#include "../src/meshoptimizer.h" #include #include #include #include #include #include #include "../tools/fast_obj.h" #include "miniz.h" // This file uses assert() to verify algorithm correctness #undef NDEBUG #include #if defined(__linux__) double timestamp() { timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); return double(ts.tv_sec) + 1e-9 * double(ts.tv_nsec); } #elif defined(_WIN32) struct LARGE_INTEGER { __int64 QuadPart; }; extern "C" __declspec(dllimport) int __stdcall QueryPerformanceCounter(LARGE_INTEGER* lpPerformanceCount); extern "C" __declspec(dllimport) int __stdcall QueryPerformanceFrequency(LARGE_INTEGER* lpFrequency); double timestamp() { LARGE_INTEGER freq, counter; QueryPerformanceFrequency(&freq); QueryPerformanceCounter(&counter); return double(counter.QuadPart) / double(freq.QuadPart); } #else double timestamp() { return double(clock()) / double(CLOCKS_PER_SEC); } #endif const size_t kCacheSize = 16; struct Vertex { float px, py, pz; float nx, ny, nz; float tx, ty; }; struct Mesh { std::vector vertices; std::vector indices; }; union Triangle { Vertex v[3]; char data[sizeof(Vertex) * 3]; }; Mesh parseObj(const char* path, double& reindex) { fastObjMesh* obj = fast_obj_read(path); if (!obj) { printf("Error loading %s: file not found\n", path); return Mesh(); } size_t total_indices = 0; for (unsigned int i = 0; i < obj->face_count; ++i) total_indices += 3 * (obj->face_vertices[i] - 2); std::vector vertices(total_indices); size_t vertex_offset = 0; size_t index_offset = 0; for (unsigned int i = 0; i < obj->face_count; ++i) { for (unsigned int j = 0; j < obj->face_vertices[i]; ++j) { fastObjIndex gi = obj->indices[index_offset + j]; Vertex v = { obj->positions[gi.p * 3 + 0], obj->positions[gi.p * 3 + 1], obj->positions[gi.p * 3 + 2], obj->normals[gi.n * 3 + 0], obj->normals[gi.n * 3 + 1], obj->normals[gi.n * 3 + 2], obj->texcoords[gi.t * 2 + 0], obj->texcoords[gi.t * 2 + 1], }; // triangulate polygon on the fly; offset-3 is always the first polygon vertex if (j >= 3) { vertices[vertex_offset + 0] = vertices[vertex_offset - 3]; vertices[vertex_offset + 1] = vertices[vertex_offset - 1]; vertex_offset += 2; } vertices[vertex_offset] = v; vertex_offset++; } index_offset += obj->face_vertices[i]; } fast_obj_destroy(obj); reindex = timestamp(); Mesh result; std::vector remap(total_indices); size_t total_vertices = meshopt_generateVertexRemap(&remap[0], NULL, total_indices, &vertices[0], total_indices, sizeof(Vertex)); result.indices.resize(total_indices); meshopt_remapIndexBuffer(&result.indices[0], NULL, total_indices, &remap[0]); result.vertices.resize(total_vertices); meshopt_remapVertexBuffer(&result.vertices[0], &vertices[0], total_indices, sizeof(Vertex), &remap[0]); return result; } bool isMeshValid(const Mesh& mesh) { size_t index_count = mesh.indices.size(); size_t vertex_count = mesh.vertices.size(); if (index_count % 3 != 0) return false; const unsigned int* indices = &mesh.indices[0]; for (size_t i = 0; i < index_count; ++i) if (indices[i] >= vertex_count) return false; return true; } bool rotateTriangle(Triangle& t) { int c01 = memcmp(&t.v[0], &t.v[1], sizeof(Vertex)); int c02 = memcmp(&t.v[0], &t.v[2], sizeof(Vertex)); int c12 = memcmp(&t.v[1], &t.v[2], sizeof(Vertex)); if (c12 < 0 && c01 > 0) { // 1 is minimum, rotate 012 => 120 Vertex tv = t.v[0]; t.v[0] = t.v[1], t.v[1] = t.v[2], t.v[2] = tv; } else if (c02 > 0 && c12 > 0) { // 2 is minimum, rotate 012 => 201 Vertex tv = t.v[2]; t.v[2] = t.v[1], t.v[1] = t.v[0], t.v[0] = tv; } return c01 != 0 && c02 != 0 && c12 != 0; } unsigned int hashRange(const char* key, size_t len) { // MurmurHash2 const unsigned int m = 0x5bd1e995; const int r = 24; unsigned int h = 0; while (len >= 4) { unsigned int k = *reinterpret_cast(key); k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; key += 4; len -= 4; } return h; } unsigned int hashMesh(const Mesh& mesh) { size_t triangle_count = mesh.indices.size() / 3; const Vertex* vertices = &mesh.vertices[0]; const unsigned int* indices = &mesh.indices[0]; unsigned int h1 = 0; unsigned int h2 = 0; for (size_t i = 0; i < triangle_count; ++i) { Triangle t; t.v[0] = vertices[indices[i * 3 + 0]]; t.v[1] = vertices[indices[i * 3 + 1]]; t.v[2] = vertices[indices[i * 3 + 2]]; // skip degenerate triangles since some algorithms don't preserve them if (rotateTriangle(t)) { unsigned int hash = hashRange(t.data, sizeof(t.data)); h1 ^= hash; h2 += hash; } } return h1 * 0x5bd1e995 + h2; } void optNone(Mesh& mesh) { (void)mesh; } void optRandomShuffle(Mesh& mesh) { size_t triangle_count = mesh.indices.size() / 3; unsigned int* indices = &mesh.indices[0]; unsigned int rng = 0; for (size_t i = triangle_count - 1; i > 0; --i) { // Fisher-Yates shuffle size_t j = rng % (i + 1); unsigned int t; t = indices[3 * j + 0], indices[3 * j + 0] = indices[3 * i + 0], indices[3 * i + 0] = t; t = indices[3 * j + 1], indices[3 * j + 1] = indices[3 * i + 1], indices[3 * i + 1] = t; t = indices[3 * j + 2], indices[3 * j + 2] = indices[3 * i + 2], indices[3 * i + 2] = t; // LCG RNG, constants from Numerical Recipes rng = rng * 1664525 + 1013904223; } } void optCache(Mesh& mesh) { meshopt_optimizeVertexCache(&mesh.indices[0], &mesh.indices[0], mesh.indices.size(), mesh.vertices.size()); } void optCacheFifo(Mesh& mesh) { meshopt_optimizeVertexCacheFifo(&mesh.indices[0], &mesh.indices[0], mesh.indices.size(), mesh.vertices.size(), kCacheSize); } void optOverdraw(Mesh& mesh) { // use worst-case ACMR threshold so that overdraw optimizer can sort *all* triangles // warning: this significantly deteriorates the vertex cache efficiency so it is not advised; look at optComplete for the recommended method const float kThreshold = 3.f; meshopt_optimizeOverdraw(&mesh.indices[0], &mesh.indices[0], mesh.indices.size(), &mesh.vertices[0].px, mesh.vertices.size(), sizeof(Vertex), kThreshold); } void optFetch(Mesh& mesh) { meshopt_optimizeVertexFetch(&mesh.vertices[0], &mesh.indices[0], mesh.indices.size(), &mesh.vertices[0], mesh.vertices.size(), sizeof(Vertex)); } void optFetchRemap(Mesh& mesh) { // this produces results equivalent to optFetch, but can be used to remap multiple vertex streams std::vector remap(mesh.vertices.size()); meshopt_optimizeVertexFetchRemap(&remap[0], &mesh.indices[0], mesh.indices.size(), mesh.vertices.size()); meshopt_remapIndexBuffer(&mesh.indices[0], &mesh.indices[0], mesh.indices.size(), &remap[0]); meshopt_remapVertexBuffer(&mesh.vertices[0], &mesh.vertices[0], mesh.vertices.size(), sizeof(Vertex), &remap[0]); } void optComplete(Mesh& mesh) { // vertex cache optimization should go first as it provides starting order for overdraw meshopt_optimizeVertexCache(&mesh.indices[0], &mesh.indices[0], mesh.indices.size(), mesh.vertices.size()); // reorder indices for overdraw, balancing overdraw and vertex cache efficiency const float kThreshold = 1.01f; // allow up to 1% worse ACMR to get more reordering opportunities for overdraw meshopt_optimizeOverdraw(&mesh.indices[0], &mesh.indices[0], mesh.indices.size(), &mesh.vertices[0].px, mesh.vertices.size(), sizeof(Vertex), kThreshold); // vertex fetch optimization should go last as it depends on the final index order meshopt_optimizeVertexFetch(&mesh.vertices[0], &mesh.indices[0], mesh.indices.size(), &mesh.vertices[0], mesh.vertices.size(), sizeof(Vertex)); } struct PackedVertex { unsigned short px, py, pz; unsigned short pw; // padding to 4b boundary signed char nx, ny, nz, nw; unsigned short tx, ty; }; void packMesh(std::vector& pv, const std::vector& vertices) { for (size_t i = 0; i < vertices.size(); ++i) { const Vertex& vi = vertices[i]; PackedVertex& pvi = pv[i]; pvi.px = meshopt_quantizeHalf(vi.px); pvi.py = meshopt_quantizeHalf(vi.py); pvi.pz = meshopt_quantizeHalf(vi.pz); pvi.pw = 0; pvi.nx = char(meshopt_quantizeSnorm(vi.nx, 8)); pvi.ny = char(meshopt_quantizeSnorm(vi.ny, 8)); pvi.nz = char(meshopt_quantizeSnorm(vi.nz, 8)); pvi.nw = 0; pvi.tx = meshopt_quantizeHalf(vi.tx); pvi.ty = meshopt_quantizeHalf(vi.ty); } } struct PackedVertexOct { unsigned short px, py, pz; signed char nu, nv; // octahedron encoded normal, aliases .pw unsigned short tx, ty; }; void packMesh(std::vector& pv, const std::vector& vertices) { for (size_t i = 0; i < vertices.size(); ++i) { const Vertex& vi = vertices[i]; PackedVertexOct& pvi = pv[i]; pvi.px = meshopt_quantizeHalf(vi.px); pvi.py = meshopt_quantizeHalf(vi.py); pvi.pz = meshopt_quantizeHalf(vi.pz); float nsum = fabsf(vi.nx) + fabsf(vi.ny) + fabsf(vi.nz); float nx = vi.nx / nsum; float ny = vi.ny / nsum; float nz = vi.nz; float nu = nz >= 0 ? nx : (1 - fabsf(ny)) * (nx >= 0 ? 1 : -1); float nv = nz >= 0 ? ny : (1 - fabsf(nx)) * (ny >= 0 ? 1 : -1); pvi.nu = char(meshopt_quantizeSnorm(nu, 8)); pvi.nv = char(meshopt_quantizeSnorm(nv, 8)); pvi.tx = meshopt_quantizeHalf(vi.tx); pvi.ty = meshopt_quantizeHalf(vi.ty); } } void simplify(const Mesh& mesh, float threshold = 0.2f) { Mesh lod; double start = timestamp(); size_t target_index_count = size_t(mesh.indices.size() * threshold); float target_error = 1e-2f; lod.indices.resize(mesh.indices.size()); // note: simplify needs space for index_count elements in the destination array, not target_index_count lod.indices.resize(meshopt_simplify(&lod.indices[0], &mesh.indices[0], mesh.indices.size(), &mesh.vertices[0].px, mesh.vertices.size(), sizeof(Vertex), target_index_count, target_error)); lod.vertices.resize(lod.indices.size() < mesh.vertices.size() ? lod.indices.size() : mesh.vertices.size()); // note: this is just to reduce the cost of resize() lod.vertices.resize(meshopt_optimizeVertexFetch(&lod.vertices[0], &lod.indices[0], lod.indices.size(), &mesh.vertices[0], mesh.vertices.size(), sizeof(Vertex))); double end = timestamp(); printf("%-9s: %d triangles => %d triangles in %.2f msec\n", "Simplify", int(mesh.indices.size() / 3), int(lod.indices.size() / 3), (end - start) * 1000); } void simplifySloppy(const Mesh& mesh, float threshold = 0.2f) { Mesh lod; double start = timestamp(); size_t target_index_count = size_t(mesh.indices.size() * threshold); lod.indices.resize(target_index_count); // note: simplifySloppy, unlike simplify, is guaranteed to output results that don't exceed the requested target_index_count lod.indices.resize(meshopt_simplifySloppy(&lod.indices[0], &mesh.indices[0], mesh.indices.size(), &mesh.vertices[0].px, mesh.vertices.size(), sizeof(Vertex), target_index_count)); lod.vertices.resize(lod.indices.size() < mesh.vertices.size() ? lod.indices.size() : mesh.vertices.size()); // note: this is just to reduce the cost of resize() lod.vertices.resize(meshopt_optimizeVertexFetch(&lod.vertices[0], &lod.indices[0], lod.indices.size(), &mesh.vertices[0], mesh.vertices.size(), sizeof(Vertex))); double end = timestamp(); printf("%-9s: %d triangles => %d triangles in %.2f msec\n", "SimplifyS", int(mesh.indices.size() / 3), int(lod.indices.size() / 3), (end - start) * 1000); } void simplifyPoints(const Mesh& mesh, float threshold = 0.2f) { double start = timestamp(); size_t target_vertex_count = size_t(mesh.vertices.size() * threshold); std::vector indices(target_vertex_count); indices.resize(meshopt_simplifyPoints(&indices[0], &mesh.vertices[0].px, mesh.vertices.size(), sizeof(Vertex), target_vertex_count)); double end = timestamp(); printf("%-9s: %d points => %d points in %.2f msec\n", "SimplifyP", int(mesh.vertices.size()), int(indices.size()), (end - start) * 1000); } void simplifyComplete(const Mesh& mesh) { static const size_t lod_count = 5; double start = timestamp(); // generate 4 LOD levels (1-4), with each subsequent LOD using 70% triangles // note that each LOD uses the same (shared) vertex buffer std::vector lods[lod_count]; lods[0] = mesh.indices; for (size_t i = 1; i < lod_count; ++i) { std::vector& lod = lods[i]; float threshold = powf(0.7f, float(i)); size_t target_index_count = size_t(mesh.indices.size() * threshold) / 3 * 3; float target_error = 1e-2f; // we can simplify all the way from base level or from the last result // simplifying from the base level sometimes produces better results, but simplifying from last level is faster const std::vector& source = lods[i - 1]; if (source.size() < target_index_count) target_index_count = source.size(); lod.resize(source.size()); lod.resize(meshopt_simplify(&lod[0], &source[0], source.size(), &mesh.vertices[0].px, mesh.vertices.size(), sizeof(Vertex), target_index_count, target_error)); } double middle = timestamp(); // optimize each individual LOD for vertex cache & overdraw for (size_t i = 0; i < lod_count; ++i) { std::vector& lod = lods[i]; meshopt_optimizeVertexCache(&lod[0], &lod[0], lod.size(), mesh.vertices.size()); meshopt_optimizeOverdraw(&lod[0], &lod[0], lod.size(), &mesh.vertices[0].px, mesh.vertices.size(), sizeof(Vertex), 1.0f); } // concatenate all LODs into one IB // note: the order of concatenation is important - since we optimize the entire IB for vertex fetch, // putting coarse LODs first makes sure that the vertex range referenced by them is as small as possible // some GPUs process the entire range referenced by the index buffer region so doing this optimizes the vertex transform // cost for coarse LODs // this order also produces much better vertex fetch cache coherency for coarse LODs (since they're essentially optimized first) // somewhat surprisingly, the vertex fetch cache coherency for fine LODs doesn't seem to suffer that much. size_t lod_index_offsets[lod_count] = {}; size_t lod_index_counts[lod_count] = {}; size_t total_index_count = 0; for (int i = lod_count - 1; i >= 0; --i) { lod_index_offsets[i] = total_index_count; lod_index_counts[i] = lods[i].size(); total_index_count += lods[i].size(); } std::vector indices(total_index_count); for (size_t i = 0; i < lod_count; ++i) { memcpy(&indices[lod_index_offsets[i]], &lods[i][0], lods[i].size() * sizeof(lods[i][0])); } std::vector vertices = mesh.vertices; // vertex fetch optimization should go last as it depends on the final index order // note that the order of LODs above affects vertex fetch results meshopt_optimizeVertexFetch(&vertices[0], &indices[0], indices.size(), &vertices[0], vertices.size(), sizeof(Vertex)); double end = timestamp(); printf("%-9s: %d triangles => %d LOD levels down to %d triangles in %.2f msec, optimized in %.2f msec\n", "SimplifyC", int(lod_index_counts[0]) / 3, int(lod_count), int(lod_index_counts[lod_count - 1]) / 3, (middle - start) * 1000, (end - middle) * 1000); // for using LOD data at runtime, in addition to vertices and indices you have to save lod_index_offsets/lod_index_counts. { meshopt_VertexCacheStatistics vcs0 = meshopt_analyzeVertexCache(&indices[lod_index_offsets[0]], lod_index_counts[0], vertices.size(), kCacheSize, 0, 0); meshopt_VertexFetchStatistics vfs0 = meshopt_analyzeVertexFetch(&indices[lod_index_offsets[0]], lod_index_counts[0], vertices.size(), sizeof(Vertex)); meshopt_VertexCacheStatistics vcsN = meshopt_analyzeVertexCache(&indices[lod_index_offsets[lod_count - 1]], lod_index_counts[lod_count - 1], vertices.size(), kCacheSize, 0, 0); meshopt_VertexFetchStatistics vfsN = meshopt_analyzeVertexFetch(&indices[lod_index_offsets[lod_count - 1]], lod_index_counts[lod_count - 1], vertices.size(), sizeof(Vertex)); typedef PackedVertexOct PV; std::vector pv(vertices.size()); packMesh(pv, vertices); std::vector vbuf(meshopt_encodeVertexBufferBound(vertices.size(), sizeof(PV))); vbuf.resize(meshopt_encodeVertexBuffer(&vbuf[0], vbuf.size(), &pv[0], vertices.size(), sizeof(PV))); std::vector ibuf(meshopt_encodeIndexBufferBound(indices.size(), vertices.size())); ibuf.resize(meshopt_encodeIndexBuffer(&ibuf[0], ibuf.size(), &indices[0], indices.size())); printf("%-9s ACMR %f...%f Overfetch %f..%f Codec VB %.1f bits/vertex IB %.1f bits/triangle\n", "", vcs0.acmr, vcsN.acmr, vfs0.overfetch, vfsN.overfetch, double(vbuf.size()) / double(vertices.size()) * 8, double(ibuf.size()) / double(indices.size() / 3) * 8); } } void optimize(const Mesh& mesh, const char* name, void (*optf)(Mesh& mesh)) { Mesh copy = mesh; double start = timestamp(); optf(copy); double end = timestamp(); assert(isMeshValid(copy)); assert(hashMesh(mesh) == hashMesh(copy)); meshopt_VertexCacheStatistics vcs = meshopt_analyzeVertexCache(©.indices[0], copy.indices.size(), copy.vertices.size(), kCacheSize, 0, 0); meshopt_VertexFetchStatistics vfs = meshopt_analyzeVertexFetch(©.indices[0], copy.indices.size(), copy.vertices.size(), sizeof(Vertex)); meshopt_OverdrawStatistics os = meshopt_analyzeOverdraw(©.indices[0], copy.indices.size(), ©.vertices[0].px, copy.vertices.size(), sizeof(Vertex)); meshopt_VertexCacheStatistics vcs_nv = meshopt_analyzeVertexCache(©.indices[0], copy.indices.size(), copy.vertices.size(), 32, 32, 32); meshopt_VertexCacheStatistics vcs_amd = meshopt_analyzeVertexCache(©.indices[0], copy.indices.size(), copy.vertices.size(), 14, 64, 128); meshopt_VertexCacheStatistics vcs_intel = meshopt_analyzeVertexCache(©.indices[0], copy.indices.size(), copy.vertices.size(), 128, 0, 0); printf("%-9s: ACMR %f ATVR %f (NV %f AMD %f Intel %f) Overfetch %f Overdraw %f in %.2f msec\n", name, vcs.acmr, vcs.atvr, vcs_nv.atvr, vcs_amd.atvr, vcs_intel.atvr, vfs.overfetch, os.overdraw, (end - start) * 1000); } template size_t compress(const std::vector& data) { std::vector cbuf(tdefl_compress_bound(data.size() * sizeof(T))); unsigned int flags = tdefl_create_comp_flags_from_zip_params(MZ_DEFAULT_LEVEL, 15, MZ_DEFAULT_STRATEGY); return tdefl_compress_mem_to_mem(&cbuf[0], cbuf.size(), &data[0], data.size() * sizeof(T), flags); } void encodeIndex(const Mesh& mesh) { // allocate result outside of the timing loop to exclude memset() from decode timing std::vector result(mesh.indices.size()); double start = timestamp(); std::vector buffer(meshopt_encodeIndexBufferBound(mesh.indices.size(), mesh.vertices.size())); buffer.resize(meshopt_encodeIndexBuffer(&buffer[0], buffer.size(), &mesh.indices[0], mesh.indices.size())); double middle = timestamp(); int res = meshopt_decodeIndexBuffer(&result[0], mesh.indices.size(), &buffer[0], buffer.size()); assert(res == 0); (void)res; double end = timestamp(); size_t csize = compress(buffer); for (size_t i = 0; i < mesh.indices.size(); i += 3) { assert( (result[i + 0] == mesh.indices[i + 0] && result[i + 1] == mesh.indices[i + 1] && result[i + 2] == mesh.indices[i + 2]) || (result[i + 1] == mesh.indices[i + 0] && result[i + 2] == mesh.indices[i + 1] && result[i + 0] == mesh.indices[i + 2]) || (result[i + 2] == mesh.indices[i + 0] && result[i + 0] == mesh.indices[i + 1] && result[i + 1] == mesh.indices[i + 2])); } printf("IdxCodec : %.1f bits/triangle (post-deflate %.1f bits/triangle); encode %.2f msec, decode %.2f msec (%.2f GB/s)\n", double(buffer.size() * 8) / double(mesh.indices.size() / 3), double(csize * 8) / double(mesh.indices.size() / 3), (middle - start) * 1000, (end - middle) * 1000, (double(result.size() * 4) / (1 << 30)) / (end - middle)); } template void packVertex(const Mesh& mesh, const char* pvn) { std::vector pv(mesh.vertices.size()); packMesh(pv, mesh.vertices); size_t csize = compress(pv); printf("VtxPack%s : %.1f bits/vertex (post-deflate %.1f bits/vertex)\n", pvn, double(pv.size() * sizeof(PV) * 8) / double(mesh.vertices.size()), double(csize * 8) / double(mesh.vertices.size())); } template void encodeVertex(const Mesh& mesh, const char* pvn) { std::vector pv(mesh.vertices.size()); packMesh(pv, mesh.vertices); // allocate result outside of the timing loop to exclude memset() from decode timing std::vector result(mesh.vertices.size()); double start = timestamp(); std::vector vbuf(meshopt_encodeVertexBufferBound(mesh.vertices.size(), sizeof(PV))); vbuf.resize(meshopt_encodeVertexBuffer(&vbuf[0], vbuf.size(), &pv[0], mesh.vertices.size(), sizeof(PV))); double middle = timestamp(); int res = meshopt_decodeVertexBuffer(&result[0], mesh.vertices.size(), sizeof(PV), &vbuf[0], vbuf.size()); assert(res == 0); (void)res; double end = timestamp(); assert(memcmp(&pv[0], &result[0], pv.size() * sizeof(PV)) == 0); size_t csize = compress(vbuf); printf("VtxCodec%1s: %.1f bits/vertex (post-deflate %.1f bits/vertex); encode %.2f msec, decode %.2f msec (%.2f GB/s)\n", pvn, double(vbuf.size() * 8) / double(mesh.vertices.size()), double(csize * 8) / double(mesh.vertices.size()), (middle - start) * 1000, (end - middle) * 1000, (double(result.size() * sizeof(PV)) / (1 << 30)) / (end - middle)); } void stripify(const Mesh& mesh, bool use_restart) { unsigned int restart_index = use_restart ? ~0u : 0; // note: input mesh is assumed to be optimized for vertex cache and vertex fetch double start = timestamp(); std::vector strip(meshopt_stripifyBound(mesh.indices.size())); strip.resize(meshopt_stripify(&strip[0], &mesh.indices[0], mesh.indices.size(), mesh.vertices.size(), restart_index)); double end = timestamp(); Mesh copy = mesh; copy.indices.resize(meshopt_unstripify(©.indices[0], &strip[0], strip.size(), restart_index)); assert(copy.indices.size() <= meshopt_unstripifyBound(strip.size())); assert(isMeshValid(copy)); assert(hashMesh(mesh) == hashMesh(copy)); meshopt_VertexCacheStatistics vcs = meshopt_analyzeVertexCache(©.indices[0], mesh.indices.size(), mesh.vertices.size(), kCacheSize, 0, 0); meshopt_VertexCacheStatistics vcs_nv = meshopt_analyzeVertexCache(©.indices[0], mesh.indices.size(), mesh.vertices.size(), 32, 32, 32); meshopt_VertexCacheStatistics vcs_amd = meshopt_analyzeVertexCache(©.indices[0], mesh.indices.size(), mesh.vertices.size(), 14, 64, 128); meshopt_VertexCacheStatistics vcs_intel = meshopt_analyzeVertexCache(©.indices[0], mesh.indices.size(), mesh.vertices.size(), 128, 0, 0); printf("Stripify%c: ACMR %f ATVR %f (NV %f AMD %f Intel %f); %d strip indices (%.1f%%) in %.2f msec\n", use_restart ? 'R' : ' ', vcs.acmr, vcs.atvr, vcs_nv.atvr, vcs_amd.atvr, vcs_intel.atvr, int(strip.size()), double(strip.size()) / double(mesh.indices.size()) * 100, (end - start) * 1000); } void shadow(const Mesh& mesh) { // note: input mesh is assumed to be optimized for vertex cache and vertex fetch double start = timestamp(); // this index buffer can be used for position-only rendering using the same vertex data that the original index buffer uses std::vector shadow_indices(mesh.indices.size()); meshopt_generateShadowIndexBuffer(&shadow_indices[0], &mesh.indices[0], mesh.indices.size(), &mesh.vertices[0], mesh.vertices.size(), sizeof(float) * 3, sizeof(Vertex)); double end = timestamp(); // while you can't optimize the vertex data after shadow IB was constructed, you can and should optimize the shadow IB for vertex cache // this is valuable even if the original indices array was optimized for vertex cache! meshopt_optimizeVertexCache(&shadow_indices[0], &shadow_indices[0], shadow_indices.size(), mesh.vertices.size()); meshopt_VertexCacheStatistics vcs = meshopt_analyzeVertexCache(&mesh.indices[0], mesh.indices.size(), mesh.vertices.size(), kCacheSize, 0, 0); meshopt_VertexCacheStatistics vcss = meshopt_analyzeVertexCache(&shadow_indices[0], shadow_indices.size(), mesh.vertices.size(), kCacheSize, 0, 0); std::vector shadow_flags(mesh.vertices.size()); size_t shadow_vertices = 0; for (size_t i = 0; i < shadow_indices.size(); ++i) { unsigned int index = shadow_indices[i]; shadow_vertices += 1 - shadow_flags[index]; shadow_flags[index] = 1; } printf("ShadowIB : ACMR %f (%.2fx improvement); %d shadow vertices (%.2fx improvement) in %.2f msec\n", vcss.acmr, double(vcs.vertices_transformed) / double(vcss.vertices_transformed), int(shadow_vertices), double(mesh.vertices.size()) / double(shadow_vertices), (end - start) * 1000); } void meshlets(const Mesh& mesh) { const size_t max_vertices = 64; const size_t max_triangles = 126; // note: input mesh is assumed to be optimized for vertex cache and vertex fetch double start = timestamp(); std::vector meshlets(meshopt_buildMeshletsBound(mesh.indices.size(), max_vertices, max_triangles)); meshlets.resize(meshopt_buildMeshlets(&meshlets[0], &mesh.indices[0], mesh.indices.size(), mesh.vertices.size(), max_vertices, max_triangles)); double end = timestamp(); double avg_vertices = 0; double avg_triangles = 0; size_t not_full = 0; for (size_t i = 0; i < meshlets.size(); ++i) { const meshopt_Meshlet& m = meshlets[i]; avg_vertices += m.vertex_count; avg_triangles += m.triangle_count; not_full += m.vertex_count < max_vertices; } avg_vertices /= double(meshlets.size()); avg_triangles /= double(meshlets.size()); printf("Meshlets : %d meshlets (avg vertices %.1f, avg triangles %.1f, not full %d) in %.2f msec\n", int(meshlets.size()), avg_vertices, avg_triangles, int(not_full), (end - start) * 1000); float camera[3] = {100, 100, 100}; size_t rejected = 0; size_t rejected_s8 = 0; size_t rejected_alt = 0; size_t rejected_alt_s8 = 0; size_t accepted = 0; size_t accepted_s8 = 0; double startc = timestamp(); for (size_t i = 0; i < meshlets.size(); ++i) { meshopt_Bounds bounds = meshopt_computeMeshletBounds(&meshlets[i], &mesh.vertices[0].px, mesh.vertices.size(), sizeof(Vertex)); // trivial accept: we can't ever backface cull this meshlet accepted += (bounds.cone_cutoff >= 1); accepted_s8 += (bounds.cone_cutoff_s8 >= 127); // perspective projection: dot(normalize(cone_apex - camera_position), cone_axis) > cone_cutoff float mview[3] = {bounds.cone_apex[0] - camera[0], bounds.cone_apex[1] - camera[1], bounds.cone_apex[2] - camera[2]}; float mviewlength = sqrtf(mview[0] * mview[0] + mview[1] * mview[1] + mview[2] * mview[2]); rejected += mview[0] * bounds.cone_axis[0] + mview[1] * bounds.cone_axis[1] + mview[2] * bounds.cone_axis[2] >= bounds.cone_cutoff * mviewlength; rejected_s8 += mview[0] * (bounds.cone_axis_s8[0] / 127.f) + mview[1] * (bounds.cone_axis_s8[1] / 127.f) + mview[2] * (bounds.cone_axis_s8[2] / 127.f) >= (bounds.cone_cutoff_s8 / 127.f) * mviewlength; // alternative formulation for perspective projection that doesn't use apex (and uses cluster bounding sphere instead): // dot(normalize(center - camera_position), cone_axis) > cone_cutoff + radius / length(center - camera_position) float cview[3] = {bounds.center[0] - camera[0], bounds.center[1] - camera[1], bounds.center[2] - camera[2]}; float cviewlength = sqrtf(cview[0] * cview[0] + cview[1] * cview[1] + cview[2] * cview[2]); rejected_alt += cview[0] * bounds.cone_axis[0] + cview[1] * bounds.cone_axis[1] + cview[2] * bounds.cone_axis[2] >= bounds.cone_cutoff * cviewlength + bounds.radius; rejected_alt_s8 += cview[0] * (bounds.cone_axis_s8[0] / 127.f) + cview[1] * (bounds.cone_axis_s8[1] / 127.f) + cview[2] * (bounds.cone_axis_s8[2] / 127.f) >= (bounds.cone_cutoff_s8 / 127.f) * cviewlength + bounds.radius; } double endc = timestamp(); printf("ConeCull : rejected apex %d (%.1f%%) / center %d (%.1f%%), trivially accepted %d (%.1f%%) in %.2f msec\n", int(rejected), double(rejected) / double(meshlets.size()) * 100, int(rejected_alt), double(rejected_alt) / double(meshlets.size()) * 100, int(accepted), double(accepted) / double(meshlets.size()) * 100, (endc - startc) * 1000); printf("ConeCull8: rejected apex %d (%.1f%%) / center %d (%.1f%%), trivially accepted %d (%.1f%%) in %.2f msec\n", int(rejected_s8), double(rejected_s8) / double(meshlets.size()) * 100, int(rejected_alt_s8), double(rejected_alt_s8) / double(meshlets.size()) * 100, int(accepted_s8), double(accepted_s8) / double(meshlets.size()) * 100, (endc - startc) * 1000); } void spatialSort(const Mesh& mesh) { typedef PackedVertexOct PV; std::vector pv(mesh.vertices.size()); packMesh(pv, mesh.vertices); double start = timestamp(); std::vector remap(mesh.vertices.size()); meshopt_spatialSortRemap(&remap[0], &mesh.vertices[0].px, mesh.vertices.size(), sizeof(Vertex)); double end = timestamp(); meshopt_remapVertexBuffer(&pv[0], &pv[0], mesh.vertices.size(), sizeof(PV), &remap[0]); std::vector vbuf(meshopt_encodeVertexBufferBound(mesh.vertices.size(), sizeof(PV))); vbuf.resize(meshopt_encodeVertexBuffer(&vbuf[0], vbuf.size(), &pv[0], mesh.vertices.size(), sizeof(PV))); size_t csize = compress(vbuf); printf("Spatial : %.1f bits/vertex (post-deflate %.1f bits/vertex); sort %.2f msec\n", double(vbuf.size() * 8) / double(mesh.vertices.size()), double(csize * 8) / double(mesh.vertices.size()), (end - start) * 1000); } void spatialSortTriangles(const Mesh& mesh) { typedef PackedVertexOct PV; Mesh copy = mesh; double start = timestamp(); meshopt_spatialSortTriangles(©.indices[0], ©.indices[0], mesh.indices.size(), ©.vertices[0].px, copy.vertices.size(), sizeof(Vertex)); double end = timestamp(); meshopt_optimizeVertexCache(©.indices[0], ©.indices[0], copy.indices.size(), copy.vertices.size()); meshopt_optimizeVertexFetch(©.vertices[0], ©.indices[0], copy.indices.size(), ©.vertices[0], copy.vertices.size(), sizeof(Vertex)); std::vector pv(mesh.vertices.size()); packMesh(pv, copy.vertices); std::vector vbuf(meshopt_encodeVertexBufferBound(mesh.vertices.size(), sizeof(PV))); vbuf.resize(meshopt_encodeVertexBuffer(&vbuf[0], vbuf.size(), &pv[0], mesh.vertices.size(), sizeof(PV))); std::vector ibuf(meshopt_encodeIndexBufferBound(mesh.indices.size(), mesh.vertices.size())); ibuf.resize(meshopt_encodeIndexBuffer(&ibuf[0], ibuf.size(), ©.indices[0], mesh.indices.size())); size_t csizev = compress(vbuf); size_t csizei = compress(ibuf); printf("SpatialT : %.1f bits/vertex (post-deflate %.1f bits/vertex); %.1f bits/triangle (post-deflate %.1f bits/triangle); sort %.2f msec\n", double(vbuf.size() * 8) / double(mesh.vertices.size()), double(csizev * 8) / double(mesh.vertices.size()), double(ibuf.size() * 8) / double(mesh.indices.size() / 3), double(csizei * 8) / double(mesh.indices.size() / 3), (end - start) * 1000); } bool loadMesh(Mesh& mesh, const char* path) { double start = timestamp(); double middle; mesh = parseObj(path, middle); double end = timestamp(); if (mesh.vertices.empty()) { printf("Mesh %s is empty, skipping\n", path); return false; } printf("# %s: %d vertices, %d triangles; read in %.2f msec; indexed in %.2f msec\n", path, int(mesh.vertices.size()), int(mesh.indices.size() / 3), (middle - start) * 1000, (end - middle) * 1000); return true; } void processDeinterleaved(const char* path) { // Most algorithms in the library work out of the box with deinterleaved geometry, but some require slightly special treatment; // this code runs a simplified version of complete opt. pipeline using deinterleaved geo. There's no compression performed but you // can trivially run it by quantizing all elements and running meshopt_encodeVertexBuffer once for each vertex stream. fastObjMesh* obj = fast_obj_read(path); if (!obj) { printf("Error loading %s: file not found\n", path); return; } size_t total_indices = 0; for (unsigned int i = 0; i < obj->face_count; ++i) total_indices += 3 * (obj->face_vertices[i] - 2); std::vector unindexed_pos(total_indices * 3); std::vector unindexed_nrm(total_indices * 3); std::vector unindexed_uv(total_indices * 2); size_t vertex_offset = 0; size_t index_offset = 0; for (unsigned int i = 0; i < obj->face_count; ++i) { for (unsigned int j = 0; j < obj->face_vertices[i]; ++j) { fastObjIndex gi = obj->indices[index_offset + j]; // triangulate polygon on the fly; offset-3 is always the first polygon vertex if (j >= 3) { memcpy(&unindexed_pos[(vertex_offset + 0) * 3], &unindexed_pos[(vertex_offset - 3) * 3], 3 * sizeof(float)); memcpy(&unindexed_nrm[(vertex_offset + 0) * 3], &unindexed_nrm[(vertex_offset - 3) * 3], 3 * sizeof(float)); memcpy(&unindexed_uv[(vertex_offset + 0) * 2], &unindexed_uv[(vertex_offset - 3) * 2], 2 * sizeof(float)); memcpy(&unindexed_pos[(vertex_offset + 1) * 3], &unindexed_pos[(vertex_offset - 1) * 3], 3 * sizeof(float)); memcpy(&unindexed_nrm[(vertex_offset + 1) * 3], &unindexed_nrm[(vertex_offset - 1) * 3], 3 * sizeof(float)); memcpy(&unindexed_uv[(vertex_offset + 1) * 2], &unindexed_uv[(vertex_offset - 1) * 2], 2 * sizeof(float)); vertex_offset += 2; } memcpy(&unindexed_pos[vertex_offset * 3], &obj->positions[gi.p * 3], 3 * sizeof(float)); memcpy(&unindexed_nrm[vertex_offset * 3], &obj->normals[gi.n * 3], 3 * sizeof(float)); memcpy(&unindexed_uv[vertex_offset * 2], &obj->texcoords[gi.t * 2], 2 * sizeof(float)); vertex_offset++; } index_offset += obj->face_vertices[i]; } fast_obj_destroy(obj); double start = timestamp(); meshopt_Stream streams[] = { {&unindexed_pos[0], sizeof(float) * 3, sizeof(float) * 3}, {&unindexed_nrm[0], sizeof(float) * 3, sizeof(float) * 3}, {&unindexed_uv[0], sizeof(float) * 2, sizeof(float) * 2}, }; std::vector remap(total_indices); size_t total_vertices = meshopt_generateVertexRemapMulti(&remap[0], NULL, total_indices, total_indices, streams, sizeof(streams) / sizeof(streams[0])); std::vector indices(total_indices); meshopt_remapIndexBuffer(&indices[0], NULL, total_indices, &remap[0]); std::vector pos(total_vertices * 3); meshopt_remapVertexBuffer(&pos[0], &unindexed_pos[0], total_indices, sizeof(float) * 3, &remap[0]); std::vector nrm(total_vertices * 3); meshopt_remapVertexBuffer(&nrm[0], &unindexed_nrm[0], total_indices, sizeof(float) * 3, &remap[0]); std::vector uv(total_vertices * 2); meshopt_remapVertexBuffer(&uv[0], &unindexed_uv[0], total_indices, sizeof(float) * 2, &remap[0]); double reindex = timestamp(); meshopt_optimizeVertexCache(&indices[0], &indices[0], total_indices, total_vertices); meshopt_optimizeVertexFetchRemap(&remap[0], &indices[0], total_indices, total_vertices); meshopt_remapVertexBuffer(&pos[0], &pos[0], total_vertices, sizeof(float) * 3, &remap[0]); meshopt_remapVertexBuffer(&nrm[0], &nrm[0], total_vertices, sizeof(float) * 3, &remap[0]); meshopt_remapVertexBuffer(&uv[0], &uv[0], total_vertices, sizeof(float) * 2, &remap[0]); double optimize = timestamp(); // note: since shadow index buffer is computed based on regular vertex/index buffer, the stream points at the indexed data - not unindexed_pos meshopt_Stream shadow_stream = {&pos[0], sizeof(float) * 3, sizeof(float) * 3}; std::vector shadow_indices(total_indices); meshopt_generateShadowIndexBufferMulti(&shadow_indices[0], &indices[0], total_indices, total_vertices, &shadow_stream, 1); meshopt_optimizeVertexCache(&shadow_indices[0], &shadow_indices[0], total_indices, total_vertices); double shadow = timestamp(); printf("Deintrlvd: %d vertices, reindexed in %.2f msec, optimized in %.2f msec, generated & optimized shadow indices in %.2f msec\n", int(total_vertices), (reindex - start) * 1000, (optimize - reindex) * 1000, (shadow - optimize) * 1000); } void process(const char* path) { Mesh mesh; if (!loadMesh(mesh, path)) return; optimize(mesh, "Original", optNone); optimize(mesh, "Random", optRandomShuffle); optimize(mesh, "Cache", optCache); optimize(mesh, "CacheFifo", optCacheFifo); optimize(mesh, "Overdraw", optOverdraw); optimize(mesh, "Fetch", optFetch); optimize(mesh, "FetchMap", optFetchRemap); optimize(mesh, "Complete", optComplete); Mesh copy = mesh; meshopt_optimizeVertexCache(©.indices[0], ©.indices[0], copy.indices.size(), copy.vertices.size()); meshopt_optimizeVertexFetch(©.vertices[0], ©.indices[0], copy.indices.size(), ©.vertices[0], copy.vertices.size(), sizeof(Vertex)); stripify(copy, false); stripify(copy, true); meshlets(copy); shadow(copy); encodeIndex(copy); packVertex(copy, ""); encodeVertex(copy, ""); encodeVertex(copy, "O"); simplify(mesh); simplifySloppy(mesh); simplifyComplete(mesh); simplifyPoints(mesh); spatialSort(mesh); spatialSortTriangles(mesh); if (path) processDeinterleaved(path); } void processDev(const char* path) { Mesh mesh; if (!loadMesh(mesh, path)) return; Mesh copy = mesh; meshopt_optimizeVertexCache(©.indices[0], ©.indices[0], copy.indices.size(), copy.vertices.size()); meshopt_optimizeVertexFetch(©.vertices[0], ©.indices[0], copy.indices.size(), ©.vertices[0], copy.vertices.size(), sizeof(Vertex)); encodeIndex(copy); encodeVertex(copy, ""); encodeVertex(copy, "O"); } int main(int argc, char** argv) { void runTests(); if (argc == 1) { runTests(); } else { if (strcmp(argv[1], "-d") == 0) { for (int i = 2; i < argc; ++i) { processDev(argv[i]); } } else { for (int i = 1; i < argc; ++i) { process(argv[i]); } runTests(); } } }