/* * xxHash - Extremely Fast Hash algorithm * Copyright (C) 2012-2016, Yann Collet. * * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * This program is free software; you can redistribute it and/or modify it under * the terms of the GNU General Public License version 2 as published by the * Free Software Foundation. This program is dual-licensed; you may select * either version 2 of the GNU General Public License ("GPL") or BSD license * ("BSD"). * * You can contact the author at: * - xxHash homepage: https://cyan4973.github.io/xxHash/ * - xxHash source repository: https://github.com/Cyan4973/xxHash */ /* * Notice extracted from xxHash homepage: * * xxHash is an extremely fast Hash algorithm, running at RAM speed limits. * It also successfully passes all tests from the SMHasher suite. * * Comparison (single thread, Windows Seven 32 bits, using SMHasher on a Core 2 * Duo @3GHz) * * Name Speed Q.Score Author * xxHash 5.4 GB/s 10 * CrapWow 3.2 GB/s 2 Andrew * MumurHash 3a 2.7 GB/s 10 Austin Appleby * SpookyHash 2.0 GB/s 10 Bob Jenkins * SBox 1.4 GB/s 9 Bret Mulvey * Lookup3 1.2 GB/s 9 Bob Jenkins * SuperFastHash 1.2 GB/s 1 Paul Hsieh * CityHash64 1.05 GB/s 10 Pike & Alakuijala * FNV 0.55 GB/s 5 Fowler, Noll, Vo * CRC32 0.43 GB/s 9 * MD5-32 0.33 GB/s 10 Ronald L. Rivest * SHA1-32 0.28 GB/s 10 * * Q.Score is a measure of quality of the hash function. * It depends on successfully passing SMHasher test set. * 10 is a perfect score. * * A 64-bits version, named xxh64 offers much better speed, * but for 64-bits applications only. * Name Speed on 64 bits Speed on 32 bits * xxh64 13.8 GB/s 1.9 GB/s * xxh32 6.8 GB/s 6.0 GB/s */ #ifndef XXHASH_H #define XXHASH_H #include #define XXH_API static inline __attribute__((unused)) /*-**************************** * Simple Hash Functions *****************************/ /** * xxh32() - calculate the 32-bit hash of the input with a given seed. * * @input: The data to hash. * @length: The length of the data to hash. * @seed: The seed can be used to alter the result predictably. * * Speed on Core 2 Duo @ 3 GHz (single thread, SMHasher benchmark) : 5.4 GB/s * * Return: The 32-bit hash of the data. */ XXH_API uint32_t xxh32(const void *input, size_t length, uint32_t seed); /** * xxh64() - calculate the 64-bit hash of the input with a given seed. * * @input: The data to hash. * @length: The length of the data to hash. * @seed: The seed can be used to alter the result predictably. * * This function runs 2x faster on 64-bit systems, but slower on 32-bit systems. * * Return: The 64-bit hash of the data. */ XXH_API uint64_t xxh64(const void *input, size_t length, uint64_t seed); /** * xxhash() - calculate wordsize hash of the input with a given seed * @input: The data to hash. * @length: The length of the data to hash. * @seed: The seed can be used to alter the result predictably. * * If the hash does not need to be comparable between machines with * different word sizes, this function will call whichever of xxh32() * or xxh64() is faster. * * Return: wordsize hash of the data. */ static inline unsigned long xxhash(const void *input, size_t length, uint64_t seed) { #if BITS_PER_LONG == 64 return xxh64(input, length, seed); #else return xxh32(input, length, seed); #endif } /*-**************************** * Streaming Hash Functions *****************************/ /* * These definitions are only meant to allow allocation of XXH state * statically, on stack, or in a struct for example. * Do not use members directly. */ /** * struct xxh32_state - private xxh32 state, do not use members directly */ struct xxh32_state { uint32_t total_len_32; uint32_t large_len; uint32_t v1; uint32_t v2; uint32_t v3; uint32_t v4; uint32_t mem32[4]; uint32_t memsize; }; /** * struct xxh32_state - private xxh64 state, do not use members directly */ struct xxh64_state { uint64_t total_len; uint64_t v1; uint64_t v2; uint64_t v3; uint64_t v4; uint64_t mem64[4]; uint32_t memsize; }; /** * xxh32_reset() - reset the xxh32 state to start a new hashing operation * * @state: The xxh32 state to reset. * @seed: Initialize the hash state with this seed. * * Call this function on any xxh32_state to prepare for a new hashing operation. */ XXH_API void xxh32_reset(struct xxh32_state *state, uint32_t seed); /** * xxh32_update() - hash the data given and update the xxh32 state * * @state: The xxh32 state to update. * @input: The data to hash. * @length: The length of the data to hash. * * After calling xxh32_reset() call xxh32_update() as many times as necessary. * * Return: Zero on success, otherwise an error code. */ XXH_API int xxh32_update(struct xxh32_state *state, const void *input, size_t length); /** * xxh32_digest() - produce the current xxh32 hash * * @state: Produce the current xxh32 hash of this state. * * A hash value can be produced at any time. It is still possible to continue * inserting input into the hash state after a call to xxh32_digest(), and * generate new hashes later on, by calling xxh32_digest() again. * * Return: The xxh32 hash stored in the state. */ XXH_API uint32_t xxh32_digest(const struct xxh32_state *state); /** * xxh64_reset() - reset the xxh64 state to start a new hashing operation * * @state: The xxh64 state to reset. * @seed: Initialize the hash state with this seed. */ XXH_API void xxh64_reset(struct xxh64_state *state, uint64_t seed); /** * xxh64_update() - hash the data given and update the xxh64 state * @state: The xxh64 state to update. * @input: The data to hash. * @length: The length of the data to hash. * * After calling xxh64_reset() call xxh64_update() as many times as necessary. * * Return: Zero on success, otherwise an error code. */ XXH_API int xxh64_update(struct xxh64_state *state, const void *input, size_t length); /** * xxh64_digest() - produce the current xxh64 hash * * @state: Produce the current xxh64 hash of this state. * * A hash value can be produced at any time. It is still possible to continue * inserting input into the hash state after a call to xxh64_digest(), and * generate new hashes later on, by calling xxh64_digest() again. * * Return: The xxh64 hash stored in the state. */ XXH_API uint64_t xxh64_digest(const struct xxh64_state *state); /*-************************** * Utils ***************************/ /** * xxh32_copy_state() - copy the source state into the destination state * * @src: The source xxh32 state. * @dst: The destination xxh32 state. */ XXH_API void xxh32_copy_state(struct xxh32_state *dst, const struct xxh32_state *src); /** * xxh64_copy_state() - copy the source state into the destination state * * @src: The source xxh64 state. * @dst: The destination xxh64 state. */ XXH_API void xxh64_copy_state(struct xxh64_state *dst, const struct xxh64_state *src); /* * xxHash - Extremely Fast Hash algorithm * Copyright (C) 2012-2016, Yann Collet. * * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * This program is free software; you can redistribute it and/or modify it under * the terms of the GNU General Public License version 2 as published by the * Free Software Foundation. This program is dual-licensed; you may select * either version 2 of the GNU General Public License ("GPL") or BSD license * ("BSD"). * * You can contact the author at: * - xxHash homepage: https://cyan4973.github.io/xxHash/ * - xxHash source repository: https://github.com/Cyan4973/xxHash */ #include #include #include #include #include /*-************************************* * Macros **************************************/ #define xxh_rotl32(x, r) ((x << r) | (x >> (32 - r))) #define xxh_rotl64(x, r) ((x << r) | (x >> (64 - r))) #ifdef __LITTLE_ENDIAN # define XXH_CPU_LITTLE_ENDIAN 1 #else # define XXH_CPU_LITTLE_ENDIAN 0 #endif /*-************************************* * Constants **************************************/ static const uint32_t PRIME32_1 = 2654435761U; static const uint32_t PRIME32_2 = 2246822519U; static const uint32_t PRIME32_3 = 3266489917U; static const uint32_t PRIME32_4 = 668265263U; static const uint32_t PRIME32_5 = 374761393U; static const uint64_t PRIME64_1 = 11400714785074694791ULL; static const uint64_t PRIME64_2 = 14029467366897019727ULL; static const uint64_t PRIME64_3 = 1609587929392839161ULL; static const uint64_t PRIME64_4 = 9650029242287828579ULL; static const uint64_t PRIME64_5 = 2870177450012600261ULL; /*-************************** * Utils ***************************/ XXH_API void xxh32_copy_state(struct xxh32_state *dst, const struct xxh32_state *src) { __builtin_memcpy(dst, src, sizeof(*dst)); } XXH_API void xxh64_copy_state(struct xxh64_state *dst, const struct xxh64_state *src) { __builtin_memcpy(dst, src, sizeof(*dst)); } /*-*************************** * Simple Hash Functions ****************************/ static uint32_t xxh32_round(uint32_t seed, const uint32_t input) { seed += input * PRIME32_2; seed = xxh_rotl32(seed, 13); seed *= PRIME32_1; return seed; } XXH_API uint32_t xxh32(const void *input, const size_t len, const uint32_t seed) { const uint8_t *p = (const uint8_t *)input; const uint8_t *b_end = p + len; uint32_t h32; if (len >= 16) { const uint8_t *const limit = b_end - 16; uint32_t v1 = seed + PRIME32_1 + PRIME32_2; uint32_t v2 = seed + PRIME32_2; uint32_t v3 = seed + 0; uint32_t v4 = seed - PRIME32_1; do { v1 = xxh32_round(v1, get_unaligned_le32(p)); p += 4; v2 = xxh32_round(v2, get_unaligned_le32(p)); p += 4; v3 = xxh32_round(v3, get_unaligned_le32(p)); p += 4; v4 = xxh32_round(v4, get_unaligned_le32(p)); p += 4; } while (p <= limit); h32 = xxh_rotl32(v1, 1) + xxh_rotl32(v2, 7) + xxh_rotl32(v3, 12) + xxh_rotl32(v4, 18); } else { h32 = seed + PRIME32_5; } h32 += (uint32_t)len; while (p + 4 <= b_end) { h32 += get_unaligned_le32(p) * PRIME32_3; h32 = xxh_rotl32(h32, 17) * PRIME32_4; p += 4; } while (p < b_end) { h32 += (*p) * PRIME32_5; h32 = xxh_rotl32(h32, 11) * PRIME32_1; p++; } h32 ^= h32 >> 15; h32 *= PRIME32_2; h32 ^= h32 >> 13; h32 *= PRIME32_3; h32 ^= h32 >> 16; return h32; } static uint64_t xxh64_round(uint64_t acc, const uint64_t input) { acc += input * PRIME64_2; acc = xxh_rotl64(acc, 31); acc *= PRIME64_1; return acc; } static uint64_t xxh64_merge_round(uint64_t acc, uint64_t val) { val = xxh64_round(0, val); acc ^= val; acc = acc * PRIME64_1 + PRIME64_4; return acc; } XXH_API uint64_t xxh64(const void *input, const size_t len, const uint64_t seed) { const uint8_t *p = (const uint8_t *)input; const uint8_t *const b_end = p + len; uint64_t h64; if (len >= 32) { const uint8_t *const limit = b_end - 32; uint64_t v1 = seed + PRIME64_1 + PRIME64_2; uint64_t v2 = seed + PRIME64_2; uint64_t v3 = seed + 0; uint64_t v4 = seed - PRIME64_1; do { v1 = xxh64_round(v1, get_unaligned_le64(p)); p += 8; v2 = xxh64_round(v2, get_unaligned_le64(p)); p += 8; v3 = xxh64_round(v3, get_unaligned_le64(p)); p += 8; v4 = xxh64_round(v4, get_unaligned_le64(p)); p += 8; } while (p <= limit); h64 = xxh_rotl64(v1, 1) + xxh_rotl64(v2, 7) + xxh_rotl64(v3, 12) + xxh_rotl64(v4, 18); h64 = xxh64_merge_round(h64, v1); h64 = xxh64_merge_round(h64, v2); h64 = xxh64_merge_round(h64, v3); h64 = xxh64_merge_round(h64, v4); } else { h64 = seed + PRIME64_5; } h64 += (uint64_t)len; while (p + 8 <= b_end) { const uint64_t k1 = xxh64_round(0, get_unaligned_le64(p)); h64 ^= k1; h64 = xxh_rotl64(h64, 27) * PRIME64_1 + PRIME64_4; p += 8; } if (p + 4 <= b_end) { h64 ^= (uint64_t)(get_unaligned_le32(p)) * PRIME64_1; h64 = xxh_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; p += 4; } while (p < b_end) { h64 ^= (*p) * PRIME64_5; h64 = xxh_rotl64(h64, 11) * PRIME64_1; p++; } h64 ^= h64 >> 33; h64 *= PRIME64_2; h64 ^= h64 >> 29; h64 *= PRIME64_3; h64 ^= h64 >> 32; return h64; } /*-************************************************** * Advanced Hash Functions ***************************************************/ XXH_API void xxh32_reset(struct xxh32_state *statePtr, const uint32_t seed) { /* use a local state for memcpy() to avoid strict-aliasing warnings */ struct xxh32_state state; __builtin_memset(&state, 0, sizeof(state)); state.v1 = seed + PRIME32_1 + PRIME32_2; state.v2 = seed + PRIME32_2; state.v3 = seed + 0; state.v4 = seed - PRIME32_1; __builtin_memcpy(statePtr, &state, sizeof(state)); } XXH_API void xxh64_reset(struct xxh64_state *statePtr, const uint64_t seed) { /* use a local state for memcpy() to avoid strict-aliasing warnings */ struct xxh64_state state; __builtin_memset(&state, 0, sizeof(state)); state.v1 = seed + PRIME64_1 + PRIME64_2; state.v2 = seed + PRIME64_2; state.v3 = seed + 0; state.v4 = seed - PRIME64_1; __builtin_memcpy(statePtr, &state, sizeof(state)); } XXH_API int xxh32_update(struct xxh32_state *state, const void *input, const size_t len) { const uint8_t *p = (const uint8_t *)input; const uint8_t *const b_end = p + len; if (input == NULL) return -EINVAL; state->total_len_32 += (uint32_t)len; state->large_len |= (len >= 16) | (state->total_len_32 >= 16); if (state->memsize + len < 16) { /* fill in tmp buffer */ __builtin_memcpy((uint8_t *)(state->mem32) + state->memsize, input, len); state->memsize += (uint32_t)len; return 0; } if (state->memsize) { /* some data left from previous update */ const uint32_t *p32 = state->mem32; __builtin_memcpy((uint8_t *)(state->mem32) + state->memsize, input, 16 - state->memsize); state->v1 = xxh32_round(state->v1, get_unaligned_le32(p32)); p32++; state->v2 = xxh32_round(state->v2, get_unaligned_le32(p32)); p32++; state->v3 = xxh32_round(state->v3, get_unaligned_le32(p32)); p32++; state->v4 = xxh32_round(state->v4, get_unaligned_le32(p32)); p32++; p += 16-state->memsize; state->memsize = 0; } if (p <= b_end - 16) { const uint8_t *const limit = b_end - 16; uint32_t v1 = state->v1; uint32_t v2 = state->v2; uint32_t v3 = state->v3; uint32_t v4 = state->v4; do { v1 = xxh32_round(v1, get_unaligned_le32(p)); p += 4; v2 = xxh32_round(v2, get_unaligned_le32(p)); p += 4; v3 = xxh32_round(v3, get_unaligned_le32(p)); p += 4; v4 = xxh32_round(v4, get_unaligned_le32(p)); p += 4; } while (p <= limit); state->v1 = v1; state->v2 = v2; state->v3 = v3; state->v4 = v4; } if (p < b_end) { __builtin_memcpy(state->mem32, p, (size_t)(b_end-p)); state->memsize = (uint32_t)(b_end-p); } return 0; } XXH_API uint32_t xxh32_digest(const struct xxh32_state *state) { const uint8_t *p = (const uint8_t *)state->mem32; const uint8_t *const b_end = (const uint8_t *)(state->mem32) + state->memsize; uint32_t h32; if (state->large_len) { h32 = xxh_rotl32(state->v1, 1) + xxh_rotl32(state->v2, 7) + xxh_rotl32(state->v3, 12) + xxh_rotl32(state->v4, 18); } else { h32 = state->v3 /* == seed */ + PRIME32_5; } h32 += state->total_len_32; while (p + 4 <= b_end) { h32 += get_unaligned_le32(p) * PRIME32_3; h32 = xxh_rotl32(h32, 17) * PRIME32_4; p += 4; } while (p < b_end) { h32 += (*p) * PRIME32_5; h32 = xxh_rotl32(h32, 11) * PRIME32_1; p++; } h32 ^= h32 >> 15; h32 *= PRIME32_2; h32 ^= h32 >> 13; h32 *= PRIME32_3; h32 ^= h32 >> 16; return h32; } XXH_API int xxh64_update(struct xxh64_state *state, const void *input, const size_t len) { const uint8_t *p = (const uint8_t *)input; const uint8_t *const b_end = p + len; if (input == NULL) return -EINVAL; state->total_len += len; if (state->memsize + len < 32) { /* fill in tmp buffer */ __builtin_memcpy(((uint8_t *)state->mem64) + state->memsize, input, len); state->memsize += (uint32_t)len; return 0; } if (state->memsize) { /* tmp buffer is full */ uint64_t *p64 = state->mem64; __builtin_memcpy(((uint8_t *)p64) + state->memsize, input, 32 - state->memsize); state->v1 = xxh64_round(state->v1, get_unaligned_le64(p64)); p64++; state->v2 = xxh64_round(state->v2, get_unaligned_le64(p64)); p64++; state->v3 = xxh64_round(state->v3, get_unaligned_le64(p64)); p64++; state->v4 = xxh64_round(state->v4, get_unaligned_le64(p64)); p += 32 - state->memsize; state->memsize = 0; } if (p + 32 <= b_end) { const uint8_t *const limit = b_end - 32; uint64_t v1 = state->v1; uint64_t v2 = state->v2; uint64_t v3 = state->v3; uint64_t v4 = state->v4; do { v1 = xxh64_round(v1, get_unaligned_le64(p)); p += 8; v2 = xxh64_round(v2, get_unaligned_le64(p)); p += 8; v3 = xxh64_round(v3, get_unaligned_le64(p)); p += 8; v4 = xxh64_round(v4, get_unaligned_le64(p)); p += 8; } while (p <= limit); state->v1 = v1; state->v2 = v2; state->v3 = v3; state->v4 = v4; } if (p < b_end) { __builtin_memcpy(state->mem64, p, (size_t)(b_end-p)); state->memsize = (uint32_t)(b_end - p); } return 0; } XXH_API uint64_t xxh64_digest(const struct xxh64_state *state) { const uint8_t *p = (const uint8_t *)state->mem64; const uint8_t *const b_end = (const uint8_t *)state->mem64 + state->memsize; uint64_t h64; if (state->total_len >= 32) { const uint64_t v1 = state->v1; const uint64_t v2 = state->v2; const uint64_t v3 = state->v3; const uint64_t v4 = state->v4; h64 = xxh_rotl64(v1, 1) + xxh_rotl64(v2, 7) + xxh_rotl64(v3, 12) + xxh_rotl64(v4, 18); h64 = xxh64_merge_round(h64, v1); h64 = xxh64_merge_round(h64, v2); h64 = xxh64_merge_round(h64, v3); h64 = xxh64_merge_round(h64, v4); } else { h64 = state->v3 + PRIME64_5; } h64 += (uint64_t)state->total_len; while (p + 8 <= b_end) { const uint64_t k1 = xxh64_round(0, get_unaligned_le64(p)); h64 ^= k1; h64 = xxh_rotl64(h64, 27) * PRIME64_1 + PRIME64_4; p += 8; } if (p + 4 <= b_end) { h64 ^= (uint64_t)(get_unaligned_le32(p)) * PRIME64_1; h64 = xxh_rotl64(h64, 23) * PRIME64_2 + PRIME64_3; p += 4; } while (p < b_end) { h64 ^= (*p) * PRIME64_5; h64 = xxh_rotl64(h64, 11) * PRIME64_1; p++; } h64 ^= h64 >> 33; h64 *= PRIME64_2; h64 ^= h64 >> 29; h64 *= PRIME64_3; h64 ^= h64 >> 32; return h64; } #endif /* XXHASH_H */