// Copyright (c) 2013- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include "ppsspp_config.h" #include "Common/Data/Convert/ColorConv.h" #include "Common/Profiler/Profiler.h" #include "Common/MemoryUtil.h" #include "Common/StringUtils.h" #include "Core/Config.h" #include "Core/Debugger/MemBlockInfo.h" #include "Core/Reporting.h" #include "Core/System.h" #include "GPU/Common/FramebufferManagerCommon.h" #include "GPU/Common/TextureCacheCommon.h" #include "GPU/Common/TextureDecoder.h" #include "GPU/Common/ShaderId.h" #include "GPU/Common/GPUStateUtils.h" #include "GPU/Debugger/Debugger.h" #include "GPU/GPUCommon.h" #include "GPU/GPUInterface.h" #include "GPU/GPUState.h" #include "Core/Util/PPGeDraw.h" #if defined(_M_SSE) #include #endif #if PPSSPP_ARCH(ARM_NEON) #if defined(_MSC_VER) && PPSSPP_ARCH(ARM64) #include #else #include #endif #endif // Videos should be updated every few frames, so we forget quickly. #define VIDEO_DECIMATE_AGE 4 // If a texture hasn't been seen for this many frames, get rid of it. #define TEXTURE_KILL_AGE 200 #define TEXTURE_KILL_AGE_LOWMEM 60 // Not used in lowmem mode. #define TEXTURE_SECOND_KILL_AGE 100 // Used when there are multiple CLUT variants of a texture. #define TEXTURE_KILL_AGE_CLUT 6 #define TEXTURE_CLUT_VARIANTS_MIN 6 // Try to be prime to other decimation intervals. #define TEXCACHE_DECIMATION_INTERVAL 13 #define TEXCACHE_MIN_PRESSURE 16 * 1024 * 1024 // Total in VRAM #define TEXCACHE_SECOND_MIN_PRESSURE 4 * 1024 * 1024 // Just for reference // PSP Color formats: // 565: BBBBBGGGGGGRRRRR // 5551: ABBBBBGGGGGRRRRR // 4444: AAAABBBBGGGGRRRR // 8888: AAAAAAAABBBBBBBBGGGGGGGGRRRRRRRR (Bytes in memory: RGBA) // D3D11/9 Color formats: // DXGI_FORMAT_B4G4R4A4/D3DFMT_A4R4G4B4: AAAARRRRGGGGBBBB // DXGI_FORMAT_B5G5R5A1/D3DFMT_A1R5G6B5: ARRRRRGGGGGBBBBB // DXGI_FORMAT_B5G6R6/D3DFMT_R5G6B5: RRRRRGGGGGGBBBBB // DXGI_FORMAT_B8G8R8A8: AAAAAAAARRRRRRRRGGGGGGGGBBBBBBBB (Bytes in memory: BGRA) // These are Data::Format:: A4R4G4B4_PACK16, A1R5G6B5_PACK16, R5G6B5_PACK16, B8G8R8A8. // So these are good matches, just with R/B swapped. // OpenGL ES color formats: // GL_UNSIGNED_SHORT_4444: BBBBGGGGRRRRAAAA (4-bit rotation) // GL_UNSIGNED_SHORT_565: BBBBBGGGGGGRRRRR (match) // GL_UNSIGNED_SHORT_1555: BBBBBGGGGGRRRRRA (1-bit rotation) // GL_UNSIGNED_BYTE/RGBA: AAAAAAAABBBBBBBBGGGGGGGGRRRRRRRR (match) // These are Data::Format:: B4G4R4A4_PACK16, B5G6R6_PACK16, B5G5R5A1_PACK16, R8G8B8A8 // Allow the extra bits from the remasters for the purposes of this. inline int dimWidth(u16 dim) { return 1 << (dim & 0xFF); } inline int dimHeight(u16 dim) { return 1 << ((dim >> 8) & 0xFF); } // Vulkan color formats: // TODO TextureCacheCommon::TextureCacheCommon(Draw::DrawContext *draw) : draw_(draw), clutLastFormat_(0xFFFFFFFF), clutTotalBytes_(0), clutMaxBytes_(0), clutRenderAddress_(0xFFFFFFFF), clutAlphaLinear_(false), isBgraBackend_(false) { decimationCounter_ = TEXCACHE_DECIMATION_INTERVAL; // TODO: Clamp down to 256/1KB? Need to check mipmapShareClut and clamp loadclut. clutBufRaw_ = (u32 *)AllocateAlignedMemory(1024 * sizeof(u32), 16); // 4KB clutBufConverted_ = (u32 *)AllocateAlignedMemory(1024 * sizeof(u32), 16); // 4KB // Zap so we get consistent behavior if the game fails to load some of the CLUT. memset(clutBufRaw_, 0, 1024 * sizeof(u32)); memset(clutBufConverted_, 0, 1024 * sizeof(u32)); clutBuf_ = clutBufConverted_; // These buffers will grow if necessary, but most won't need more than this. tmpTexBuf32_.resize(512 * 512); // 1MB tmpTexBufRearrange_.resize(512 * 512); // 1MB replacer_.Init(); } TextureCacheCommon::~TextureCacheCommon() { FreeAlignedMemory(clutBufConverted_); FreeAlignedMemory(clutBufRaw_); } // Produces a signed 1.23.8 value. static int TexLog2(float delta) { union FloatBits { float f; u32 u; }; FloatBits f; f.f = delta; // Use the exponent as the tex level, and the top mantissa bits for a frac. // We can't support more than 8 bits of frac, so truncate. int useful = (f.u >> 15) & 0xFFFF; // Now offset so the exponent aligns with log2f (exp=127 is 0.) return useful - 127 * 256; } SamplerCacheKey TextureCacheCommon::GetSamplingParams(int maxLevel, const TexCacheEntry *entry) { SamplerCacheKey key; int minFilt = gstate.texfilter & 0x7; key.minFilt = minFilt & 1; key.mipEnable = (minFilt >> 2) & 1; key.mipFilt = (minFilt >> 1) & 1; key.magFilt = gstate.isMagnifyFilteringEnabled(); key.sClamp = gstate.isTexCoordClampedS(); key.tClamp = gstate.isTexCoordClampedT(); key.aniso = false; GETexLevelMode mipMode = gstate.getTexLevelMode(); bool autoMip = mipMode == GE_TEXLEVEL_MODE_AUTO; // TODO: Slope mipmap bias is still not well understood. float lodBias = (float)gstate.getTexLevelOffset16() * (1.0f / 16.0f); if (mipMode == GE_TEXLEVEL_MODE_SLOPE) { lodBias += 1.0f + TexLog2(gstate.getTextureLodSlope()) * (1.0f / 256.0f); } // If mip level is forced to zero, disable mipmapping. bool noMip = maxLevel == 0 || (!autoMip && lodBias <= 0.0f); if (IsFakeMipmapChange()) { noMip = noMip || !autoMip; } if (noMip) { // Enforce no mip filtering, for safety. key.mipEnable = false; key.mipFilt = 0; lodBias = 0.0f; } if (!key.mipEnable) { key.maxLevel = 0; key.minLevel = 0; key.lodBias = 0; key.mipFilt = 0; } else { switch (mipMode) { case GE_TEXLEVEL_MODE_AUTO: key.maxLevel = maxLevel * 256; key.minLevel = 0; key.lodBias = (int)(lodBias * 256.0f); if (gstate_c.Supports(GPU_SUPPORTS_ANISOTROPY) && g_Config.iAnisotropyLevel > 0) { key.aniso = true; } break; case GE_TEXLEVEL_MODE_CONST: case GE_TEXLEVEL_MODE_UNKNOWN: key.maxLevel = (int)(lodBias * 256.0f); key.minLevel = (int)(lodBias * 256.0f); key.lodBias = 0; break; case GE_TEXLEVEL_MODE_SLOPE: // It's incorrect to use the slope as a bias. Instead it should be passed // into the shader directly as an explicit lod level, with the bias on top. For now, we just kill the // lodBias in this mode, working around #9772. key.maxLevel = maxLevel * 256; key.minLevel = 0; key.lodBias = 0; break; } } // Video bilinear override if (!key.magFilt && entry != nullptr && IsVideo(entry->addr)) { // Enforce bilinear filtering on magnification. key.magFilt = 1; } // Filtering overrides from replacements or settings. TextureFiltering forceFiltering = TEX_FILTER_AUTO; u64 cachekey = replacer_.Enabled() ? (entry ? entry->CacheKey() : 0) : 0; if (!replacer_.Enabled() || entry == nullptr || !replacer_.FindFiltering(cachekey, entry->fullhash, &forceFiltering)) { switch (g_Config.iTexFiltering) { case TEX_FILTER_AUTO: // Follow what the game wants. We just do a single heuristic change to avoid bleeding of wacky color test colors // in higher resolution (used by some games for sprites, and they accidentally have linear filter on). if (gstate.isModeThrough() && g_Config.iInternalResolution != 1) { bool uglyColorTest = gstate.isColorTestEnabled() && !IsColorTestTriviallyTrue() && gstate.getColorTestRef() != 0; if (uglyColorTest) forceFiltering = TEX_FILTER_FORCE_NEAREST; } break; case TEX_FILTER_FORCE_LINEAR: // Override to linear filtering if there's no alpha or color testing going on. if ((!gstate.isColorTestEnabled() || IsColorTestTriviallyTrue()) && (!gstate.isAlphaTestEnabled() || IsAlphaTestTriviallyTrue())) { forceFiltering = TEX_FILTER_FORCE_LINEAR; } break; case TEX_FILTER_FORCE_NEAREST: // Just force to nearest without checks. Safe (but ugly). forceFiltering = TEX_FILTER_FORCE_NEAREST; break; case TEX_FILTER_AUTO_MAX_QUALITY: default: forceFiltering = TEX_FILTER_AUTO_MAX_QUALITY; if (gstate.isModeThrough() && g_Config.iInternalResolution != 1) { bool uglyColorTest = gstate.isColorTestEnabled() && !IsColorTestTriviallyTrue() && gstate.getColorTestRef() != 0; if (uglyColorTest) forceFiltering = TEX_FILTER_FORCE_NEAREST; } break; } } switch (forceFiltering) { case TEX_FILTER_AUTO: break; case TEX_FILTER_FORCE_LINEAR: key.magFilt = 1; key.minFilt = 1; key.mipFilt = 1; break; case TEX_FILTER_FORCE_NEAREST: key.magFilt = 0; key.minFilt = 0; break; case TEX_FILTER_AUTO_MAX_QUALITY: // NOTE: We do not override magfilt here. If a game should have pixellated filtering, // let it keep it. But we do enforce minification and mipmap filtering and max out the level. // Later we'll also auto-generate any missing mipmaps. key.minFilt = 1; key.mipFilt = 1; key.maxLevel = 9 * 256; key.lodBias = 0.0f; if (gstate_c.Supports(GPU_SUPPORTS_ANISOTROPY) && g_Config.iAnisotropyLevel > 0) { key.aniso = true; } break; } return key; } SamplerCacheKey TextureCacheCommon::GetFramebufferSamplingParams(u16 bufferWidth, u16 bufferHeight) { SamplerCacheKey key = GetSamplingParams(0, nullptr); // Kill any mipmapping settings. key.mipEnable = false; key.mipFilt = false; key.aniso = 0.0; key.maxLevel = 0.0f; // Often the framebuffer will not match the texture size. We'll wrap/clamp in the shader in that case. int w = gstate.getTextureWidth(0); int h = gstate.getTextureHeight(0); if (w != bufferWidth || h != bufferHeight) { key.sClamp = true; key.tClamp = true; } return key; } void TextureCacheCommon::UpdateMaxSeenV(TexCacheEntry *entry, bool throughMode) { // If the texture is >= 512 pixels tall... if (entry->dim >= 0x900) { if (entry->cluthash != 0 && entry->maxSeenV == 0) { const u64 cachekeyMin = (u64)(entry->addr & 0x3FFFFFFF) << 32; const u64 cachekeyMax = cachekeyMin + (1ULL << 32); for (auto it = cache_.lower_bound(cachekeyMin), end = cache_.upper_bound(cachekeyMax); it != end; ++it) { // They should all be the same, just make sure we take any that has already increased. // This is for a new texture. if (it->second->maxSeenV != 0) { entry->maxSeenV = it->second->maxSeenV; break; } } } // Texture scale/offset and gen modes don't apply in through. // So we can optimize how much of the texture we look at. if (throughMode) { if (entry->maxSeenV == 0 && gstate_c.vertBounds.maxV > 0) { // Let's not hash less than 272, we might use more later and have to rehash. 272 is very common. entry->maxSeenV = std::max((u16)272, gstate_c.vertBounds.maxV); } else if (gstate_c.vertBounds.maxV > entry->maxSeenV) { // The max height changed, so we're better off hashing the entire thing. entry->maxSeenV = 512; entry->status |= TexCacheEntry::STATUS_FREE_CHANGE; } } else { // Otherwise, we need to reset to ensure we use the whole thing. // Can't tell how much is used. // TODO: We could tell for texcoord UV gen, and apply scale to max? entry->maxSeenV = 512; } // We need to keep all CLUT variants in sync so we detect changes properly. // See HandleTextureChange / STATUS_CLUT_RECHECK. if (entry->cluthash != 0) { const u64 cachekeyMin = (u64)(entry->addr & 0x3FFFFFFF) << 32; const u64 cachekeyMax = cachekeyMin + (1ULL << 32); for (auto it = cache_.lower_bound(cachekeyMin), end = cache_.upper_bound(cachekeyMax); it != end; ++it) { it->second->maxSeenV = entry->maxSeenV; } } } } TexCacheEntry *TextureCacheCommon::SetTexture() { u8 level = 0; if (IsFakeMipmapChange()) level = std::max(0, gstate.getTexLevelOffset16() / 16); u32 texaddr = gstate.getTextureAddress(level); if (!Memory::IsValidAddress(texaddr)) { // Bind a null texture and return. Unbind(); return nullptr; } const u16 dim = gstate.getTextureDimension(level); int w = gstate.getTextureWidth(level); int h = gstate.getTextureHeight(level); GETextureFormat format = gstate.getTextureFormat(); if (format >= 11) { // TODO: Better assumption? Doesn't really matter, these are invalid. format = GE_TFMT_5650; } bool hasClut = gstate.isTextureFormatIndexed(); u32 cluthash; if (hasClut) { if (clutLastFormat_ != gstate.clutformat) { // We update here because the clut format can be specified after the load. UpdateCurrentClut(gstate.getClutPaletteFormat(), gstate.getClutIndexStartPos(), gstate.isClutIndexSimple()); } cluthash = clutHash_ ^ gstate.clutformat; } else { cluthash = 0; } u64 cachekey = TexCacheEntry::CacheKey(texaddr, format, dim, cluthash); int bufw = GetTextureBufw(0, texaddr, format); u8 maxLevel = gstate.getTextureMaxLevel(); u32 minihash = MiniHash((const u32 *)Memory::GetPointerUnchecked(texaddr)); TexCache::iterator entryIter = cache_.find(cachekey); TexCacheEntry *entry = nullptr; // Note: It's necessary to reset needshadertexclamp, for otherwise DIRTY_TEXCLAMP won't get set later. // Should probably revisit how this works.. gstate_c.SetNeedShaderTexclamp(false); gstate_c.skipDrawReason &= ~SKIPDRAW_BAD_FB_TEXTURE; if (gstate_c.bgraTexture != isBgraBackend_) { gstate_c.Dirty(DIRTY_FRAGMENTSHADER_STATE); } gstate_c.bgraTexture = isBgraBackend_; if (entryIter != cache_.end()) { entry = entryIter->second.get(); // Validate the texture still matches the cache entry. bool match = entry->Matches(dim, format, maxLevel); const char *reason = "different params"; // Check for FBO changes. if (entry->status & TexCacheEntry::STATUS_FRAMEBUFFER_OVERLAP) { // Fall through to the end where we'll delete the entry if there's a framebuffer. entry->status &= ~TexCacheEntry::STATUS_FRAMEBUFFER_OVERLAP; match = false; } bool rehash = entry->GetHashStatus() == TexCacheEntry::STATUS_UNRELIABLE; // First let's see if another texture with the same address had a hashfail. if (entry->status & TexCacheEntry::STATUS_CLUT_RECHECK) { // Always rehash in this case, if one changed the rest all probably did. rehash = true; entry->status &= ~TexCacheEntry::STATUS_CLUT_RECHECK; } else if (!gstate_c.IsDirty(DIRTY_TEXTURE_IMAGE)) { // Okay, just some parameter change - the data didn't change, no need to rehash. rehash = false; } // Do we need to recreate? if (entry->status & TexCacheEntry::STATUS_FORCE_REBUILD) { match = false; entry->status &= ~TexCacheEntry::STATUS_FORCE_REBUILD; } if (match) { if (entry->lastFrame != gpuStats.numFlips) { u32 diff = gpuStats.numFlips - entry->lastFrame; entry->numFrames++; if (entry->framesUntilNextFullHash < diff) { // Exponential backoff up to 512 frames. Textures are often reused. if (entry->numFrames > 32) { // Also, try to add some "randomness" to avoid rehashing several textures the same frame. entry->framesUntilNextFullHash = std::min(512, entry->numFrames) + (((intptr_t)(entry->textureName) >> 12) & 15); } else { entry->framesUntilNextFullHash = entry->numFrames; } rehash = true; } else { entry->framesUntilNextFullHash -= diff; } } // If it's not huge or has been invalidated many times, recheck the whole texture. if (entry->invalidHint > 180 || (entry->invalidHint > 15 && (dim >> 8) < 9 && (dim & 0xF) < 9)) { entry->invalidHint = 0; rehash = true; } if (minihash != entry->minihash) { match = false; reason = "minihash"; } else if (entry->GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) { rehash = false; } } if (match && (entry->status & TexCacheEntry::STATUS_TO_SCALE) && standardScaleFactor_ != 1 && texelsScaledThisFrame_ < TEXCACHE_MAX_TEXELS_SCALED) { if ((entry->status & TexCacheEntry::STATUS_CHANGE_FREQUENT) == 0) { // INFO_LOG(G3D, "Reloading texture to do the scaling we skipped.."); match = false; reason = "scaling"; } } if (match) { // got one! gstate_c.curTextureWidth = w; gstate_c.curTextureHeight = h; if (rehash) { // Update in case any of these changed. entry->sizeInRAM = (textureBitsPerPixel[format] * bufw * h / 2) / 8; entry->bufw = bufw; entry->cluthash = cluthash; } nextTexture_ = entry; nextNeedsRehash_ = rehash; nextNeedsChange_ = false; // Might need a rebuild if the hash fails, but that will be set later. nextNeedsRebuild_ = false; VERBOSE_LOG(G3D, "Texture at %08x found in cache, applying", texaddr); return entry; //Done! } else { // Wasn't a match, we will rebuild. nextChangeReason_ = reason; nextNeedsChange_ = true; // Fall through to the rebuild case. } } // No texture found, or changed (depending on entry). // Check for framebuffers. TextureDefinition def{}; def.addr = texaddr; def.dim = dim; def.format = format; def.bufw = bufw; std::vector candidates = GetFramebufferCandidates(def, 0); if (candidates.size() > 0) { int index = GetBestCandidateIndex(candidates); if (index != -1) { // If we had a texture entry here, let's get rid of it. if (entryIter != cache_.end()) { DeleteTexture(entryIter); } const AttachCandidate &candidate = candidates[index]; nextTexture_ = nullptr; nextNeedsRebuild_ = false; SetTextureFramebuffer(candidate); return nullptr; } } // Didn't match a framebuffer, keep going. if (!entry) { VERBOSE_LOG(G3D, "No texture in cache for %08x, decoding...", texaddr); entry = new TexCacheEntry{}; cache_[cachekey].reset(entry); if (hasClut && clutRenderAddress_ != 0xFFFFFFFF) { WARN_LOG_REPORT_ONCE(clutUseRender, G3D, "Using texture with rendered CLUT: texfmt=%d, clutfmt=%d", gstate.getTextureFormat(), gstate.getClutPaletteFormat()); } if (PPGeIsFontTextureAddress(texaddr)) { // It's the builtin font texture. entry->status = TexCacheEntry::STATUS_RELIABLE; } else if (g_Config.bTextureBackoffCache && !IsVideo(texaddr)) { entry->status = TexCacheEntry::STATUS_HASHING; } else { entry->status = TexCacheEntry::STATUS_UNRELIABLE; } if (hasClut && clutRenderAddress_ == 0xFFFFFFFF) { const u64 cachekeyMin = (u64)(texaddr & 0x3FFFFFFF) << 32; const u64 cachekeyMax = cachekeyMin + (1ULL << 32); int found = 0; for (auto it = cache_.lower_bound(cachekeyMin), end = cache_.upper_bound(cachekeyMax); it != end; ++it) { found++; } if (found >= TEXTURE_CLUT_VARIANTS_MIN) { for (auto it = cache_.lower_bound(cachekeyMin), end = cache_.upper_bound(cachekeyMax); it != end; ++it) { it->second->status |= TexCacheEntry::STATUS_CLUT_VARIANTS; } entry->status |= TexCacheEntry::STATUS_CLUT_VARIANTS; } } nextNeedsChange_ = false; } // We have to decode it, let's setup the cache entry first. entry->addr = texaddr; entry->minihash = minihash; entry->dim = dim; entry->format = format; entry->maxLevel = maxLevel; // This would overestimate the size in many case so we underestimate instead // to avoid excessive clearing caused by cache invalidations. entry->sizeInRAM = (textureBitsPerPixel[format] * bufw * h / 2) / 8; entry->bufw = bufw; entry->cluthash = cluthash; gstate_c.curTextureWidth = w; gstate_c.curTextureHeight = h; nextTexture_ = entry; if (nextFramebufferTexture_) { nextFramebufferTexture_ = nullptr; // in case it was accidentally set somehow? } nextNeedsRehash_ = true; // We still need to rebuild, to allocate a texture. But we'll bail early. nextNeedsRebuild_ = true; return entry; } std::vector TextureCacheCommon::GetFramebufferCandidates(const TextureDefinition &entry, u32 texAddrOffset) { gpuStats.numFramebufferEvaluations++; std::vector candidates; FramebufferNotificationChannel channel = Memory::IsDepthTexVRAMAddress(entry.addr) ? FramebufferNotificationChannel::NOTIFY_FB_DEPTH : FramebufferNotificationChannel::NOTIFY_FB_COLOR; if (channel == FramebufferNotificationChannel::NOTIFY_FB_DEPTH && !gstate_c.Supports(GPU_SUPPORTS_DEPTH_TEXTURE)) { // Depth texture not supported. Don't try to match it, fall back to the memory behind.. return std::vector(); } const std::vector &framebuffers = framebufferManager_->Framebuffers(); for (VirtualFramebuffer *framebuffer : framebuffers) { FramebufferMatchInfo match = MatchFramebuffer(entry, framebuffer, texAddrOffset, channel); switch (match.match) { case FramebufferMatch::VALID: candidates.push_back(AttachCandidate{ match, entry, framebuffer, channel }); break; default: break; } } if (candidates.size() > 1) { bool depth = channel == FramebufferNotificationChannel::NOTIFY_FB_DEPTH; WARN_LOG_REPORT_ONCE(multifbcandidate, G3D, "GetFramebufferCandidates(%s): Multiple (%d) candidate framebuffers. texaddr: %08x offset: %d (%dx%d stride %d, %s)", depth ? "DEPTH" : "COLOR", (int)candidates.size(), entry.addr, texAddrOffset, dimWidth(entry.dim), dimHeight(entry.dim), entry.bufw, GeTextureFormatToString(entry.format)); } return candidates; } int TextureCacheCommon::GetBestCandidateIndex(const std::vector &candidates) { _dbg_assert_(!candidates.empty()); if (candidates.size() == 1) { return 0; } // OK, multiple possible candidates. Will need to figure out which one is the most relevant. int bestRelevancy = -1; int bestIndex = -1; // TODO: Instead of scores, we probably want to use std::min_element to pick the top element, using // a comparison function. for (int i = 0; i < (int)candidates.size(); i++) { const AttachCandidate &candidate = candidates[i]; int relevancy = 0; switch (candidate.match.match) { case FramebufferMatch::VALID: relevancy += 1000; break; default: break; } // Bonus point for matching stride. if (candidate.channel == NOTIFY_FB_COLOR && candidate.fb->fb_stride == candidate.entry.bufw) { relevancy += 100; } // Bonus points for no offset. if (candidate.match.xOffset == 0 && candidate.match.yOffset == 0) { relevancy += 10; } if (candidate.channel == NOTIFY_FB_COLOR && candidate.fb->last_frame_render == gpuStats.numFlips) { relevancy += 5; } else if (candidate.channel == NOTIFY_FB_DEPTH && candidate.fb->last_frame_depth_render == gpuStats.numFlips) { relevancy += 5; } if (relevancy > bestRelevancy) { bestRelevancy = relevancy; bestIndex = i; } } return bestIndex; } // Removes old textures. void TextureCacheCommon::Decimate(bool forcePressure) { if (--decimationCounter_ <= 0) { decimationCounter_ = TEXCACHE_DECIMATION_INTERVAL; } else { return; } if (forcePressure || cacheSizeEstimate_ >= TEXCACHE_MIN_PRESSURE) { const u32 had = cacheSizeEstimate_; ForgetLastTexture(); int killAgeBase = lowMemoryMode_ ? TEXTURE_KILL_AGE_LOWMEM : TEXTURE_KILL_AGE; for (TexCache::iterator iter = cache_.begin(); iter != cache_.end(); ) { bool hasClut = (iter->second->status & TexCacheEntry::STATUS_CLUT_VARIANTS) != 0; int killAge = hasClut ? TEXTURE_KILL_AGE_CLUT : killAgeBase; if (iter->second->lastFrame + killAge < gpuStats.numFlips) { DeleteTexture(iter++); } else { ++iter; } } VERBOSE_LOG(G3D, "Decimated texture cache, saved %d estimated bytes - now %d bytes", had - cacheSizeEstimate_, cacheSizeEstimate_); } // If enabled, we also need to clear the secondary cache. if (g_Config.bTextureSecondaryCache && (forcePressure || secondCacheSizeEstimate_ >= TEXCACHE_SECOND_MIN_PRESSURE)) { const u32 had = secondCacheSizeEstimate_; for (TexCache::iterator iter = secondCache_.begin(); iter != secondCache_.end(); ) { // In low memory mode, we kill them all since secondary cache is disabled. if (lowMemoryMode_ || iter->second->lastFrame + TEXTURE_SECOND_KILL_AGE < gpuStats.numFlips) { ReleaseTexture(iter->second.get(), true); secondCacheSizeEstimate_ -= EstimateTexMemoryUsage(iter->second.get()); secondCache_.erase(iter++); } else { ++iter; } } VERBOSE_LOG(G3D, "Decimated second texture cache, saved %d estimated bytes - now %d bytes", had - secondCacheSizeEstimate_, secondCacheSizeEstimate_); } DecimateVideos(); } void TextureCacheCommon::DecimateVideos() { for (auto iter = videos_.begin(); iter != videos_.end(); ) { if (iter->flips + VIDEO_DECIMATE_AGE < gpuStats.numFlips) { iter = videos_.erase(iter++); } else { ++iter; } } } bool TextureCacheCommon::IsVideo(u32 texaddr) { texaddr &= 0x3FFFFFFF; for (auto info : videos_) { if (texaddr < info.addr) { continue; } if (texaddr < info.addr + info.size) { return true; } } return false; } void TextureCacheCommon::HandleTextureChange(TexCacheEntry *const entry, const char *reason, bool initialMatch, bool doDelete) { cacheSizeEstimate_ -= EstimateTexMemoryUsage(entry); entry->numInvalidated++; gpuStats.numTextureInvalidations++; DEBUG_LOG(G3D, "Texture different or overwritten, reloading at %08x: %s", entry->addr, reason); if (doDelete) { InvalidateLastTexture(); ReleaseTexture(entry, true); entry->status &= ~TexCacheEntry::STATUS_IS_SCALED; } // Mark as hashing, if marked as reliable. if (entry->GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) { entry->SetHashStatus(TexCacheEntry::STATUS_HASHING); } // Also, mark any textures with the same address but different clut. They need rechecking. if (entry->cluthash != 0) { const u64 cachekeyMin = (u64)(entry->addr & 0x3FFFFFFF) << 32; const u64 cachekeyMax = cachekeyMin + (1ULL << 32); for (auto it = cache_.lower_bound(cachekeyMin), end = cache_.upper_bound(cachekeyMax); it != end; ++it) { if (it->second->cluthash != entry->cluthash) { it->second->status |= TexCacheEntry::STATUS_CLUT_RECHECK; } } } if (entry->numFrames < TEXCACHE_FRAME_CHANGE_FREQUENT) { if (entry->status & TexCacheEntry::STATUS_FREE_CHANGE) { entry->status &= ~TexCacheEntry::STATUS_FREE_CHANGE; } else { entry->status |= TexCacheEntry::STATUS_CHANGE_FREQUENT; } } entry->numFrames = 0; } void TextureCacheCommon::NotifyFramebuffer(VirtualFramebuffer *framebuffer, FramebufferNotification msg) { const u32 mirrorMask = 0x00600000; const u32 fb_addr = framebuffer->fb_address; const u32 z_addr = framebuffer->z_address & ~mirrorMask; // Probably unnecessary. const u32 fb_bpp = framebuffer->format == GE_FORMAT_8888 ? 4 : 2; const u32 z_bpp = 2; // No other format exists. const u32 fb_stride = framebuffer->fb_stride; const u32 z_stride = framebuffer->z_stride; // NOTE: Some games like Burnout massively misdetects the height of some framebuffers, leading to a lot of unnecessary invalidations. // Let's only actually get rid of textures that cover the very start of the framebuffer. const u32 fb_endAddr = fb_addr + fb_stride * std::min((int)framebuffer->height, 16) * fb_bpp; const u32 z_endAddr = z_addr + z_stride * std::min((int)framebuffer->height, 16) * z_bpp; switch (msg) { case NOTIFY_FB_CREATED: case NOTIFY_FB_UPDATED: { // Try to match the new framebuffer to existing textures. // Backwards from the "usual" texturing case so can't share a utility function. std::vector candidates; u64 cacheKey = (u64)fb_addr << 32; // If it has a clut, those are the low 32 bits, so it'll be inside this range. // Also, if it's a subsample of the buffer, it'll also be within the FBO. u64 cacheKeyEnd = (u64)fb_endAddr << 32; // Color - no need to look in the mirrors. for (auto it = cache_.lower_bound(cacheKey), end = cache_.upper_bound(cacheKeyEnd); it != end; ++it) { it->second->status |= TexCacheEntry::STATUS_FRAMEBUFFER_OVERLAP; gpuStats.numTextureInvalidationsByFramebuffer++; } if (z_stride != 0) { // Depth. Just look at the range, but in each mirror (0x04200000 and 0x04600000). // Games don't use 0x04400000 as far as I know - it has no swizzle effect so kinda useless. cacheKey = (u64)z_addr << 32; cacheKeyEnd = (u64)z_endAddr << 32; for (auto it = cache_.lower_bound(cacheKey | 0x200000), end = cache_.upper_bound(cacheKeyEnd | 0x200000); it != end; ++it) { it->second->status |= TexCacheEntry::STATUS_FRAMEBUFFER_OVERLAP; gpuStats.numTextureInvalidationsByFramebuffer++; } for (auto it = cache_.lower_bound(cacheKey | 0x600000), end = cache_.upper_bound(cacheKeyEnd | 0x600000); it != end; ++it) { it->second->status |= TexCacheEntry::STATUS_FRAMEBUFFER_OVERLAP; gpuStats.numTextureInvalidationsByFramebuffer++; } } break; } default: break; } } FramebufferMatchInfo TextureCacheCommon::MatchFramebuffer( const TextureDefinition &entry, VirtualFramebuffer *framebuffer, u32 texaddrOffset, FramebufferNotificationChannel channel) const { static const u32 MAX_SUBAREA_Y_OFFSET_SAFE = 32; uint32_t fb_address = channel == NOTIFY_FB_DEPTH ? framebuffer->z_address : framebuffer->fb_address; u32 addr = fb_address & 0x3FFFFFFF; u32 texaddr = entry.addr + texaddrOffset; bool texInVRAM = Memory::IsVRAMAddress(texaddr); bool fbInVRAM = Memory::IsVRAMAddress(fb_address); if (texInVRAM != fbInVRAM) { // Shortcut. Cannot possibly be a match. return FramebufferMatchInfo{ FramebufferMatch::NO_MATCH }; } if (texInVRAM) { const u32 mirrorMask = 0x00600000; // This bit controls swizzle. The swizzles at 0x00200000 and 0x00600000 are designed // to perfectly match reading depth as color (which one to use I think might be related // to the bpp of the color format used when rendering to it). // It's fairly unlikely that games would screw this up since the result will be garbage so // we use it to filter out unlikely matches. switch (entry.addr & mirrorMask) { case 0x00000000: case 0x00400000: // Don't match the depth channel with these addresses when texturing. if (channel == FramebufferNotificationChannel::NOTIFY_FB_DEPTH) { return FramebufferMatchInfo{ FramebufferMatch::NO_MATCH }; } break; case 0x00200000: case 0x00600000: // Don't match the color channel with these addresses when texturing. if (channel == FramebufferNotificationChannel::NOTIFY_FB_COLOR) { return FramebufferMatchInfo{ FramebufferMatch::NO_MATCH }; } break; } addr &= ~mirrorMask; texaddr &= ~mirrorMask; } const bool noOffset = texaddr == addr; const bool exactMatch = noOffset && entry.format < 4 && channel == NOTIFY_FB_COLOR; const u32 w = 1 << ((entry.dim >> 0) & 0xf); const u32 h = 1 << ((entry.dim >> 8) & 0xf); // 512 on a 272 framebuffer is sane, so let's be lenient. const u32 minSubareaHeight = h / 4; // If they match "exactly", it's non-CLUT and from the top left. if (exactMatch) { if (framebuffer->fb_stride != entry.bufw) { WARN_LOG_ONCE(diffStrides1, G3D, "Texturing from framebuffer with different strides %d != %d", entry.bufw, framebuffer->fb_stride); } // NOTE: This check is okay because the first texture formats are the same as the buffer formats. if (IsTextureFormatBufferCompatible(entry.format)) { if (TextureFormatMatchesBufferFormat(entry.format, framebuffer->format)) { return FramebufferMatchInfo{ FramebufferMatch::VALID }; } else if (IsTextureFormat16Bit(entry.format) && IsBufferFormat16Bit(framebuffer->format)) { WARN_LOG_ONCE(diffFormat1, G3D, "Texturing from framebuffer with reinterpretable format: %s != %s", GeTextureFormatToString(entry.format), GeBufferFormatToString(framebuffer->format)); return FramebufferMatchInfo{ FramebufferMatch::VALID, 0, 0, true, TextureFormatToBufferFormat(entry.format) }; } else { WARN_LOG_ONCE(diffFormat2, G3D, "Texturing from framebuffer with incompatible formats %s != %s", GeTextureFormatToString(entry.format), GeBufferFormatToString(framebuffer->format)); return FramebufferMatchInfo{ FramebufferMatch::NO_MATCH }; } } else { // Format incompatible, ignoring without comment. (maybe some really gnarly hacks will end up here...) return FramebufferMatchInfo{ FramebufferMatch::NO_MATCH }; } } else { // Apply to buffered mode only. if (!framebufferManager_->UseBufferedRendering()) { return FramebufferMatchInfo{ FramebufferMatch::NO_MATCH }; } // Check works for D16 too (???) const bool matchingClutFormat = (channel != NOTIFY_FB_COLOR && entry.format == GE_TFMT_CLUT16) || (channel == NOTIFY_FB_COLOR && framebuffer->format == GE_FORMAT_8888 && entry.format == GE_TFMT_CLUT32) || (channel == NOTIFY_FB_COLOR && framebuffer->format != GE_FORMAT_8888 && entry.format == GE_TFMT_CLUT16); // To avoid ruining git blame, kept the same name as the old struct. FramebufferMatchInfo fbInfo{ FramebufferMatch::VALID }; const u32 bitOffset = (texaddr - addr) * 8; if (bitOffset != 0) { const u32 pixelOffset = bitOffset / std::max(1U, (u32)textureBitsPerPixel[entry.format]); fbInfo.yOffset = entry.bufw == 0 ? 0 : pixelOffset / entry.bufw; fbInfo.xOffset = entry.bufw == 0 ? 0 : pixelOffset % entry.bufw; } if (fbInfo.yOffset + minSubareaHeight >= framebuffer->height) { // Can't be inside the framebuffer. return FramebufferMatchInfo{ FramebufferMatch::NO_MATCH }; } if (framebuffer->fb_stride != entry.bufw) { if (noOffset) { WARN_LOG_ONCE(diffStrides2, G3D, "Texturing from framebuffer (matching_clut=%s) different strides %d != %d", matchingClutFormat ? "yes" : "no", entry.bufw, framebuffer->fb_stride); // Continue on with other checks. // Not actually sure why we even try here. There's no way it'll go well if the strides are different. } else { // Assume any render-to-tex with different bufw + offset is a render from ram. return FramebufferMatchInfo{ FramebufferMatch::NO_MATCH }; } } // Check if it's in bufferWidth (which might be higher than width and may indicate the framebuffer includes the data.) if (fbInfo.xOffset >= framebuffer->bufferWidth && fbInfo.xOffset + w <= (u32)framebuffer->fb_stride) { // This happens in Brave Story, see #10045 - the texture is in the space between strides, with matching stride. return FramebufferMatchInfo{ FramebufferMatch::NO_MATCH }; } // Trying to play it safe. Below 0x04110000 is almost always framebuffers. // TODO: Maybe we can reduce this check and find a better way above 0x04110000? if (fbInfo.yOffset > MAX_SUBAREA_Y_OFFSET_SAFE && addr > 0x04110000) { WARN_LOG_REPORT_ONCE(subareaIgnored, G3D, "Ignoring possible texturing from framebuffer at %08x +%dx%d / %dx%d", fb_address, fbInfo.xOffset, fbInfo.yOffset, framebuffer->width, framebuffer->height); return FramebufferMatchInfo{ FramebufferMatch::NO_MATCH }; } // Check for CLUT. The framebuffer is always RGB, but it can be interpreted as a CLUT texture. // 3rd Birthday (and a bunch of other games) render to a 16 bit clut texture. if (matchingClutFormat) { if (!noOffset) { WARN_LOG_ONCE(subareaClut, G3D, "Texturing from framebuffer using CLUT with offset at %08x +%dx%d", fb_address, fbInfo.xOffset, fbInfo.yOffset); } fbInfo.match = FramebufferMatch::VALID; // We check the format again later, no need to return a special value here. return fbInfo; } else if (IsClutFormat((GETextureFormat)(entry.format)) || IsDXTFormat((GETextureFormat)(entry.format))) { WARN_LOG_ONCE(fourEightBit, G3D, "%s format not supported when texturing from framebuffer of format %s", GeTextureFormatToString(entry.format), GeBufferFormatToString(framebuffer->format)); return FramebufferMatchInfo{ FramebufferMatch::NO_MATCH }; } // This is either normal or we failed to generate a shader to depalettize if ((int)framebuffer->format == (int)entry.format || matchingClutFormat) { if ((int)framebuffer->format != (int)entry.format) { WARN_LOG_ONCE(diffFormat2, G3D, "Texturing from framebuffer with different formats %s != %s at %08x", GeTextureFormatToString(entry.format), GeBufferFormatToString(framebuffer->format), fb_address); return fbInfo; } else { WARN_LOG_ONCE(subarea, G3D, "Texturing from framebuffer at %08x +%dx%d", fb_address, fbInfo.xOffset, fbInfo.yOffset); return fbInfo; } } else { WARN_LOG_ONCE(diffFormat2, G3D, "Texturing from framebuffer with incompatible format %s != %s at %08x", GeTextureFormatToString(entry.format), GeBufferFormatToString(framebuffer->format), fb_address); return FramebufferMatchInfo{ FramebufferMatch::NO_MATCH }; } } } void TextureCacheCommon::SetTextureFramebuffer(const AttachCandidate &candidate) { VirtualFramebuffer *framebuffer = candidate.fb; FramebufferMatchInfo fbInfo = candidate.match; if (candidate.match.reinterpret) { GEBufferFormat oldFormat = candidate.fb->format; candidate.fb->format = candidate.match.reinterpretTo; framebufferManager_->ReinterpretFramebuffer(candidate.fb, oldFormat, candidate.match.reinterpretTo); } _dbg_assert_msg_(framebuffer != nullptr, "Framebuffer must not be null."); framebuffer->usageFlags |= FB_USAGE_TEXTURE; if (framebufferManager_->UseBufferedRendering()) { // Keep the framebuffer alive. framebuffer->last_frame_used = gpuStats.numFlips; // We need to force it, since we may have set it on a texture before attaching. gstate_c.curTextureWidth = framebuffer->bufferWidth; gstate_c.curTextureHeight = framebuffer->bufferHeight; if (gstate_c.bgraTexture) { gstate_c.Dirty(DIRTY_FRAGMENTSHADER_STATE); } else if ((gstate_c.curTextureXOffset == 0) != (fbInfo.xOffset == 0) || (gstate_c.curTextureYOffset == 0) != (fbInfo.yOffset == 0)) { gstate_c.Dirty(DIRTY_FRAGMENTSHADER_STATE); } gstate_c.bgraTexture = false; gstate_c.curTextureXOffset = fbInfo.xOffset; gstate_c.curTextureYOffset = fbInfo.yOffset; u32 texW = (u32)gstate.getTextureWidth(0); u32 texH = (u32)gstate.getTextureHeight(0); gstate_c.SetNeedShaderTexclamp(gstate_c.curTextureWidth != texW || gstate_c.curTextureHeight != texH); if (gstate_c.curTextureXOffset != 0 || gstate_c.curTextureYOffset != 0) { gstate_c.SetNeedShaderTexclamp(true); } nextFramebufferTexture_ = framebuffer; nextTexture_ = nullptr; } else { if (framebuffer->fbo) { framebuffer->fbo->Release(); framebuffer->fbo = nullptr; } Unbind(); gstate_c.SetNeedShaderTexclamp(false); nextFramebufferTexture_ = nullptr; nextTexture_ = nullptr; } nextNeedsRehash_ = false; nextNeedsChange_ = false; nextNeedsRebuild_ = false; } // Only looks for framebuffers. bool TextureCacheCommon::SetOffsetTexture(u32 yOffset) { if (!framebufferManager_->UseBufferedRendering()) { return false; } u32 texaddr = gstate.getTextureAddress(0); GETextureFormat fmt = gstate.getTextureFormat(); const u32 bpp = fmt == GE_TFMT_8888 ? 4 : 2; const u32 texaddrOffset = yOffset * gstate.getTextureWidth(0) * bpp; if (!Memory::IsValidAddress(texaddr) || !Memory::IsValidAddress(texaddr + texaddrOffset)) { return false; } TextureDefinition def; def.addr = texaddr; def.format = fmt; def.bufw = GetTextureBufw(0, texaddr, fmt); def.dim = gstate.getTextureDimension(0); std::vector candidates = GetFramebufferCandidates(def, texaddrOffset); if (candidates.size() > 0) { int index = GetBestCandidateIndex(candidates); if (index != -1) { SetTextureFramebuffer(candidates[index]); return true; } } return false; } void TextureCacheCommon::NotifyConfigChanged() { int scaleFactor = g_Config.iTexScalingLevel; if (!gstate_c.Supports(GPU_SUPPORTS_TEXTURE_NPOT)) { // Reduce the scale factor to a power of two (e.g. 2 or 4) if textures must be a power of two. while ((scaleFactor & (scaleFactor - 1)) != 0) { --scaleFactor; } } // Just in case, small display with auto resolution or something. if (scaleFactor <= 0) { scaleFactor = 1; } standardScaleFactor_ = scaleFactor; replacer_.NotifyConfigChanged(); } void TextureCacheCommon::NotifyVideoUpload(u32 addr, int size, int width, GEBufferFormat fmt) { addr &= 0x3FFFFFFF; videos_.push_back({ addr, (u32)size, gpuStats.numFlips }); } void TextureCacheCommon::LoadClut(u32 clutAddr, u32 loadBytes) { clutTotalBytes_ = loadBytes; clutRenderAddress_ = 0xFFFFFFFF; if (Memory::IsValidAddress(clutAddr)) { if (Memory::IsVRAMAddress(clutAddr)) { // Clear the uncached bit, etc. to match framebuffers. const u32 clutFramebufAddr = clutAddr & 0x3FFFFFFF; const u32 clutFramebufEnd = clutFramebufAddr + loadBytes; static const u32 MAX_CLUT_OFFSET = 4096; clutRenderOffset_ = MAX_CLUT_OFFSET; const std::vector &framebuffers = framebufferManager_->Framebuffers(); for (VirtualFramebuffer *framebuffer : framebuffers) { const u32 fb_address = framebuffer->fb_address & 0x3FFFFFFF; const u32 bpp = framebuffer->drawnFormat == GE_FORMAT_8888 ? 4 : 2; u32 offset = clutFramebufAddr - fb_address; // Is this inside the framebuffer at all? bool matchRange = fb_address + framebuffer->fb_stride * bpp > clutFramebufAddr && fb_address < clutFramebufEnd; // And is it inside the rendered area? Sometimes games pack data outside. bool matchRegion = ((offset / bpp) % framebuffer->fb_stride) < framebuffer->width; if (matchRange && matchRegion && offset < clutRenderOffset_) { framebuffer->last_frame_clut = gpuStats.numFlips; framebuffer->usageFlags |= FB_USAGE_CLUT; clutRenderAddress_ = framebuffer->fb_address; clutRenderOffset_ = offset; if (offset == 0) { break; } } } NotifyMemInfo(MemBlockFlags::ALLOC, clutAddr, loadBytes, "CLUT"); } // It's possible for a game to (successfully) access outside valid memory. u32 bytes = Memory::ValidSize(clutAddr, loadBytes); if (clutRenderAddress_ != 0xFFFFFFFF && !g_Config.bDisableSlowFramebufEffects) { framebufferManager_->DownloadFramebufferForClut(clutRenderAddress_, clutRenderOffset_ + bytes); Memory::MemcpyUnchecked(clutBufRaw_, clutAddr, bytes); if (bytes < loadBytes) { memset((u8 *)clutBufRaw_ + bytes, 0x00, loadBytes - bytes); } } else { #ifdef _M_SSE if (bytes == loadBytes) { const __m128i *source = (const __m128i *)Memory::GetPointerUnchecked(clutAddr); __m128i *dest = (__m128i *)clutBufRaw_; int numBlocks = bytes / 32; for (int i = 0; i < numBlocks; i++, source += 2, dest += 2) { __m128i data1 = _mm_loadu_si128(source); __m128i data2 = _mm_loadu_si128(source + 1); _mm_store_si128(dest, data1); _mm_store_si128(dest + 1, data2); } } else { Memory::MemcpyUnchecked(clutBufRaw_, clutAddr, bytes); if (bytes < loadBytes) { memset((u8 *)clutBufRaw_ + bytes, 0x00, loadBytes - bytes); } } #elif PPSSPP_ARCH(ARM_NEON) if (bytes == loadBytes) { const uint32_t *source = (const uint32_t *)Memory::GetPointerUnchecked(clutAddr); uint32_t *dest = (uint32_t *)clutBufRaw_; int numBlocks = bytes / 32; for (int i = 0; i < numBlocks; i++, source += 8, dest += 8) { uint32x4_t data1 = vld1q_u32(source); uint32x4_t data2 = vld1q_u32(source + 4); vst1q_u32(dest, data1); vst1q_u32(dest + 4, data2); } } else { Memory::MemcpyUnchecked(clutBufRaw_, clutAddr, bytes); if (bytes < loadBytes) { memset((u8 *)clutBufRaw_ + bytes, 0x00, loadBytes - bytes); } } #else Memory::MemcpyUnchecked(clutBufRaw_, clutAddr, bytes); if (bytes < loadBytes) { memset((u8 *)clutBufRaw_ + bytes, 0x00, loadBytes - bytes); } #endif } } else { memset(clutBufRaw_, 0x00, loadBytes); } // Reload the clut next time. clutLastFormat_ = 0xFFFFFFFF; clutMaxBytes_ = std::max(clutMaxBytes_, loadBytes); } void TextureCacheCommon::UnswizzleFromMem(u32 *dest, u32 destPitch, const u8 *texptr, u32 bufw, u32 height, u32 bytesPerPixel) { // Note: bufw is always aligned to 16 bytes, so rowWidth is always >= 16. const u32 rowWidth = (bytesPerPixel > 0) ? (bufw * bytesPerPixel) : (bufw / 2); // A visual mapping of unswizzling, where each letter is 16-byte and 8 letters is a block: // // ABCDEFGH IJKLMNOP // -> // AI // BJ // CK // ... // // bxc is the number of blocks in the x direction, and byc the number in the y direction. const int bxc = rowWidth / 16; // The height is not always aligned to 8, but rounds up. int byc = (height + 7) / 8; DoUnswizzleTex16(texptr, dest, bxc, byc, destPitch); } bool TextureCacheCommon::GetCurrentClutBuffer(GPUDebugBuffer &buffer) { const u32 bpp = gstate.getClutPaletteFormat() == GE_CMODE_32BIT_ABGR8888 ? 4 : 2; const u32 pixels = 1024 / bpp; buffer.Allocate(pixels, 1, (GEBufferFormat)gstate.getClutPaletteFormat()); memcpy(buffer.GetData(), clutBufRaw_, 1024); return true; } // Host memory usage, not PSP memory usage. u32 TextureCacheCommon::EstimateTexMemoryUsage(const TexCacheEntry *entry) { const u16 dim = entry->dim; // TODO: This does not take into account the HD remaster's larger textures. const u8 dimW = ((dim >> 0) & 0xf); const u8 dimH = ((dim >> 8) & 0xf); u32 pixelSize = 2; switch (entry->format) { case GE_TFMT_CLUT4: case GE_TFMT_CLUT8: case GE_TFMT_CLUT16: case GE_TFMT_CLUT32: // We assume cluts always point to 8888 for simplicity. pixelSize = 4; break; case GE_TFMT_4444: case GE_TFMT_5551: case GE_TFMT_5650: break; case GE_TFMT_8888: case GE_TFMT_DXT1: case GE_TFMT_DXT3: case GE_TFMT_DXT5: default: pixelSize = 4; break; } // This in other words multiplies by w and h. return pixelSize << (dimW + dimH); } static void ReverseColors(void *dstBuf, const void *srcBuf, GETextureFormat fmt, int numPixels, bool useBGRA) { switch (fmt) { case GE_TFMT_4444: ConvertRGBA4444ToABGR4444((u16 *)dstBuf, (const u16 *)srcBuf, numPixels); break; // Final Fantasy 2 uses this heavily in animated textures. case GE_TFMT_5551: ConvertRGBA5551ToABGR1555((u16 *)dstBuf, (const u16 *)srcBuf, numPixels); break; case GE_TFMT_5650: ConvertRGB565ToBGR565((u16 *)dstBuf, (const u16 *)srcBuf, numPixels); break; default: if (useBGRA) { ConvertRGBA8888ToBGRA8888((u32 *)dstBuf, (const u32 *)srcBuf, numPixels); } else { // No need to convert RGBA8888, right order already if (dstBuf != srcBuf) memcpy(dstBuf, srcBuf, numPixels * sizeof(u32)); } break; } } static inline void ConvertFormatToRGBA8888(GETextureFormat format, u32 *dst, const u16 *src, u32 numPixels) { switch (format) { case GE_TFMT_4444: ConvertRGBA4444ToRGBA8888(dst, src, numPixels); break; case GE_TFMT_5551: ConvertRGBA5551ToRGBA8888(dst, src, numPixels); break; case GE_TFMT_5650: ConvertRGB565ToRGBA8888(dst, src, numPixels); break; default: _dbg_assert_msg_(false, "Incorrect texture format."); break; } } static inline void ConvertFormatToRGBA8888(GEPaletteFormat format, u32 *dst, const u16 *src, u32 numPixels) { // The supported values are 1:1 identical. ConvertFormatToRGBA8888(GETextureFormat(format), dst, src, numPixels); } template static void DecodeDXTBlock(uint8_t *out, int outPitch, uint32_t texaddr, const uint8_t *texptr, int w, int h, int bufw, bool reverseColors, bool useBGRA) { int minw = std::min(bufw, w); uint32_t *dst = (uint32_t *)out; int outPitch32 = outPitch / sizeof(uint32_t); const DXTBlock *src = (const DXTBlock *)texptr; if (!Memory::IsValidRange(texaddr, (h / 4) * (bufw / 4) * sizeof(DXTBlock))) { ERROR_LOG_REPORT(G3D, "DXT%d texture extends beyond valid RAM: %08x + %d x %d", n, texaddr, bufw, h); uint32_t limited = Memory::ValidSize(texaddr, (h / 4) * (bufw / 4) * sizeof(DXTBlock)); // This might possibly be 0, but try to decode what we can (might even be how the PSP behaves.) h = (((int)limited / sizeof(DXTBlock)) / (bufw / 4)) * 4; } for (int y = 0; y < h; y += 4) { u32 blockIndex = (y / 4) * (bufw / 4); int blockHeight = std::min(h - y, 4); for (int x = 0; x < minw; x += 4) { if (n == 1) DecodeDXT1Block(dst + outPitch32 * y + x, (const DXT1Block *)src + blockIndex, outPitch32, blockHeight, false); if (n == 3) DecodeDXT3Block(dst + outPitch32 * y + x, (const DXT3Block *)src + blockIndex, outPitch32, blockHeight); if (n == 5) DecodeDXT5Block(dst + outPitch32 * y + x, (const DXT5Block *)src + blockIndex, outPitch32, blockHeight); blockIndex++; } } w = (w + 3) & ~3; if (reverseColors) { ReverseColors(out, out, GE_TFMT_8888, outPitch32 * h, useBGRA); } } void TextureCacheCommon::DecodeTextureLevel(u8 *out, int outPitch, GETextureFormat format, GEPaletteFormat clutformat, uint32_t texaddr, int level, int bufw, bool reverseColors, bool useBGRA, bool expandTo32bit) { bool swizzled = gstate.isTextureSwizzled(); if ((texaddr & 0x00600000) != 0 && Memory::IsVRAMAddress(texaddr)) { // This means it's in a mirror, possibly a swizzled mirror. Let's report. WARN_LOG_REPORT_ONCE(texmirror, G3D, "Decoding texture from VRAM mirror at %08x swizzle=%d", texaddr, swizzled ? 1 : 0); if ((texaddr & 0x00200000) == 0x00200000) { // Technically 2 and 6 are slightly different, but this is better than nothing probably. swizzled = !swizzled; } // Note that (texaddr & 0x00600000) == 0x00600000 is very likely to be depth texturing. } int w = gstate.getTextureWidth(level); int h = gstate.getTextureHeight(level); const u8 *texptr = Memory::GetPointer(texaddr); const uint32_t byteSize = (textureBitsPerPixel[format] * bufw * h) / 8; char buf[128]; size_t len = snprintf(buf, sizeof(buf), "Tex_%08x_%dx%d_%s", texaddr, w, h, GeTextureFormatToString(format, clutformat)); NotifyMemInfo(MemBlockFlags::TEXTURE, texaddr, byteSize, buf, len); switch (format) { case GE_TFMT_CLUT4: { const bool mipmapShareClut = gstate.isClutSharedForMipmaps(); const int clutSharingOffset = mipmapShareClut ? 0 : level * 16; if (swizzled) { tmpTexBuf32_.resize(bufw * ((h + 7) & ~7)); UnswizzleFromMem(tmpTexBuf32_.data(), bufw / 2, texptr, bufw, h, 0); texptr = (u8 *)tmpTexBuf32_.data(); } switch (clutformat) { case GE_CMODE_16BIT_BGR5650: case GE_CMODE_16BIT_ABGR5551: case GE_CMODE_16BIT_ABGR4444: { if (clutAlphaLinear_ && mipmapShareClut && !expandTo32bit) { // Here, reverseColors means the CLUT is already reversed. if (reverseColors) { for (int y = 0; y < h; ++y) { DeIndexTexture4Optimal((u16 *)(out + outPitch * y), texptr + (bufw * y) / 2, w, clutAlphaLinearColor_); } } else { for (int y = 0; y < h; ++y) { DeIndexTexture4OptimalRev((u16 *)(out + outPitch * y), texptr + (bufw * y) / 2, w, clutAlphaLinearColor_); } } } else { const u16 *clut = GetCurrentClut() + clutSharingOffset; if (expandTo32bit && !reverseColors) { // We simply expand the CLUT to 32-bit, then we deindex as usual. Probably the fastest way. ConvertFormatToRGBA8888(clutformat, expandClut_, clut, 16); for (int y = 0; y < h; ++y) { DeIndexTexture4((u32 *)(out + outPitch * y), texptr + (bufw * y) / 2, w, expandClut_); } } else { for (int y = 0; y < h; ++y) { DeIndexTexture4((u16 *)(out + outPitch * y), texptr + (bufw * y) / 2, w, clut); } } } } break; case GE_CMODE_32BIT_ABGR8888: { const u32 *clut = GetCurrentClut() + clutSharingOffset; for (int y = 0; y < h; ++y) { DeIndexTexture4((u32 *)(out + outPitch * y), texptr + (bufw * y) / 2, w, clut); } } break; default: ERROR_LOG_REPORT(G3D, "Unknown CLUT4 texture mode %d", gstate.getClutPaletteFormat()); return; } } break; case GE_TFMT_CLUT8: ReadIndexedTex(out, outPitch, level, texptr, 1, bufw, expandTo32bit); break; case GE_TFMT_CLUT16: ReadIndexedTex(out, outPitch, level, texptr, 2, bufw, expandTo32bit); break; case GE_TFMT_CLUT32: ReadIndexedTex(out, outPitch, level, texptr, 4, bufw, expandTo32bit); break; case GE_TFMT_4444: case GE_TFMT_5551: case GE_TFMT_5650: if (!swizzled) { // Just a simple copy, we swizzle the color format. if (reverseColors) { for (int y = 0; y < h; ++y) { ReverseColors(out + outPitch * y, texptr + bufw * sizeof(u16) * y, format, w, useBGRA); } } else if (expandTo32bit) { for (int y = 0; y < h; ++y) { ConvertFormatToRGBA8888(format, (u32 *)(out + outPitch * y), (const u16 *)texptr + bufw * y, w); } } else { for (int y = 0; y < h; ++y) { memcpy(out + outPitch * y, texptr + bufw * sizeof(u16) * y, w * sizeof(u16)); } } } else if (h >= 8 && bufw <= w && !expandTo32bit) { // Note: this is always safe since h must be a power of 2, so a multiple of 8. UnswizzleFromMem((u32 *)out, outPitch, texptr, bufw, h, 2); if (reverseColors) { ReverseColors(out, out, format, h * outPitch / 2, useBGRA); } } else { // We don't have enough space for all rows in out, so use a temp buffer. tmpTexBuf32_.resize(bufw * ((h + 7) & ~7)); UnswizzleFromMem(tmpTexBuf32_.data(), bufw * 2, texptr, bufw, h, 2); const u8 *unswizzled = (u8 *)tmpTexBuf32_.data(); if (reverseColors) { for (int y = 0; y < h; ++y) { ReverseColors(out + outPitch * y, unswizzled + bufw * sizeof(u16) * y, format, w, useBGRA); } } else if (expandTo32bit) { for (int y = 0; y < h; ++y) { ConvertFormatToRGBA8888(format, (u32 *)(out + outPitch * y), (const u16 *)unswizzled + bufw * y, w); } } else { for (int y = 0; y < h; ++y) { memcpy(out + outPitch * y, unswizzled + bufw * sizeof(u16) * y, w * sizeof(u16)); } } } break; case GE_TFMT_8888: if (!swizzled) { if (reverseColors) { for (int y = 0; y < h; ++y) { ReverseColors(out + outPitch * y, texptr + bufw * sizeof(u32) * y, format, w, useBGRA); } } else { for (int y = 0; y < h; ++y) { memcpy(out + outPitch * y, texptr + bufw * sizeof(u32) * y, w * sizeof(u32)); } } } else if (h >= 8 && bufw <= w) { UnswizzleFromMem((u32 *)out, outPitch, texptr, bufw, h, 4); if (reverseColors) { ReverseColors(out, out, format, h * outPitch / 4, useBGRA); } } else { // We don't have enough space for all rows in out, so use a temp buffer. tmpTexBuf32_.resize(bufw * ((h + 7) & ~7)); UnswizzleFromMem(tmpTexBuf32_.data(), bufw * 4, texptr, bufw, h, 4); const u8 *unswizzled = (u8 *)tmpTexBuf32_.data(); if (reverseColors) { for (int y = 0; y < h; ++y) { ReverseColors(out + outPitch * y, unswizzled + bufw * sizeof(u32) * y, format, w, useBGRA); } } else { for (int y = 0; y < h; ++y) { memcpy(out + outPitch * y, unswizzled + bufw * sizeof(u32) * y, w * sizeof(u32)); } } } break; case GE_TFMT_DXT1: DecodeDXTBlock(out, outPitch, texaddr, texptr, w, h, bufw, reverseColors, useBGRA); break; case GE_TFMT_DXT3: DecodeDXTBlock(out, outPitch, texaddr, texptr, w, h, bufw, reverseColors, useBGRA); break; case GE_TFMT_DXT5: DecodeDXTBlock(out, outPitch, texaddr, texptr, w, h, bufw, reverseColors, useBGRA); break; default: ERROR_LOG_REPORT(G3D, "Unknown Texture Format %d!!!", format); break; } } void TextureCacheCommon::ReadIndexedTex(u8 *out, int outPitch, int level, const u8 *texptr, int bytesPerIndex, int bufw, bool expandTo32Bit) { int w = gstate.getTextureWidth(level); int h = gstate.getTextureHeight(level); if (gstate.isTextureSwizzled()) { tmpTexBuf32_.resize(bufw * ((h + 7) & ~7)); UnswizzleFromMem(tmpTexBuf32_.data(), bufw * bytesPerIndex, texptr, bufw, h, bytesPerIndex); texptr = (u8 *)tmpTexBuf32_.data(); } int palFormat = gstate.getClutPaletteFormat(); const u16 *clut16 = (const u16 *)clutBuf_; const u32 *clut32 = (const u32 *)clutBuf_; if (expandTo32Bit && palFormat != GE_CMODE_32BIT_ABGR8888) { ConvertFormatToRGBA8888(GEPaletteFormat(palFormat), expandClut_, clut16, 256); clut32 = expandClut_; palFormat = GE_CMODE_32BIT_ABGR8888; } switch (palFormat) { case GE_CMODE_16BIT_BGR5650: case GE_CMODE_16BIT_ABGR5551: case GE_CMODE_16BIT_ABGR4444: { switch (bytesPerIndex) { case 1: for (int y = 0; y < h; ++y) { DeIndexTexture((u16 *)(out + outPitch * y), (const u8 *)texptr + bufw * y, w, clut16); } break; case 2: for (int y = 0; y < h; ++y) { DeIndexTexture((u16 *)(out + outPitch * y), (const u16_le *)texptr + bufw * y, w, clut16); } break; case 4: for (int y = 0; y < h; ++y) { DeIndexTexture((u16 *)(out + outPitch * y), (const u32_le *)texptr + bufw * y, w, clut16); } break; } } break; case GE_CMODE_32BIT_ABGR8888: { switch (bytesPerIndex) { case 1: for (int y = 0; y < h; ++y) { DeIndexTexture((u32 *)(out + outPitch * y), (const u8 *)texptr + bufw * y, w, clut32); } break; case 2: for (int y = 0; y < h; ++y) { DeIndexTexture((u32 *)(out + outPitch * y), (const u16_le *)texptr + bufw * y, w, clut32); } break; case 4: for (int y = 0; y < h; ++y) { DeIndexTexture((u32 *)(out + outPitch * y), (const u32_le *)texptr + bufw * y, w, clut32); } break; } } break; default: ERROR_LOG_REPORT(G3D, "Unhandled clut texture mode %d!!!", gstate.getClutPaletteFormat()); break; } } void TextureCacheCommon::ApplyTexture() { TexCacheEntry *entry = nextTexture_; if (!entry) { // Maybe we bound a framebuffer? InvalidateLastTexture(); if (nextFramebufferTexture_) { bool depth = Memory::IsDepthTexVRAMAddress(gstate.getTextureAddress(0)); // ApplyTextureFrameBuffer is responsible for setting SetTextureFullAlpha. ApplyTextureFramebuffer(nextFramebufferTexture_, gstate.getTextureFormat(), depth ? NOTIFY_FB_DEPTH : NOTIFY_FB_COLOR); nextFramebufferTexture_ = nullptr; } return; } nextTexture_ = nullptr; UpdateMaxSeenV(entry, gstate.isModeThrough()); if (nextNeedsRebuild_) { // Regardless of hash fails or otherwise, if this is a video, mark it frequently changing. // This prevents temporary scaling perf hits on the first second of video. if (IsVideo(entry->addr)) { entry->status |= TexCacheEntry::STATUS_CHANGE_FREQUENT; } if (nextNeedsRehash_) { PROFILE_THIS_SCOPE("texhash"); // Update the hash on the texture. int w = gstate.getTextureWidth(0); int h = gstate.getTextureHeight(0); entry->fullhash = QuickTexHash(replacer_, entry->addr, entry->bufw, w, h, GETextureFormat(entry->format), entry); // TODO: Here we could check the secondary cache; maybe the texture is in there? // We would need to abort the build if so. } if (nextNeedsChange_) { // This texture existed previously, let's handle the change. HandleTextureChange(entry, nextChangeReason_, false, true); } // We actually build afterward (shared with rehash rebuild.) } else if (nextNeedsRehash_) { // Okay, this matched and didn't change - but let's check the hash. Maybe it will change. bool doDelete = true; if (!CheckFullHash(entry, doDelete)) { HandleTextureChange(entry, "hash fail", true, doDelete); nextNeedsRebuild_ = true; } else if (nextTexture_ != nullptr) { // The secondary cache may choose an entry from its storage by setting nextTexture_. // This means we should set that, instead of our previous entry. entry = nextTexture_; nextTexture_ = nullptr; UpdateMaxSeenV(entry, gstate.isModeThrough()); } } // Okay, now actually rebuild the texture if needed. if (nextNeedsRebuild_) { _assert_(!entry->texturePtr); BuildTexture(entry); InvalidateLastTexture(); } entry->lastFrame = gpuStats.numFlips; BindTexture(entry); gstate_c.SetTextureFullAlpha(entry->GetAlphaStatus() == TexCacheEntry::STATUS_ALPHA_FULL); } void TextureCacheCommon::Clear(bool delete_them) { ForgetLastTexture(); for (TexCache::iterator iter = cache_.begin(); iter != cache_.end(); ++iter) { ReleaseTexture(iter->second.get(), delete_them); } // In case the setting was changed, we ALWAYS clear the secondary cache (enabled or not.) for (TexCache::iterator iter = secondCache_.begin(); iter != secondCache_.end(); ++iter) { ReleaseTexture(iter->second.get(), delete_them); } if (cache_.size() + secondCache_.size()) { INFO_LOG(G3D, "Texture cached cleared from %i textures", (int)(cache_.size() + secondCache_.size())); cache_.clear(); secondCache_.clear(); cacheSizeEstimate_ = 0; secondCacheSizeEstimate_ = 0; } videos_.clear(); } void TextureCacheCommon::DeleteTexture(TexCache::iterator it) { ReleaseTexture(it->second.get(), true); cacheSizeEstimate_ -= EstimateTexMemoryUsage(it->second.get()); cache_.erase(it); } bool TextureCacheCommon::CheckFullHash(TexCacheEntry *entry, bool &doDelete) { int w = gstate.getTextureWidth(0); int h = gstate.getTextureHeight(0); bool isVideo = IsVideo(entry->addr); // Don't even check the texture, just assume it has changed. if (isVideo && g_Config.bTextureBackoffCache) { // Attempt to ensure the hash doesn't incorrectly match in if the video stops. entry->fullhash = (entry->fullhash + 0xA535A535) * 11 + (entry->fullhash & 4); return false; } u32 fullhash; { PROFILE_THIS_SCOPE("texhash"); fullhash = QuickTexHash(replacer_, entry->addr, entry->bufw, w, h, GETextureFormat(entry->format), entry); } if (fullhash == entry->fullhash) { if (g_Config.bTextureBackoffCache && !isVideo) { if (entry->GetHashStatus() != TexCacheEntry::STATUS_HASHING && entry->numFrames > TexCacheEntry::FRAMES_REGAIN_TRUST) { // Reset to STATUS_HASHING. entry->SetHashStatus(TexCacheEntry::STATUS_HASHING); entry->status &= ~TexCacheEntry::STATUS_CHANGE_FREQUENT; } } else if (entry->numFrames > TEXCACHE_FRAME_CHANGE_FREQUENT_REGAIN_TRUST) { entry->status &= ~TexCacheEntry::STATUS_CHANGE_FREQUENT; } return true; } // Don't give up just yet. Let's try the secondary cache if it's been invalidated before. if (g_Config.bTextureSecondaryCache) { // Don't forget this one was unreliable (in case we match a secondary entry.) entry->status |= TexCacheEntry::STATUS_UNRELIABLE; // If it's failed a bunch of times, then the second cache is just wasting time and VRAM. // In that case, skip. if (entry->numInvalidated > 2 && entry->numInvalidated < 128 && !lowMemoryMode_) { // We have a new hash: look for that hash in the secondary cache. u64 secondKey = fullhash | (u64)entry->cluthash << 32; TexCache::iterator secondIter = secondCache_.find(secondKey); if (secondIter != secondCache_.end()) { // Found it, but does it match our current params? If not, abort. TexCacheEntry *secondEntry = secondIter->second.get(); if (secondEntry->Matches(entry->dim, entry->format, entry->maxLevel)) { // Reset the numInvalidated value lower, we got a match. if (entry->numInvalidated > 8) { --entry->numInvalidated; } // Now just use our archived texture, instead of entry. nextTexture_ = secondEntry; return true; } } else { // It wasn't found, so we're about to throw away the entry and rebuild a texture. // Let's save this in the secondary cache in case it gets used again. secondKey = entry->fullhash | ((u64)entry->cluthash << 32); secondCacheSizeEstimate_ += EstimateTexMemoryUsage(entry); // If the entry already exists in the secondary texture cache, drop it nicely. auto oldIter = secondCache_.find(secondKey); if (oldIter != secondCache_.end()) { ReleaseTexture(oldIter->second.get(), true); } // Archive the entire texture entry as is, since we'll use its params if it is seen again. // We keep parameters on the current entry, since we are STILL building a new texture here. secondCache_[secondKey].reset(new TexCacheEntry(*entry)); // Make sure we don't delete the texture we just archived. entry->texturePtr = nullptr; doDelete = false; } } } // We know it failed, so update the full hash right away. entry->fullhash = fullhash; return false; } void TextureCacheCommon::Invalidate(u32 addr, int size, GPUInvalidationType type) { // They could invalidate inside the texture, let's just give a bit of leeway. // TODO: Keep track of the largest texture size in bytes, and use that instead of this // humongous unrealistic value. const int LARGEST_TEXTURE_SIZE = 512 * 512 * 4; addr &= 0x3FFFFFFF; const u32 addr_end = addr + size; if (type == GPU_INVALIDATE_ALL) { // This is an active signal from the game that something in the texture cache may have changed. gstate_c.Dirty(DIRTY_TEXTURE_IMAGE); } else { // Do a quick check to see if the current texture could potentially be in range. const u32 currentAddr = gstate.getTextureAddress(0); // TODO: This can be made tighter. if (addr_end >= currentAddr && addr < currentAddr + LARGEST_TEXTURE_SIZE) { gstate_c.Dirty(DIRTY_TEXTURE_IMAGE); } } // If we're hashing every use, without backoff, then this isn't needed. if (!g_Config.bTextureBackoffCache && type != GPU_INVALIDATE_FORCE) { return; } const u64 startKey = (u64)(addr - LARGEST_TEXTURE_SIZE) << 32; u64 endKey = (u64)(addr + size + LARGEST_TEXTURE_SIZE) << 32; if (endKey < startKey) { endKey = (u64)-1; } for (TexCache::iterator iter = cache_.lower_bound(startKey), end = cache_.upper_bound(endKey); iter != end; ++iter) { auto &entry = iter->second; u32 texAddr = entry->addr; u32 texEnd = entry->addr + entry->sizeInRAM; // Quick check for overlap. Yes the check is right. if (addr < texEnd && addr_end > texAddr) { if (entry->GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) { entry->SetHashStatus(TexCacheEntry::STATUS_HASHING); } if (type == GPU_INVALIDATE_FORCE) { // Just random values to force the hash not to match. entry->fullhash = (entry->fullhash ^ 0x12345678) + 13; entry->minihash = (entry->minihash ^ 0x89ABCDEF) + 89; } if (type != GPU_INVALIDATE_ALL) { gpuStats.numTextureInvalidations++; // Start it over from 0 (unless it's safe.) entry->numFrames = type == GPU_INVALIDATE_SAFE ? 256 : 0; if (type == GPU_INVALIDATE_SAFE) { u32 diff = gpuStats.numFlips - entry->lastFrame; // We still need to mark if the texture is frequently changing, even if it's safely changing. if (diff < TEXCACHE_FRAME_CHANGE_FREQUENT) { entry->status |= TexCacheEntry::STATUS_CHANGE_FREQUENT; } } entry->framesUntilNextFullHash = 0; } else { entry->invalidHint++; } } } } void TextureCacheCommon::InvalidateAll(GPUInvalidationType /*unused*/) { // If we're hashing every use, without backoff, then this isn't needed. if (!g_Config.bTextureBackoffCache) { return; } if (timesInvalidatedAllThisFrame_ > 5) { return; } timesInvalidatedAllThisFrame_++; for (TexCache::iterator iter = cache_.begin(), end = cache_.end(); iter != end; ++iter) { if (iter->second->GetHashStatus() == TexCacheEntry::STATUS_RELIABLE) { iter->second->SetHashStatus(TexCacheEntry::STATUS_HASHING); } iter->second->invalidHint++; } } void TextureCacheCommon::ClearNextFrame() { clearCacheNextFrame_ = true; }