) FUNC_ATTR_PURE FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL { uint8_t b0 = (uint8_t)(*p); if (b0 == NUL) { return 0; } if (b0 < 0x80 && p[1] < 0x80) { // be quick for ASCII return 1; } // Skip over first UTF-8 char, stopping at a NUL byte. int len = utf_ptr2len(p); // Check for illegal byte. if (len == 1 && b0 >= 0x80) { return 1; } // Check for composing characters. We can handle only the first six, but // skip all of them (otherwise the cursor would get stuck). int prevlen = 0; for (;;) { if (p[len] < 0x80 || !utf_composinglike(p + prevlen, p + len)) { return len; } // Skip over composing char. prevlen = len; len += utf_ptr2len(p + len); } } /* * Return the number of bytes the UTF-8 encoding of the character at "p[size]" * takes. This includes following composing characters. * Returns 0 for an empty string. * Returns 1 for an illegal char or an incomplete byte sequence. */ int utfc_ptr2len_len(const char_u *p, int size) { int len; int prevlen; if (size < 1 || *p == NUL) { return 0; } if (p[0] < 0x80 && (size == 1 || p[1] < 0x80)) { // be quick for ASCII return 1; } // Skip over first UTF-8 char, stopping at a NUL byte. len = utf_ptr2len_len(p, size); // Check for illegal byte and incomplete byte sequence. if ((len == 1 && p[0] >= 0x80) || len > size) { return 1; } /* * Check for composing characters. We can handle only the first six, but * skip all of them (otherwise the cursor would get stuck). */ prevlen = 0; while (len < size) { int len_next_char; if (p[len] < 0x80) { break; } /* * Next character length should not go beyond size to ensure that * utf_composinglike(...) does not read beyond size. */ len_next_char = utf_ptr2len_len(p + len, size - len); if (len_next_char > size - len) { break; } if (!utf_composinglike(p + prevlen, p + len)) { break; } // Skip over composing char prevlen = len; len += len_next_char; } return len; } /// Determine how many bytes certain unicode codepoint will occupy int utf_char2len(const int c) { if (c < 0x80) { return 1; } else if (c < 0x800) { return 2; } else if (c < 0x10000) { return 3; } else if (c < 0x200000) { return 4; } else if (c < 0x4000000) { return 5; } else { return 6; } } /// Convert Unicode character to UTF-8 string /// /// @param c character to convert to \p buf /// @param[out] buf UTF-8 string generated from \p c, does not add \0 /// @return Number of bytes (1-6). int utf_char2bytes(const int c, char_u *const buf) { if (c < 0x80) { // 7 bits buf[0] = c; return 1; } else if (c < 0x800) { // 11 bits buf[0] = 0xc0 + ((unsigned)c >> 6); buf[1] = 0x80 + (c & 0x3f); return 2; } else if (c < 0x10000) { // 16 bits buf[0] = 0xe0 + ((unsigned)c >> 12); buf[1] = 0x80 + (((unsigned)c >> 6) & 0x3f); buf[2] = 0x80 + (c & 0x3f); return 3; } else if (c < 0x200000) { // 21 bits buf[0] = 0xf0 + ((unsigned)c >> 18); buf[1] = 0x80 + (((unsigned)c >> 12) & 0x3f); buf[2] = 0x80 + (((unsigned)c >> 6) & 0x3f); buf[3] = 0x80 + (c & 0x3f); return 4; } else if (c < 0x4000000) { // 26 bits buf[0] = 0xf8 + ((unsigned)c >> 24); buf[1] = 0x80 + (((unsigned)c >> 18) & 0x3f); buf[2] = 0x80 + (((unsigned)c >> 12) & 0x3f); buf[3] = 0x80 + (((unsigned)c >> 6) & 0x3f); buf[4] = 0x80 + (c & 0x3f); return 5; } else { // 31 bits buf[0] = 0xfc + ((unsigned)c >> 30); buf[1] = 0x80 + (((unsigned)c >> 24) & 0x3f); buf[2] = 0x80 + (((unsigned)c >> 18) & 0x3f); buf[3] = 0x80 + (((unsigned)c >> 12) & 0x3f); buf[4] = 0x80 + (((unsigned)c >> 6) & 0x3f); buf[5] = 0x80 + (c & 0x3f); return 6; } } /* * Return true if "c" is a composing UTF-8 character. This means it will be * drawn on top of the preceding character. * Based on code from Markus Kuhn. */ bool utf_iscomposing(int c) { return intable(combining, ARRAY_SIZE(combining), c); } /* * Return true for characters that can be displayed in a normal way. * Only for characters of 0x100 and above! */ bool utf_printable(int c) { #ifdef USE_WCHAR_FUNCTIONS /* * Assume the iswprint() library function works better than our own stuff. */ return iswprint(c); #else // Sorted list of non-overlapping intervals. // 0xd800-0xdfff is reserved for UTF-16, actually illegal. static struct interval nonprint[] = { { 0x070f, 0x070f }, { 0x180b, 0x180e }, { 0x200b, 0x200f }, { 0x202a, 0x202e }, { 0x206a, 0x206f }, { 0xd800, 0xdfff }, { 0xfeff, 0xfeff }, { 0xfff9, 0xfffb }, { 0xfffe, 0xffff } }; return !intable(nonprint, ARRAY_SIZE(nonprint), c); #endif } /* * Get class of a Unicode character. * 0: white space * 1: punctuation * 2 or bigger: some class of word character. */ int utf_class(const int c) { return utf_class_tab(c, curbuf->b_chartab); } int utf_class_tab(const int c, const uint64_t *const chartab) { // sorted list of non-overlapping intervals static struct clinterval { unsigned int first; unsigned int last; unsigned int class; } classes[] = { { 0x037e, 0x037e, 1 }, // Greek question mark { 0x0387, 0x0387, 1 }, // Greek ano teleia { 0x055a, 0x055f, 1 }, // Armenian punctuation { 0x0589, 0x0589, 1 }, // Armenian full stop { 0x05be, 0x05be, 1 }, { 0x05c0, 0x05c0, 1 }, { 0x05c3, 0x05c3, 1 }, { 0x05f3, 0x05f4, 1 }, { 0x060c, 0x060c, 1 }, { 0x061b, 0x061b, 1 }, { 0x061f, 0x061f, 1 }, { 0x066a, 0x066d, 1 }, { 0x06d4, 0x06d4, 1 }, { 0x0700, 0x070d, 1 }, // Syriac punctuation { 0x0964, 0x0965, 1 }, { 0x0970, 0x0970, 1 }, { 0x0df4, 0x0df4, 1 }, { 0x0e4f, 0x0e4f, 1 }, { 0x0e5a, 0x0e5b, 1 }, { 0x0f04, 0x0f12, 1 }, { 0x0f3a, 0x0f3d, 1 }, { 0x0f85, 0x0f85, 1 }, { 0x104a, 0x104f, 1 }, // Myanmar punctuation { 0x10fb, 0x10fb, 1 }, // Georgian punctuation { 0x1361, 0x1368, 1 }, // Ethiopic punctuation { 0x166d, 0x166e, 1 }, // Canadian Syl. punctuation { 0x1680, 0x1680, 0 }, { 0x169b, 0x169c, 1 }, { 0x16eb, 0x16ed, 1 }, { 0x1735, 0x1736, 1 }, { 0x17d4, 0x17dc, 1 }, // Khmer punctuation { 0x1800, 0x180a, 1 }, // Mongolian punctuation { 0x2000, 0x200b, 0 }, // spaces { 0x200c, 0x2027, 1 }, // punctuation and symbols { 0x2028, 0x2029, 0 }, { 0x202a, 0x202e, 1 }, // punctuation and symbols { 0x202f, 0x202f, 0 }, { 0x2030, 0x205e, 1 }, // punctuation and symbols { 0x205f, 0x205f, 0 }, { 0x2060, 0x27ff, 1 }, // punctuation and symbols { 0x2070, 0x207f, 0x2070 }, // superscript { 0x2080, 0x2094, 0x2080 }, // subscript { 0x20a0, 0x27ff, 1 }, // all kinds of symbols { 0x2800, 0x28ff, 0x2800 }, // braille { 0x2900, 0x2998, 1 }, // arrows, brackets, etc. { 0x29d8, 0x29db, 1 }, { 0x29fc, 0x29fd, 1 }, { 0x2e00, 0x2e7f, 1 }, // supplemental punctuation { 0x3000, 0x3000, 0 }, // ideographic space { 0x3001, 0x3020, 1 }, // ideographic punctuation { 0x3030, 0x3030, 1 }, { 0x303d, 0x303d, 1 }, { 0x3040, 0x309f, 0x3040 }, // Hiragana { 0x30a0, 0x30ff, 0x30a0 }, // Katakana { 0x3300, 0x9fff, 0x4e00 }, // CJK Ideographs { 0xac00, 0xd7a3, 0xac00 }, // Hangul Syllables { 0xf900, 0xfaff, 0x4e00 }, // CJK Ideographs { 0xfd3e, 0xfd3f, 1 }, { 0xfe30, 0xfe6b, 1 }, // punctuation forms { 0xff00, 0xff0f, 1 }, // half/fullwidth ASCII { 0xff1a, 0xff20, 1 }, // half/fullwidth ASCII { 0xff3b, 0xff40, 1 }, // half/fullwidth ASCII { 0xff5b, 0xff65, 1 }, // half/fullwidth ASCII { 0x1d000, 0x1d24f, 1 }, // Musical notation { 0x1d400, 0x1d7ff, 1 }, // Mathematical Alphanumeric Symbols { 0x1f000, 0x1f2ff, 1 }, // Game pieces; enclosed characters { 0x1f300, 0x1f9ff, 1 }, // Many symbol blocks { 0x20000, 0x2a6df, 0x4e00 }, // CJK Ideographs { 0x2a700, 0x2b73f, 0x4e00 }, // CJK Ideographs { 0x2b740, 0x2b81f, 0x4e00 }, // CJK Ideographs { 0x2f800, 0x2fa1f, 0x4e00 }, // CJK Ideographs }; int bot = 0; int top = ARRAY_SIZE(classes) - 1; int mid; // First quick check for Latin1 characters, use 'iskeyword'. if (c < 0x100) { if (c == ' ' || c == '\t' || c == NUL || c == 0xa0) { return 0; // blank } if (vim_iswordc_tab(c, chartab)) { return 2; // word character } return 1; // punctuation } // binary search in table while (top >= bot) { mid = (bot + top) / 2; if (classes[mid].last < (unsigned int)c) { bot = mid + 1; } else if (classes[mid].first > (unsigned int)c) { top = mid - 1; } else { return (int)classes[mid].class; } } // emoji if (intable(emoji_all, ARRAY_SIZE(emoji_all), c)) { return 3; } // most other characters are "word" characters return 2; } bool utf_ambiguous_width(int c) { return c >= 0x80 && (intable(ambiguous, ARRAY_SIZE(ambiguous), c) || intable(emoji_all, ARRAY_SIZE(emoji_all), c)); } /* * Generic conversion function for case operations. * Return the converted equivalent of "a", which is a UCS-4 character. Use * the given conversion "table". Uses binary search on "table". */ static int utf_convert(int a, const convertStruct *const table, size_t n_items) { size_t start, mid, end; // indices into table start = 0; end = n_items; while (start < end) { // need to search further mid = (end + start) / 2; if (table[mid].rangeEnd < a) { start = mid + 1; } else { end = mid; } } if (start < n_items && table[start].rangeStart <= a && a <= table[start].rangeEnd && (a - table[start].rangeStart) % table[start].step == 0) { return a + table[start].offset; } else { return a; } } /* * Return the folded-case equivalent of "a", which is a UCS-4 character. Uses * simple case folding. */ int utf_fold(int a) { if (a < 0x80) { // be fast for ASCII return a >= 0x41 && a <= 0x5a ? a + 32 : a; } return utf_convert(a, foldCase, ARRAY_SIZE(foldCase)); } // Vim's own character class functions. These exist because many library // islower()/toupper() etc. do not work properly: they crash when used with // invalid values or can't handle latin1 when the locale is C. // Speed is most important here. /// Return the upper-case equivalent of "a", which is a UCS-4 character. Use /// simple case folding. int mb_toupper(int a) { // If 'casemap' contains "keepascii" use ASCII style toupper(). if (a < 128 && (cmp_flags & CMP_KEEPASCII)) { return TOUPPER_ASC(a); } #if defined(__STDC_ISO_10646__) // If towupper() is available and handles Unicode, use it. if (!(cmp_flags & CMP_INTERNAL)) { return towupper(a); } #endif // For characters below 128 use locale sensitive toupper(). if (a < 128) { return TOUPPER_LOC(a); } // For any other characters use the above mapping table. return utf_convert(a, toUpper, ARRAY_SIZE(toUpper)); } bool mb_islower(int a) { // German sharp s is lower case but has no upper case equivalent. return (mb_toupper(a) != a) || a == 0xdf; } /// Return the lower-case equivalent of "a", which is a UCS-4 character. Use /// simple case folding. int mb_tolower(int a) { // If 'casemap' contains "keepascii" use ASCII style tolower(). if (a < 128 && (cmp_flags & CMP_KEEPASCII)) { return TOLOWER_ASC(a); } #if defined(__STDC_ISO_10646__) // If towlower() is available and handles Unicode, use it. if (!(cmp_flags & CMP_INTERNAL)) { return towlower(a); } #endif // For characters below 128 use locale sensitive tolower(). if (a < 128) { return TOLOWER_LOC(a); } // For any other characters use the above mapping table. return utf_convert(a, toLower, ARRAY_SIZE(toLower)); } bool mb_isupper(int a) { return mb_tolower(a) != a; } static int utf_strnicmp(const char_u *s1, const char_u *s2, size_t n1, size_t n2) { int c1, c2, cdiff; char_u buffer[6]; for (;;) { c1 = utf_safe_read_char_adv(&s1, &n1); c2 = utf_safe_read_char_adv(&s2, &n2); if (c1 <= 0 || c2 <= 0) { break; } if (c1 == c2) { continue; } cdiff = utf_fold(c1) - utf_fold(c2); if (cdiff != 0) { return cdiff; } } // some string ended or has an incomplete/illegal character sequence if (c1 == 0 || c2 == 0) { // some string ended. shorter string is smaller if (c1 == 0 && c2 == 0) { return 0; } return c1 == 0 ? -1 : 1; } // Continue with bytewise comparison to produce some result that // would make comparison operations involving this function transitive. // // If only one string had an error, comparison should be made with // folded version of the other string. In this case it is enough // to fold just one character to determine the result of comparison. if (c1 != -1 && c2 == -1) { n1 = utf_char2bytes(utf_fold(c1), buffer); s1 = buffer; } else if (c2 != -1 && c1 == -1) { n2 = utf_char2bytes(utf_fold(c2), buffer); s2 = buffer; } while (n1 > 0 && n2 > 0 && *s1 != NUL && *s2 != NUL) { cdiff = (int)(*s1) - (int)(*s2); if (cdiff != 0) { return cdiff; } s1++; s2++; n1--; n2--; } if (n1 > 0 && *s1 == NUL) { n1 = 0; } if (n2 > 0 && *s2 == NUL) { n2 = 0; } if (n1 == 0 && n2 == 0) { return 0; } return n1 == 0 ? -1 : 1; } #ifdef WIN32 # ifndef CP_UTF8 # define CP_UTF8 65001 // magic number from winnls.h # endif /// Converts string from UTF-8 to UTF-16. /// /// @param utf8 UTF-8 string. /// @param utf8len Length of `utf8`. May be -1 if `utf8` is NUL-terminated. /// @param utf16[out,allocated] NUL-terminated UTF-16 string, or NULL on error /// @return 0 on success, or libuv error code int utf8_to_utf16(const char *utf8, int utf8len, wchar_t **utf16) FUNC_ATTR_NONNULL_ALL { // Compute the length needed for the converted UTF-16 string. int bufsize = MultiByteToWideChar(CP_UTF8, 0, // dwFlags: must be 0 for UTF-8 utf8, // -1: process up to NUL utf8len, NULL, 0); // 0: get length, don't convert if (bufsize == 0) { *utf16 = NULL; return uv_translate_sys_error(GetLastError()); } // Allocate the destination buffer adding an extra byte for the terminating // NULL. If `utf8len` is not -1 MultiByteToWideChar will not add it, so // we do it ourselves always, just in case. *utf16 = xmalloc(sizeof(wchar_t) * (bufsize + 1)); // Convert to UTF-16. bufsize = MultiByteToWideChar(CP_UTF8, 0, utf8, utf8len, *utf16, bufsize); if (bufsize == 0) { XFREE_CLEAR(*utf16); return uv_translate_sys_error(GetLastError()); } (*utf16)[bufsize] = L'\0'; return 0; } /// Converts string from UTF-16 to UTF-8. /// /// @param utf16 UTF-16 string. /// @param utf16len Length of `utf16`. May be -1 if `utf16` is NUL-terminated. /// @param utf8[out,allocated] NUL-terminated UTF-8 string, or NULL on error /// @return 0 on success, or libuv error code int utf16_to_utf8(const wchar_t *utf16, int utf16len, char **utf8) FUNC_ATTR_NONNULL_ALL { // Compute the space needed for the converted UTF-8 string. DWORD bufsize = WideCharToMultiByte(CP_UTF8, 0, utf16, utf16len, NULL, 0, NULL, NULL); if (bufsize == 0) { *utf8 = NULL; return uv_translate_sys_error(GetLastError()); } // Allocate the destination buffer adding an extra byte for the terminating // NULL. If `utf16len` is not -1 WideCharToMultiByte will not add it, so // we do it ourselves always, just in case. *utf8 = xmalloc(bufsize + 1); // Convert to UTF-8. bufsize = WideCharToMultiByte(CP_UTF8, 0, utf16, utf16len, *utf8, bufsize, NULL, NULL); if (bufsize == 0) { XFREE_CLEAR(*utf8); return uv_translate_sys_error(GetLastError()); } (*utf8)[bufsize] = '\0'; return 0; } #endif /// Measure the length of a string in corresponding UTF-32 and UTF-16 units. /// /// Invalid UTF-8 bytes, or embedded surrogates, count as one code point/unit /// each. /// /// The out parameters are incremented. This is used to measure the size of /// a buffer region consisting of multiple line segments. /// /// @param s the string /// @param len maximum length (an earlier NUL terminates) /// @param[out] codepoints incremented with UTF-32 code point size /// @param[out] codeunits incremented with UTF-16 code unit size void mb_utflen(const char_u *s, size_t len, size_t *codepoints, size_t *codeunits) FUNC_ATTR_NONNULL_ALL { size_t count = 0, extra = 0; size_t clen; for (size_t i = 0; i < len && s[i] != NUL; i += clen) { clen = utf_ptr2len_len(s+i, len-i); // NB: gets the byte value of invalid sequence bytes. // we only care whether the char fits in the BMP or not int c = (clen > 1) ? utf_ptr2char(s+i) : s[i]; count++; if (c > 0xFFFF) { extra++; } } *codepoints += count; *codeunits += count + extra; } ssize_t mb_utf_index_to_bytes(const char_u *s, size_t len, size_t index, bool use_utf16_units) FUNC_ATTR_NONNULL_ALL { size_t count = 0; size_t clen, i; if (index == 0) { return 0; } for (i = 0; i < len && s[i] != NUL; i += clen) { clen = utf_ptr2len_len(s+i, len-i); // NB: gets the byte value of invalid sequence bytes. // we only care whether the char fits in the BMP or not int c = (clen > 1) ? utf_ptr2char(s+i) : s[i]; count++; if (use_utf16_units && c > 0xFFFF) { count++; } if (count >= index) { return i+clen; } } return -1; } /* * Version of strnicmp() that handles multi-byte characters. * Needed for Big5, Shift-JIS and UTF-8 encoding. Other DBCS encodings can * probably use strnicmp(), because there are no ASCII characters in the * second byte. * Returns zero if s1 and s2 are equal (ignoring case), the difference between * two characters otherwise. */ int mb_strnicmp(const char_u *s1, const char_u *s2, const size_t nn) { return utf_strnicmp(s1, s2, nn, nn); } /// Compare strings case-insensitively /// /// @note We need to call mb_stricmp() even when we aren't dealing with /// a multi-byte encoding because mb_stricmp() takes care of all ASCII and /// non-ascii encodings, including characters with umlauts in latin1, /// etc., while STRICMP() only handles the system locale version, which /// often does not handle non-ascii properly. /// /// @param[in] s1 First string to compare, not more then #MAXCOL characters. /// @param[in] s2 Second string to compare, not more then #MAXCOL characters. /// /// @return 0 if strings are equal, <0 if s1 < s2, >0 if s1 > s2. int mb_stricmp(const char *s1, const char *s2) { return mb_strnicmp((const char_u *)s1, (const char_u *)s2, MAXCOL); } /* * "g8": show bytes of the UTF-8 char under the cursor. Doesn't matter what * 'encoding' has been set to. */ void show_utf8(void) { int len; int rlen = 0; char_u *line; int clen; int i; // Get the byte length of the char under the cursor, including composing // characters. line = get_cursor_pos_ptr(); len = utfc_ptr2len(line); if (len == 0) { msg("NUL"); return; } clen = 0; for (i = 0; i < len; ++i) { if (clen == 0) { // start of (composing) character, get its length if (i > 0) { STRCPY(IObuff + rlen, "+ "); rlen += 2; } clen = utf_ptr2len(line + i); } sprintf((char *)IObuff + rlen, "%02x ", (line[i] == NL) ? NUL : line[i]); // NUL is stored as NL --clen; rlen += (int)STRLEN(IObuff + rlen); if (rlen > IOSIZE - 20) { break; } } msg((char *)IObuff); } /// Return offset from "p" to the first byte of the character it points into. /// If "p" points to the NUL at the end of the string return 0. /// Returns 0 when already at the first byte of a character. int utf_head_off(const char_u *base, const char_u *p) { int c; int len; if (*p < 0x80) { // be quick for ASCII return 0; } // Skip backwards over trailing bytes: 10xx.xxxx // Skip backwards again if on a composing char. const char_u *q; for (q = p;; --q) { // Move s to the last byte of this char. const char_u *s; for (s = q; (s[1] & 0xc0) == 0x80; ++s) {} // Move q to the first byte of this char. while (q > base && (*q & 0xc0) == 0x80) { --q; } // Check for illegal sequence. Do allow an illegal byte after where we // started. len = utf8len_tab[*q]; if (len != (int)(s - q + 1) && len != (int)(p - q + 1)) { return 0; } if (q <= base) { break; } c = utf_ptr2char(q); if (utf_iscomposing(c)) { continue; } if (arabic_maycombine(c)) { // Advance to get a sneak-peak at the next char const char_u *j = q; --j; // Move j to the first byte of this char. while (j > base && (*j & 0xc0) == 0x80) { --j; } if (arabic_combine(utf_ptr2char(j), c)) { continue; } } break; } return (int)(p - q); } // Whether space is NOT allowed before/after 'c'. bool utf_eat_space(int cc) FUNC_ATTR_CONST FUNC_ATTR_WARN_UNUSED_RESULT { return (cc >= 0x2000 && cc <= 0x206F) // General punctuations || (cc >= 0x2e00 && cc <= 0x2e7f) // Supplemental punctuations || (cc >= 0x3000 && cc <= 0x303f) // CJK symbols and punctuations || (cc >= 0xff01 && cc <= 0xff0f) // Full width ASCII punctuations || (cc >= 0xff1a && cc <= 0xff20) // .. || (cc >= 0xff3b && cc <= 0xff40) // .. || (cc >= 0xff5b && cc <= 0xff65); // .. } // Whether line break is allowed before "cc". bool utf_allow_break_before(int cc) FUNC_ATTR_CONST FUNC_ATTR_WARN_UNUSED_RESULT { static const int BOL_prohibition_punct[] = { '!', '%', ')', ',', ':', ';', '>', '?', ']', '}', 0x2019, // ’ right single quotation mark 0x201d, // ” right double quotation mark 0x2020, // † dagger 0x2021, // ‡ double dagger 0x2026, // … horizontal ellipsis 0x2030, // ‰ per mille sign 0x2031, // ‱ per then thousand sign 0x203c, // ‼ double exclamation mark 0x2047, // ⁇ double question mark 0x2048, // ⁈ question exclamation mark 0x2049, // ⁉ exclamation question mark 0x2103, // ℃ degree celsius 0x2109, // ℉ degree fahrenheit 0x3001, // 、 ideographic comma 0x3002, // 。 ideographic full stop 0x3009, // 〉 right angle bracket 0x300b, // 》 right double angle bracket 0x300d, // 」 right corner bracket 0x300f, // 』 right white corner bracket 0x3011, // 】 right black lenticular bracket 0x3015, // 〕 right tortoise shell bracket 0x3017, // 〗 right white lenticular bracket 0x3019, // 〙 right white tortoise shell bracket 0x301b, // 〛 right white square bracket 0xff01, // ! fullwidth exclamation mark 0xff09, // ) fullwidth right parenthesis 0xff0c, // , fullwidth comma 0xff0e, // . fullwidth full stop 0xff1a, // : fullwidth colon 0xff1b, // ; fullwidth semicolon 0xff1f, // ? fullwidth question mark 0xff3d, // ] fullwidth right square bracket 0xff5d, // } fullwidth right curly bracket }; int first = 0; int last = ARRAY_SIZE(BOL_prohibition_punct) - 1; while (first < last) { const int mid = (first + last) / 2; if (cc == BOL_prohibition_punct[mid]) { return false; } else if (cc > BOL_prohibition_punct[mid]) { first = mid + 1; } else { last = mid - 1; } } return cc != BOL_prohibition_punct[first]; } // Whether line break is allowed after "cc". bool utf_allow_break_after(int cc) FUNC_ATTR_CONST FUNC_ATTR_WARN_UNUSED_RESULT { static const int EOL_prohibition_punct[] = { '(', '<', '[', '`', '{', // 0x2014, // — em dash 0x2018, // ‘ left single quotation mark 0x201c, // “ left double quotation mark // 0x2053, // ~ swung dash 0x3008, // 〈 left angle bracket 0x300a, // 《 left double angle bracket 0x300c, // 「 left corner bracket 0x300e, // 『 left white corner bracket 0x3010, // 【 left black lenticular bracket 0x3014, // 〔 left tortoise shell bracket 0x3016, // 〖 left white lenticular bracket 0x3018, // 〘 left white tortoise shell bracket 0x301a, // 〚 left white square bracket 0xff08, // ( fullwidth left parenthesis 0xff3b, // [ fullwidth left square bracket 0xff5b, // { fullwidth left curly bracket }; int first = 0; int last = ARRAY_SIZE(EOL_prohibition_punct) - 1; while (first < last) { const int mid = (first + last)/2; if (cc == EOL_prohibition_punct[mid]) { return false; } else if (cc > EOL_prohibition_punct[mid]) { first = mid + 1; } else { last = mid - 1; } } return cc != EOL_prohibition_punct[first]; } // Whether line break is allowed between "cc" and "ncc". bool utf_allow_break(int cc, int ncc) FUNC_ATTR_CONST FUNC_ATTR_WARN_UNUSED_RESULT { // don't break between two-letter punctuations if (cc == ncc && (cc == 0x2014 // em dash || cc == 0x2026)) { // horizontal ellipsis return false; } return utf_allow_break_after(cc) && utf_allow_break_before(ncc); } /// Copy a character, advancing the pointers /// /// @param[in,out] fp Source of the character to copy. /// @param[in,out] tp Destination to copy to. void mb_copy_char(const char_u **const fp, char_u **const tp) { const size_t l = (size_t)utfc_ptr2len(*fp); memmove(*tp, *fp, l); *tp += l; *fp += l; } /* * Return the offset from "p" to the first byte of a character. When "p" is * at the start of a character 0 is returned, otherwise the offset to the next * character. Can start anywhere in a stream of bytes. */ int mb_off_next(char_u *base, char_u *p) { int i; int j; if (*p < 0x80) { // be quick for ASCII return 0; } // Find the next character that isn't 10xx.xxxx for (i = 0; (p[i] & 0xc0) == 0x80; i++) {} if (i > 0) { // Check for illegal sequence. for (j = 0; p - j > base; j++) { if ((p[-j] & 0xc0) != 0x80) { break; } } if (utf8len_tab[p[-j]] != i + j) { return 0; } } return i; } /* * Return the offset from "p" to the last byte of the character it points * into. Can start anywhere in a stream of bytes. */ int mb_tail_off(char_u *base, char_u *p) { int i; int j; if (*p == NUL) { return 0; } // Find the last character that is 10xx.xxxx for (i = 0; (p[i + 1] & 0xc0) == 0x80; i++) {} // Check for illegal sequence. for (j = 0; p - j > base; j++) { if ((p[-j] & 0xc0) != 0x80) { break; } } if (utf8len_tab[p[-j]] != i + j + 1) { return 0; } return i; } /// Return the offset from "p" to the first byte of the character it points /// into. Can start anywhere in a stream of bytes. /// /// @param[in] base Pointer to start of string /// @param[in] p Pointer to byte for which to return the offset to the previous codepoint // /// @return 0 if invalid sequence, else offset to previous codepoint int mb_head_off(char_u *base, char_u *p) { int i; int j; if (*p == NUL) { return 0; } // Find the first character that is not 10xx.xxxx for (i = 0; p - i > base; i--) { if ((p[i] & 0xc0) != 0x80) { break; } } // Find the last character that is 10xx.xxxx for (j = 0; (p[j + 1] & 0xc0) == 0x80; j++) {} // Check for illegal sequence. if (utf8len_tab[p[i]] == 1) { return 0; } return i; } /* * Find the next illegal byte sequence. */ void utf_find_illegal(void) { pos_T pos = curwin->w_cursor; char_u *p; int len; vimconv_T vimconv; char_u *tofree = NULL; vimconv.vc_type = CONV_NONE; if (enc_canon_props(curbuf->b_p_fenc) & ENC_8BIT) { // 'encoding' is "utf-8" but we are editing a 8-bit encoded file, // possibly a utf-8 file with illegal bytes. Setup for conversion // from utf-8 to 'fileencoding'. convert_setup(&vimconv, p_enc, curbuf->b_p_fenc); } curwin->w_cursor.coladd = 0; for (;;) { p = get_cursor_pos_ptr(); if (vimconv.vc_type != CONV_NONE) { xfree(tofree); tofree = string_convert(&vimconv, p, NULL); if (tofree == NULL) { break; } p = tofree; } while (*p != NUL) { // Illegal means that there are not enough trail bytes (checked by // utf_ptr2len()) or too many of them (overlong sequence). len = utf_ptr2len(p); if (*p >= 0x80 && (len == 1 || utf_char2len(utf_ptr2char(p)) != len)) { if (vimconv.vc_type == CONV_NONE) { curwin->w_cursor.col += (colnr_T)(p - get_cursor_pos_ptr()); } else { int l; len = (int)(p - tofree); for (p = get_cursor_pos_ptr(); *p != NUL && len-- > 0; p += l) { l = utf_ptr2len(p); curwin->w_cursor.col += l; } } goto theend; } p += len; } if (curwin->w_cursor.lnum == curbuf->b_ml.ml_line_count) { break; } ++curwin->w_cursor.lnum; curwin->w_cursor.col = 0; } // didn't find it: don't move and beep curwin->w_cursor = pos; beep_flush(); theend: xfree(tofree); convert_setup(&vimconv, NULL, NULL); } /* * If the cursor moves on an trail byte, set the cursor on the lead byte. * Thus it moves left if necessary. */ void mb_adjust_cursor(void) { mark_mb_adjustpos(curbuf, &curwin->w_cursor); } /// Checks and adjusts cursor column. Not mode-dependent. /// @see check_cursor_col_win /// /// @param win_ Places cursor on a valid column for this window. void mb_check_adjust_col(void *win_) { win_T *win = (win_T *)win_; colnr_T oldcol = win->w_cursor.col; // Column 0 is always valid. if (oldcol != 0) { char_u *p = ml_get_buf(win->w_buffer, win->w_cursor.lnum, false); colnr_T len = (colnr_T)STRLEN(p); // Empty line or invalid column? if (len == 0 || oldcol < 0) { win->w_cursor.col = 0; } else { // Cursor column too big for line? if (oldcol > len) { win->w_cursor.col = len - 1; } // Move the cursor to the head byte. win->w_cursor.col -= utf_head_off(p, p + win->w_cursor.col); } // Reset `coladd` when the cursor would be on the right half of a // double-wide character. if (win->w_cursor.coladd == 1 && p[win->w_cursor.col] != TAB && vim_isprintc(utf_ptr2char(p + win->w_cursor.col)) && ptr2cells(p + win->w_cursor.col) > 1) { win->w_cursor.coladd = 0; } } } /// @param line start of the string /// /// @return a pointer to the character before "*p", if there is one. char_u *mb_prevptr(char_u *line, char_u *p) { if (p > line) { MB_PTR_BACK(line, p); } return p; } /* * Return the character length of "str". Each multi-byte character (with * following composing characters) counts as one. */ int mb_charlen(char_u *str) { char_u *p = str; int count; if (p == NULL) { return 0; } for (count = 0; *p != NUL; count++) { p += utfc_ptr2len(p); } return count; } /* * Like mb_charlen() but for a string with specified length. */ int mb_charlen_len(char_u *str, int len) { char_u *p = str; int count; for (count = 0; *p != NUL && p < str + len; count++) { p += utfc_ptr2len(p); } return count; } /// Try to unescape a multibyte character /// /// Used for the rhs and lhs of the mappings. /// /// @param[in,out] pp String to unescape. Is advanced to just after the bytes /// that form a multibyte character. /// /// @return Unescaped string if it is a multibyte character, NULL if no /// multibyte character was found. Returns a static buffer, always one /// and the same. const char *mb_unescape(const char **const pp) FUNC_ATTR_WARN_UNUSED_RESULT FUNC_ATTR_NONNULL_ALL { static char buf[6]; size_t buf_idx = 0; uint8_t *str = (uint8_t *)(*pp); // Must translate K_SPECIAL KS_SPECIAL KE_FILLER to K_SPECIAL and CSI // KS_EXTRA KE_CSI to CSI. // Maximum length of a utf-8 character is 4 bytes. for (size_t str_idx = 0; str[str_idx] != NUL && buf_idx < 4; str_idx++) { if (str[str_idx] == K_SPECIAL && str[str_idx + 1] == KS_SPECIAL && str[str_idx + 2] == KE_FILLER) { buf[buf_idx++] = (char)K_SPECIAL; str_idx += 2; } else if ((str[str_idx] == K_SPECIAL) && str[str_idx + 1] == KS_EXTRA && str[str_idx + 2] == KE_CSI) { buf[buf_idx++] = (char)CSI; str_idx += 2; } else if (str[str_idx] == K_SPECIAL) { break; // A special key can't be a multibyte char. } else { buf[buf_idx++] = (char)str[str_idx]; } buf[buf_idx] = NUL; // Return a multi-byte character if it's found. An illegal sequence // will result in a 1 here. if (utf_ptr2len((const char_u *)buf) > 1) { *pp = (const char *)str + str_idx + 1; return buf; } // Bail out quickly for ASCII. if ((uint8_t)buf[0] < 128) { break; } } return NULL; } /* * Skip the Vim specific head of a 'encoding' name. */ char_u *enc_skip(char_u *p) { if (STRNCMP(p, "2byte-", 6) == 0) { return p + 6; } if (STRNCMP(p, "8bit-", 5) == 0) { return p + 5; } return p; } /* * Find the canonical name for encoding "enc". * When the name isn't recognized, returns "enc" itself, but with all lower * case characters and '_' replaced with '-'. * Returns an allocated string. */ char_u *enc_canonize(char_u *enc) FUNC_ATTR_NONNULL_RET { char_u *p, *s; int i; if (STRCMP(enc, "default") == 0) { // Use the default encoding as found by set_init_1(). return vim_strsave(fenc_default); } // copy "enc" to allocated memory, with room for two '-' char_u *r = xmalloc(STRLEN(enc) + 3); // Make it all lower case and replace '_' with '-'. p = r; for (s = enc; *s != NUL; ++s) { if (*s == '_') { *p++ = '-'; } else { *p++ = TOLOWER_ASC(*s); } } *p = NUL; // Skip "2byte-" and "8bit-". p = enc_skip(r); // Change "microsoft-cp" to "cp". Used in some spell files. if (STRNCMP(p, "microsoft-cp", 12) == 0) { STRMOVE(p, p + 10); } // "iso8859" -> "iso-8859" if (STRNCMP(p, "iso8859", 7) == 0) { STRMOVE(p + 4, p + 3); p[3] = '-'; } // "iso-8859n" -> "iso-8859-n" if (STRNCMP(p, "iso-8859", 8) == 0 && p[8] != '-') { STRMOVE(p + 9, p + 8); p[8] = '-'; } // "latin-N" -> "latinN" if (STRNCMP(p, "latin-", 6) == 0) { STRMOVE(p + 5, p + 6); } if (enc_canon_search(p) >= 0) { // canonical name can be used unmodified if (p != r) { STRMOVE(r, p); } } else if ((i = enc_alias_search(p)) >= 0) { // alias recognized, get canonical name xfree(r); r = vim_strsave((char_u *)enc_canon_table[i].name); } return r; } /* * Search for an encoding alias of "name". * Returns -1 when not found. */ static int enc_alias_search(char_u *name) { int i; for (i = 0; enc_alias_table[i].name != NULL; ++i) { if (STRCMP(name, enc_alias_table[i].name) == 0) { return enc_alias_table[i].canon; } } return -1; } #ifdef HAVE_LANGINFO_H # include #endif /* * Get the canonicalized encoding of the current locale. * Returns an allocated string when successful, NULL when not. */ char_u *enc_locale(void) { int i; char buf[50]; const char *s; #ifdef HAVE_NL_LANGINFO_CODESET if (!(s = nl_langinfo(CODESET)) || *s == NUL) #endif { #if defined(HAVE_LOCALE_H) if (!(s = setlocale(LC_CTYPE, NULL)) || *s == NUL) #endif { if ((s = os_getenv("LC_ALL"))) { if ((s = os_getenv("LC_CTYPE"))) { s = os_getenv("LANG"); } } } } if (!s) { return NULL; } // The most generic locale format is: // language[_territory][.codeset][@modifier][+special][,[sponsor][_revision]] // If there is a '.' remove the part before it. // if there is something after the codeset, remove it. // Make the name lowercase and replace '_' with '-'. // Exception: "ja_JP.EUC" == "euc-jp", "zh_CN.EUC" = "euc-cn", // "ko_KR.EUC" == "euc-kr" const char *p = (char *)vim_strchr((char_u *)s, '.'); if (p != NULL) { if (p > s + 2 && !STRNICMP(p + 1, "EUC", 3) && !isalnum((int)p[4]) && p[4] != '-' && p[-3] == '_') { // Copy "XY.EUC" to "euc-XY" to buf[10]. memmove(buf, "euc-", 4); buf[4] = (ASCII_ISALNUM(p[-2]) ? TOLOWER_ASC(p[-2]) : 0); buf[5] = (ASCII_ISALNUM(p[-1]) ? TOLOWER_ASC(p[-1]) : 0); buf[6] = NUL; } else { s = p + 1; goto enc_locale_copy_enc; } } else { enc_locale_copy_enc: for (i = 0; i < (int)sizeof(buf) - 1 && s[i] != NUL; i++) { if (s[i] == '_' || s[i] == '-') { buf[i] = '-'; } else if (ASCII_ISALNUM((uint8_t)s[i])) { buf[i] = TOLOWER_ASC(s[i]); } else { break; } } buf[i] = NUL; } return enc_canonize((char_u *)buf); } #if defined(HAVE_ICONV) /* * Call iconv_open() with a check if iconv() works properly (there are broken * versions). * Returns (void *)-1 if failed. * (should return iconv_t, but that causes problems with prototypes). */ void *my_iconv_open(char_u *to, char_u *from) { iconv_t fd; # define ICONV_TESTLEN 400 char_u tobuf[ICONV_TESTLEN]; char *p; size_t tolen; static WorkingStatus iconv_working = kUnknown; if (iconv_working == kBroken) { return (void *)-1; // detected a broken iconv() previously } fd = iconv_open((char *)enc_skip(to), (char *)enc_skip(from)); if (fd != (iconv_t)-1 && iconv_working == kUnknown) { /* * Do a dummy iconv() call to check if it actually works. There is a * version of iconv() on Linux that is broken. We can't ignore it, * because it's wide-spread. The symptoms are that after outputting * the initial shift state the "to" pointer is NULL and conversion * stops for no apparent reason after about 8160 characters. */ p = (char *)tobuf; tolen = ICONV_TESTLEN; (void)iconv(fd, NULL, NULL, &p, &tolen); if (p == NULL) { iconv_working = kBroken; iconv_close(fd); fd = (iconv_t)-1; } else { iconv_working = kWorking; } } return (void *)fd; } /* * Convert the string "str[slen]" with iconv(). * If "unconvlenp" is not NULL handle the string ending in an incomplete * sequence and set "*unconvlenp" to the length of it. * Returns the converted string in allocated memory. NULL for an error. * If resultlenp is not NULL, sets it to the result length in bytes. */ static char_u *iconv_string(const vimconv_T *const vcp, char_u *str, size_t slen, size_t *unconvlenp, size_t *resultlenp) { const char *from; size_t fromlen; char *to; size_t tolen; size_t len = 0; size_t done = 0; char_u *result = NULL; char_u *p; int l; from = (char *)str; fromlen = slen; for (;;) { if (len == 0 || ICONV_ERRNO == ICONV_E2BIG) { // Allocate enough room for most conversions. When re-allocating // increase the buffer size. len = len + fromlen * 2 + 40; p = xmalloc(len); if (done > 0) { memmove(p, result, done); } xfree(result); result = p; } to = (char *)result + done; tolen = len - done - 2; // Avoid a warning for systems with a wrong iconv() prototype by // casting the second argument to void *. if (iconv(vcp->vc_fd, (void *)&from, &fromlen, &to, &tolen) != SIZE_MAX) { // Finished, append a NUL. *to = NUL; break; } // Check both ICONV_EINVAL and EINVAL, because the dynamically loaded // iconv library may use one of them. if (!vcp->vc_fail && unconvlenp != NULL && (ICONV_ERRNO == ICONV_EINVAL || ICONV_ERRNO == EINVAL)) { // Handle an incomplete sequence at the end. *to = NUL; *unconvlenp = fromlen; break; } else if (!vcp->vc_fail && (ICONV_ERRNO == ICONV_EILSEQ || ICONV_ERRNO == EILSEQ || ICONV_ERRNO == ICONV_EINVAL || ICONV_ERRNO == EINVAL)) { // Check both ICONV_EILSEQ and EILSEQ, because the dynamically loaded // iconv library may use one of them. // Can't convert: insert a '?' and skip a character. This assumes // conversion from 'encoding' to something else. In other // situations we don't know what to skip anyway. *to++ = '?'; if (utf_ptr2cells((char_u *)from) > 1) { *to++ = '?'; } l = utfc_ptr2len_len((const char_u *)from, (int)fromlen); from += l; fromlen -= l; } else if (ICONV_ERRNO != ICONV_E2BIG) { // conversion failed XFREE_CLEAR(result); break; } // Not enough room or skipping illegal sequence. done = to - (char *)result; } if (resultlenp != NULL && result != NULL) { *resultlenp = (size_t)(to - (char *)result); } return result; } #endif // HAVE_ICONV /* * Setup "vcp" for conversion from "from" to "to". * The names must have been made canonical with enc_canonize(). * vcp->vc_type must have been initialized to CONV_NONE. * Note: cannot be used for conversion from/to ucs-2 and ucs-4 (will use utf-8 * instead). * Afterwards invoke with "from" and "to" equal to NULL to cleanup. * Return FAIL when conversion is not supported, OK otherwise. */ int convert_setup(vimconv_T *vcp, char_u *from, char_u *to) { return convert_setup_ext(vcp, from, true, to, true); } /// As convert_setup(), but only when from_unicode_is_utf8 is true will all /// "from" unicode charsets be considered utf-8. Same for "to". int convert_setup_ext(vimconv_T *vcp, char_u *from, bool from_unicode_is_utf8, char_u *to, bool to_unicode_is_utf8) { int from_prop; int to_prop; int from_is_utf8; int to_is_utf8; // Reset to no conversion. #ifdef HAVE_ICONV if (vcp->vc_type == CONV_ICONV && vcp->vc_fd != (iconv_t)-1) { iconv_close(vcp->vc_fd); } #endif *vcp = (vimconv_T)MBYTE_NONE_CONV; // No conversion when one of the names is empty or they are equal. if (from == NULL || *from == NUL || to == NULL || *to == NUL || STRCMP(from, to) == 0) { return OK; } from_prop = enc_canon_props(from); to_prop = enc_canon_props(to); if (from_unicode_is_utf8) { from_is_utf8 = from_prop & ENC_UNICODE; } else { from_is_utf8 = from_prop == ENC_UNICODE; } if (to_unicode_is_utf8) { to_is_utf8 = to_prop & ENC_UNICODE; } else { to_is_utf8 = to_prop == ENC_UNICODE; } if ((from_prop & ENC_LATIN1) && to_is_utf8) { // Internal latin1 -> utf-8 conversion. vcp->vc_type = CONV_TO_UTF8; vcp->vc_factor = 2; // up to twice as long } else if ((from_prop & ENC_LATIN9) && to_is_utf8) { // Internal latin9 -> utf-8 conversion. vcp->vc_type = CONV_9_TO_UTF8; vcp->vc_factor = 3; // up to three as long (euro sign) } else if (from_is_utf8 && (to_prop & ENC_LATIN1)) { // Internal utf-8 -> latin1 conversion. vcp->vc_type = CONV_TO_LATIN1; } else if (from_is_utf8 && (to_prop & ENC_LATIN9)) { // Internal utf-8 -> latin9 conversion. vcp->vc_type = CONV_TO_LATIN9; } #ifdef HAVE_ICONV else { // NOLINT(readability/braces) // Use iconv() for conversion. vcp->vc_fd = (iconv_t)my_iconv_open(to_is_utf8 ? (char_u *)"utf-8" : to, from_is_utf8 ? (char_u *)"utf-8" : from); if (vcp->vc_fd != (iconv_t)-1) { vcp->vc_type = CONV_ICONV; vcp->vc_factor = 4; // could be longer too... } } #endif if (vcp->vc_type == CONV_NONE) { return FAIL; } return OK; } /* * Convert text "ptr[*lenp]" according to "vcp". * Returns the result in allocated memory and sets "*lenp". * When "lenp" is NULL, use NUL terminated strings. * Illegal chars are often changed to "?", unless vcp->vc_fail is set. * When something goes wrong, NULL is returned and "*lenp" is unchanged. */ char_u *string_convert(const vimconv_T *const vcp, char_u *ptr, size_t *lenp) { return string_convert_ext(vcp, ptr, lenp, NULL); } /* * Like string_convert(), but when "unconvlenp" is not NULL and there are is * an incomplete sequence at the end it is not converted and "*unconvlenp" is * set to the number of remaining bytes. */ char_u *string_convert_ext(const vimconv_T *const vcp, char_u *ptr, size_t *lenp, size_t *unconvlenp) { char_u *retval = NULL; char_u *d; int l; int c; size_t len; if (lenp == NULL) { len = STRLEN(ptr); } else { len = *lenp; } if (len == 0) { return vim_strsave((char_u *)""); } switch (vcp->vc_type) { case CONV_TO_UTF8: // latin1 to utf-8 conversion retval = xmalloc(len * 2 + 1); d = retval; for (size_t i = 0; i < len; ++i) { c = ptr[i]; if (c < 0x80) { *d++ = c; } else { *d++ = 0xc0 + ((unsigned)c >> 6); *d++ = 0x80 + (c & 0x3f); } } *d = NUL; if (lenp != NULL) { *lenp = (size_t)(d - retval); } break; case CONV_9_TO_UTF8: // latin9 to utf-8 conversion retval = xmalloc(len * 3 + 1); d = retval; for (size_t i = 0; i < len; ++i) { c = ptr[i]; switch (c) { case 0xa4: c = 0x20ac; break; // euro case 0xa6: c = 0x0160; break; // S hat case 0xa8: c = 0x0161; break; // S -hat case 0xb4: c = 0x017d; break; // Z hat case 0xb8: c = 0x017e; break; // Z -hat case 0xbc: c = 0x0152; break; // OE case 0xbd: c = 0x0153; break; // oe case 0xbe: c = 0x0178; break; // Y } d += utf_char2bytes(c, d); } *d = NUL; if (lenp != NULL) { *lenp = (size_t)(d - retval); } break; case CONV_TO_LATIN1: // utf-8 to latin1 conversion case CONV_TO_LATIN9: // utf-8 to latin9 conversion retval = xmalloc(len + 1); d = retval; for (size_t i = 0; i < len; ++i) { l = utf_ptr2len_len(ptr + i, len - i); if (l == 0) { *d++ = NUL; } else if (l == 1) { uint8_t l_w = utf8len_tab_zero[ptr[i]]; if (l_w == 0) { // Illegal utf-8 byte cannot be converted xfree(retval); return NULL; } if (unconvlenp != NULL && l_w > len - i) { // Incomplete sequence at the end. *unconvlenp = len - i; break; } *d++ = ptr[i]; } else { c = utf_ptr2char(ptr + i); if (vcp->vc_type == CONV_TO_LATIN9) { switch (c) { case 0x20ac: c = 0xa4; break; // euro case 0x0160: c = 0xa6; break; // S hat case 0x0161: c = 0xa8; break; // S -hat case 0x017d: c = 0xb4; break; // Z hat case 0x017e: c = 0xb8; break; // Z -hat case 0x0152: c = 0xbc; break; // OE case 0x0153: c = 0xbd; break; // oe case 0x0178: c = 0xbe; break; // Y case 0xa4: case 0xa6: case 0xa8: case 0xb4: case 0xb8: case 0xbc: case 0xbd: case 0xbe: c = 0x100; break; // not in latin9 } } if (!utf_iscomposing(c)) { // skip composing chars if (c < 0x100) { *d++ = c; } else if (vcp->vc_fail) { xfree(retval); return NULL; } else { *d++ = 0xbf; if (utf_char2cells(c) > 1) { *d++ = '?'; } } } i += l - 1; } } *d = NUL; if (lenp != NULL) { *lenp = (size_t)(d - retval); } break; #ifdef HAVE_ICONV case CONV_ICONV: // conversion with vcp->vc_fd retval = iconv_string(vcp, ptr, len, unconvlenp, lenp); break; #endif } return retval; }