// license:BSD-3-Clause // copyright-holders:hap, Tim Lindner /***************************************************************************** Texas Instruments TMS7000 TODO: - dump CROM and emulate cpu at microinstruction level - memory modes with IOCNT0, currently always running in faked full expansion mode - timer event counter mode (timer control register, bit 6) - TMS70x1/2 serial port and timer 3 - TMS70C46 DOCK-BUS comms with external pins - TMS70C46 external memory mode is via "E" bus instead of configuring IOCNT0 - TMS70C46 clock divider - TMS70C46 INT3 on keypress - when they're needed, add TMS70Cx2, TMS7742, TMS77C82, SE70xxx *****************************************************************************/ #include "emu.h" #include "tms7000.h" #include "7000dasm.h" // TMS7000 is the most basic one, 128 bytes internal RAM and no internal ROM. // TMS7020 and TMS7040 are same, but with 2KB and 4KB internal ROM respectively. DEFINE_DEVICE_TYPE(TMS7000, tms7000_device, "tms7000", "Texas Instruments TMS7000") DEFINE_DEVICE_TYPE(TMS7020, tms7020_device, "tms7020", "Texas Instruments TMS7020") DEFINE_DEVICE_TYPE(TMS7040, tms7040_device, "tms7040", "Texas Instruments TMS7040") // Exelvision (spinoff of TI) TMS7020 added one custom opcode. DEFINE_DEVICE_TYPE(TMS7020_EXL, tms7020_exl_device, "tms7020_exl", "Texas Instruments TMS7020 (Exelvision)") // CMOS devices biggest difference in a 'real world' setting is that the power // requirements are much lower. This obviously has no use in software emulation. DEFINE_DEVICE_TYPE(TMS70C00, tms70c00_device, "tms70c00", "Texas Instruments TMS70C00") DEFINE_DEVICE_TYPE(TMS70C20, tms70c20_device, "tms70c20", "Texas Instruments TMS70C20") DEFINE_DEVICE_TYPE(TMS70C40, tms70c40_device, "tms70c40", "Texas Instruments TMS70C40") // TMS70x1 features more peripheral I/O, the main addition being a serial port. // TMS70x2 is the same, just with twice more RAM (256 bytes) DEFINE_DEVICE_TYPE(TMS7001, tms7001_device, "tms7001", "Texas Instruments TMS7001") DEFINE_DEVICE_TYPE(TMS7041, tms7041_device, "tms7041", "Texas Instruments TMS7041") DEFINE_DEVICE_TYPE(TMS7002, tms7002_device, "tms7002", "Texas Instruments TMS7002") DEFINE_DEVICE_TYPE(TMS7042, tms7042_device, "tms7042", "Texas Instruments TMS7042") // TMS70C46 is literally a shell around a TMS70C40, with support for external // memory bus, auto external clock divider on slow memory, and wake-up on keypress. DEFINE_DEVICE_TYPE(TMS70C46, tms70c46_device, "tms70c46", "Texas Instruments TMS70C46") // TMS70Cx2 is an update to TMS70x2 with some extra features. Due to some changes // in peripheral file I/O, it is not backward compatible to TMS70x2. // internal memory maps void tms7000_device::tms7000_mem(address_map &map) { map(0x0000, 0x007f).ram().share("rf"); // 128 bytes internal RAM map(0x0080, 0x00ff).rw(FUNC(tms7000_device::tms7000_unmapped_rf_r), FUNC(tms7000_device::tms7000_unmapped_rf_w)); map(0x0100, 0x010b).rw(FUNC(tms7000_device::tms7000_pf_r), FUNC(tms7000_device::tms7000_pf_w)); map(0x0104, 0x0105).nopw(); // no port A write or ddr } void tms7000_device::tms7001_mem(address_map &map) { map(0x0000, 0x007f).ram().share("rf"); // 128 bytes internal RAM map(0x0080, 0x00ff).rw(FUNC(tms7000_device::tms7000_unmapped_rf_r), FUNC(tms7000_device::tms7000_unmapped_rf_w)); map(0x0100, 0x010b).rw(FUNC(tms7000_device::tms7000_pf_r), FUNC(tms7000_device::tms7000_pf_w)); map(0x0110, 0x0117).rw(FUNC(tms7000_device::tms7002_pf_r), FUNC(tms7000_device::tms7002_pf_w)); } void tms7000_device::tms7002_mem(address_map &map) { map(0x0000, 0x00ff).ram().share("rf"); // 256 bytes internal RAM map(0x0100, 0x010b).rw(FUNC(tms7000_device::tms7000_pf_r), FUNC(tms7000_device::tms7000_pf_w)); map(0x0110, 0x0117).rw(FUNC(tms7000_device::tms7002_pf_r), FUNC(tms7000_device::tms7002_pf_w)); } void tms7000_device::tms7020_mem(address_map &map) { tms7000_mem(map); map(0xf800, 0xffff).rom().region(DEVICE_SELF, 0); // 2kB internal ROM } void tms7000_device::tms7040_mem(address_map &map) { tms7000_mem(map); map(0xf000, 0xffff).rom().region(DEVICE_SELF, 0); // 4kB internal ROM } void tms7000_device::tms7041_mem(address_map &map) { tms7001_mem(map); map(0xf000, 0xffff).rom().region(DEVICE_SELF, 0); } void tms7000_device::tms7042_mem(address_map &map) { tms7002_mem(map); map(0xf000, 0xffff).rom().region(DEVICE_SELF, 0); } void tms70c46_device::tms70c46_mem(address_map &map) { tms7040_mem(map); map(0x010c, 0x010c).rw(FUNC(tms70c46_device::e_bus_data_r), FUNC(tms70c46_device::e_bus_data_w)); map(0x010d, 0x010d).noprw(); // ? always writes $FF before checking keyboard... maybe INT3 ack? map(0x010e, 0x010e).rw(FUNC(tms70c46_device::dockbus_data_r), FUNC(tms70c46_device::dockbus_data_w)); map(0x010f, 0x010f).rw(FUNC(tms70c46_device::dockbus_status_r), FUNC(tms70c46_device::dockbus_status_w)); map(0x0118, 0x0118).rw(FUNC(tms70c46_device::control_r), FUNC(tms70c46_device::control_w)); } // device definitions tms7000_device::tms7000_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock) : tms7000_device(mconfig, TMS7000, tag, owner, clock, address_map_constructor(FUNC(tms7000_device::tms7000_mem), this), 0) { } tms7000_device::tms7000_device(const machine_config &mconfig, device_type type, const char *tag, device_t *owner, uint32_t clock, address_map_constructor internal, uint32_t info_flags) : cpu_device(mconfig, type, tag, owner, clock), m_program_config("program", ENDIANNESS_BIG, 8, 16, 0, internal), m_port_in_cb(*this), m_port_out_cb(*this), m_info_flags(info_flags), m_divider(2) { } tms7020_device::tms7020_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock) : tms7000_device(mconfig, TMS7020, tag, owner, clock, address_map_constructor(FUNC(tms7020_device::tms7020_mem), this), 0) { } tms7020_exl_device::tms7020_exl_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock) : tms7000_device(mconfig, TMS7020_EXL, tag, owner, clock, address_map_constructor(FUNC(tms7020_exl_device::tms7020_mem), this), 0) { } tms7040_device::tms7040_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock) : tms7000_device(mconfig, TMS7040, tag, owner, clock, address_map_constructor(FUNC(tms7040_device::tms7040_mem), this), 0) { } tms70c00_device::tms70c00_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock) : tms7000_device(mconfig, TMS70C00, tag, owner, clock, address_map_constructor(FUNC(tms70c00_device::tms7000_mem), this), CHIP_IS_CMOS) { } tms70c20_device::tms70c20_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock) : tms7000_device(mconfig, TMS70C20, tag, owner, clock, address_map_constructor(FUNC(tms70c20_device::tms7020_mem), this), CHIP_IS_CMOS) { } tms70c40_device::tms70c40_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock) : tms7000_device(mconfig, TMS70C40, tag, owner, clock, address_map_constructor(FUNC(tms70c40_device::tms7040_mem), this), CHIP_IS_CMOS) { } tms7001_device::tms7001_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock) : tms7000_device(mconfig, TMS7001, tag, owner, clock, address_map_constructor(FUNC(tms7001_device::tms7001_mem), this), CHIP_FAMILY_70X2) { } tms7041_device::tms7041_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock) : tms7000_device(mconfig, TMS7041, tag, owner, clock, address_map_constructor(FUNC(tms7041_device::tms7041_mem), this), CHIP_FAMILY_70X2) { } tms7002_device::tms7002_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock) : tms7000_device(mconfig, TMS7002, tag, owner, clock, address_map_constructor(FUNC(tms7002_device::tms7002_mem), this), CHIP_FAMILY_70X2) { } tms7042_device::tms7042_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock) : tms7000_device(mconfig, TMS7042, tag, owner, clock, address_map_constructor(FUNC(tms7042_device::tms7042_mem), this), CHIP_FAMILY_70X2) { } tms70c46_device::tms70c46_device(const machine_config &mconfig, const char *tag, device_t *owner, uint32_t clock) : tms7000_device(mconfig, TMS70C46, tag, owner, clock, address_map_constructor(FUNC(tms70c46_device::tms70c46_mem), this), CHIP_IS_CMOS) { } device_memory_interface::space_config_vector tms7000_device::memory_space_config() const { return space_config_vector { std::make_pair(AS_PROGRAM, &m_program_config) }; } //------------------------------------------------- // device_start - device-specific startup //------------------------------------------------- void tms7000_device::device_start() { // init/zerofill space(AS_PROGRAM).cache(m_cache); space(AS_PROGRAM).specific(m_program); set_icountptr(m_icount); m_irq_state[TMS7000_INT1_LINE] = false; m_irq_state[TMS7000_INT3_LINE] = false; m_port_in_cb.resolve_all_safe(0xff); m_port_out_cb.resolve_all_safe(); m_idle_state = false; m_idle_halt = false; m_pc = 0; m_sp = 0; m_sr = 0; m_op = 0; memset(m_io_control, 0, 3); memset(m_port_latch, 0, 4); memset(m_port_ddr, 0, 4); m_port_ddr[1] = 0xff; // ! for (int tmr = 0; tmr < 2; tmr++) { m_timer_handle[tmr] = machine().scheduler().timer_alloc(timer_expired_delegate(FUNC(tms7000_device::simple_timer_cb), this)); m_timer_handle[tmr]->adjust(attotime::never, tmr); m_timer_data[tmr] = 0; m_timer_control[tmr] = 0; m_timer_decrementer[tmr] = 0; m_timer_prescaler[tmr] = 0; m_timer_capture_latch[tmr] = 0; } // register for savestates save_item(NAME(m_irq_state)); save_item(NAME(m_idle_state)); save_item(NAME(m_pc)); save_item(NAME(m_sp)); save_item(NAME(m_sr)); save_item(NAME(m_op)); save_item(NAME(m_io_control)); save_item(NAME(m_port_latch)); save_item(NAME(m_port_ddr)); save_item(NAME(m_timer_data)); save_item(NAME(m_timer_control)); save_item(NAME(m_timer_decrementer)); save_item(NAME(m_timer_prescaler)); save_item(NAME(m_timer_capture_latch)); // register for debugger state_add(TMS7000_PC, "PC", m_pc).formatstr("%04X"); state_add(TMS7000_SP, "SP", m_sp).formatstr("%02X"); state_add(TMS7000_ST, "ST", m_sr).formatstr("%02X"); uint8_t *rf = static_cast(memshare("rf")->ptr()); state_add(TMS7000_A, "A", rf[0]).formatstr("%02X"); state_add(TMS7000_B, "B", rf[1]).formatstr("%02X"); state_add(STATE_GENPC, "GENPC", m_pc).formatstr("%04X").noshow(); state_add(STATE_GENPCBASE, "CURPC", m_pc).formatstr("%04X").noshow(); state_add(STATE_GENSP, "GENSP", m_sp).formatstr("%02X").noshow(); state_add(STATE_GENFLAGS, "GENFLAGS", m_sr).formatstr("%8s").noshow(); } void tms7000_device::state_string_export(const device_state_entry &entry, std::string &str) const { switch (entry.index()) { case STATE_GENFLAGS: str = string_format("%c%c%c%c%c%c%c%c", m_sr & 0x80 ? 'C':'c', m_sr & 0x40 ? 'N':'n', m_sr & 0x20 ? 'Z':'z', m_sr & 0x10 ? 'I':'i', m_sr & 0x08 ? '?':'.', m_sr & 0x04 ? '?':'.', m_sr & 0x02 ? '?':'.', m_sr & 0x01 ? '?':'.' ); break; default: break; } } std::unique_ptr tms7000_device::create_disassembler() { return std::make_unique(); } //------------------------------------------------- // device_reset - device-specific reset //------------------------------------------------- void tms7000_device::device_reset() { if (m_idle_state) { m_pc++; m_idle_state = false; } // while _RESET is asserted: // clear ports write_p(0x04, 0xff); // port a write_p(0x06, 0xff); // port b write_p(0x05, 0x00); // ddr a write_p(0x09, 0x00); // ddr c write_p(0x0b, 0x00); // ddr d if (!chip_is_cmos()) { write_p(0x08, 0xff); // port c write_p(0x0a, 0xff); // port d } // when _RESET goes inactive (0 to 1) m_sr = 0; write_p(0x00, 0x00); // IOCNT0 if (chip_is_family_70x2()) write_p(0x10, 0x00); // IOCNT1 m_sp = 0xff; m_op = 0xff; execute_one(m_op); m_icount -= 3; // 17 total } //------------------------------------------------- // interrupts //------------------------------------------------- void tms7000_device::execute_set_input(int extline, int state) { if (extline != TMS7000_INT1_LINE && extline != TMS7000_INT3_LINE) return; bool irqstate = (state == CLEAR_LINE) ? false : true; // reverse polarity (TMS70cx2-only) if (m_io_control[2] & (0x01 << (4 * extline))) irqstate = !irqstate; if (m_irq_state[extline] != irqstate) { m_irq_state[extline] = irqstate; // set/clear internal irq flag flag_ext_interrupt(extline); if (m_irq_state[extline]) { // latch timer 1 on INT3 if (extline == TMS7000_INT3_LINE) m_timer_capture_latch[0] = m_timer_decrementer[0]; // on TMS70cx2, latch timer 2 on INT1 if (extline == TMS7000_INT1_LINE && chip_is_family_70cx2()) m_timer_capture_latch[1] = m_timer_decrementer[1]; // clear external if it's edge-triggered (TMS70cx2-only) if (m_io_control[2] & (0x02 << (4 * extline))) m_irq_state[extline] = false; check_interrupts(); } } } void tms7000_device::flag_ext_interrupt(int extline) { if (extline != TMS7000_INT1_LINE && extline != TMS7000_INT3_LINE) return; // set/clear for pending external interrupt if (m_irq_state[extline]) m_io_control[0] |= (0x02 << (4 * extline)); else m_io_control[0] &= ~(0x02 << (4 * extline)); } void tms7000_device::check_interrupts() { // global interrupt bit if (!(m_sr & SR_I)) return; // check for and handle interrupt for (int irqline = 0; irqline < 5; irqline++) { // INT 1,2,3 are in IOCNT0 d0-d5 // INT 4,5 are in IOCNT1 d0-d3 int shift = (irqline > 2) ? irqline * 2 - 6 : irqline * 2; if ((m_io_control[irqline > 2] >> shift & 3) == 3) { // ack m_io_control[irqline > 2] &= ~(0x02 << shift); if (irqline == 0 || irqline == 2) flag_ext_interrupt(irqline / 2); do_interrupt(irqline); return; } } } void tms7000_device::do_interrupt(int irqline) { if (m_idle_state) { m_icount -= 17; m_pc++; m_idle_state = false; } else m_icount -= 19; push8(m_sr); push16(m_pc); m_sr = 0; m_pc = read_mem16(0xfffc - irqline * 2); standard_irq_callback(irqline); } //------------------------------------------------- // timers //------------------------------------------------- void tms7000_device::timer_run(int tmr) { m_timer_prescaler[tmr] = m_timer_control[tmr] & 0x1f; // run automatic timer if source is internal if ((m_timer_control[tmr] & 0xe0) == 0x80) { attotime period = attotime::from_hz(clock()) * 16 * (m_timer_prescaler[tmr] + 1); // fOSC/16 - fOSC is freq _before_ internal clockdivider m_timer_handle[tmr]->adjust(period, tmr); } } void tms7000_device::timer_reload(int tmr) { // stop possible running timer m_timer_handle[tmr]->adjust(attotime::never, tmr); if (m_timer_control[tmr] & 0x80) { m_timer_decrementer[tmr] = m_timer_data[tmr]; timer_run(tmr); } } void tms7000_device::timer_tick_pre(int tmr) { // timer prescaler underflow if (--m_timer_prescaler[tmr] < 0) { m_timer_prescaler[tmr] = m_timer_control[tmr] & 0x1f; timer_tick_low(tmr); } } void tms7000_device::timer_tick_low(int tmr) { // timer decrementer underflow if (--m_timer_decrementer[tmr] < 0) { timer_reload(tmr); // set INT2/INT5 m_io_control[tmr] |= 0x08; // cascaded timer if (tmr == 0 && (m_timer_control[1] & 0xa0) == 0xa0) timer_tick_pre(tmr + 1); } } TIMER_CALLBACK_MEMBER(tms7000_device::simple_timer_cb) { int tmr = param; // tick and restart timer timer_tick_low(tmr); timer_run(tmr); } //------------------------------------------------- // peripheral file - read/write internal ports // note: TMS7000 family is from $00 to $0b, TMS7002 family adds $10 to $17 //------------------------------------------------- uint8_t tms7000_device::tms7000_pf_r(offs_t offset) { switch (offset) { // i/o control case 0x00: case 0x10: return m_io_control[offset >> 4]; // timer 1/2 data case 0x02: case 0x12: // current decrementer value return m_timer_decrementer[offset >> 4]; // timer 1 control case 0x03: // timer capture (latched by INT3) return m_timer_capture_latch[0]; // port data case 0x04: case 0x06: case 0x08: case 0x0a: { // note: port B is write-only, reading it returns the output value as if ddr is 0xff int port = offset / 2 - 2; if (!machine().side_effects_disabled()) return (m_port_in_cb[port]() & ~m_port_ddr[port]) | (m_port_latch[port] & m_port_ddr[port]); break; } // port direction (note: TMS7000 doesn't support it for port A) case 0x05: case 0x09: case 0x0b: return m_port_ddr[offset / 2 - 2]; default: if (!machine().side_effects_disabled()) logerror("'%s' (%04X): tms7000_pf_r @ $%04x\n", tag(), m_pc, offset); break; } return 0; } void tms7000_device::tms7000_pf_w(offs_t offset, uint8_t data) { switch (offset) { // i/o control (IOCNT0) case 0x00: // d0,d2,d4: INT1,2,3 enable // d1,d3,d5: INT1,2,3 flag (write 1 to clear flag) // d6-d7: memory mode (currently not implemented) m_io_control[0] = (m_io_control[0] & (~data & 0x2a)) | (data & 0xd5); // possibly need to reactivate flags if (data & 0x02) flag_ext_interrupt(TMS7000_INT1_LINE); if (data & 0x20) flag_ext_interrupt(TMS7000_INT3_LINE); check_interrupts(); break; // i/o control (IOCNT1) case 0x10: // d0,d2: INT4,5 enable // d1,d3: INT4,5 flag (write 1 to clear flag) m_io_control[1] = (m_io_control[1] & (~data & 0x0a)) | (data & 0x05); check_interrupts(); break; // timer 1/2 data case 0x02: case 0x12: // decrementer reload value m_timer_data[offset >> 4] = data; break; // timer 1/2 control case 0x03: // d5: t1: cmos low-power mode when IDLE opcode is used (not emulated) // 0(normal), or 1(halt) - indicating it can only wake up with RESET or external interrupt if (chip_is_cmos()) { m_idle_halt = (data & 0x20) ? true : false; if (m_idle_halt) logerror("%s: CMOS low-power halt mode enabled\n", tag()); } data &= ~0x20; case 0x13: // d0-d4: prescaler reload value // d5: t2: cascade from t1 // d6: source (internal/external) // d7: stop/start timer m_timer_control[offset >> 4] = data; timer_reload(offset >> 4); // on cmos chip, clear INT2/INT5 as well if (~data & 0x80 && chip_is_cmos()) m_io_control[offset >> 4] &= ~0x08; break; // port data (note: TMS7000 doesn't support it for port A) case 0x04: case 0x06: case 0x08: case 0x0a: { // note: in memory expansion modes, some port output pins are used for memory strobes. // this is currently ignored, since port writes will always be visible externally on peripheral expansion anyway. int port = offset / 2 - 2; m_port_out_cb[port](data & m_port_ddr[port]); m_port_latch[port] = data; break; } // port direction (note: TMS7000 doesn't support it for port A) case 0x05: case 0x09: case 0x0b: // note: changing port direction does not change(refresh) the output pins m_port_ddr[offset / 2 - 2] = data; break; default: logerror("'%s' (%04X): tms7000_pf_w @ $%04x = $%02x\n", tag(), m_pc, offset, data); break; } } //------------------------------------------------- // execute //------------------------------------------------- void tms7000_device::execute_run() { check_interrupts(); do { debugger_instruction_hook(m_pc); m_op = m_cache.read_byte(m_pc++); execute_one(m_op); } while (m_icount > 0); } void tms7000_device::execute_one(uint8_t op) { switch (op) { case 0x00: nop(); break; case 0x01: idle(); break; case 0x05: eint(); break; case 0x06: dint(); break; case 0x07: setc(); break; case 0x08: pop_st(); break; case 0x09: stsp(); break; case 0x0a: rets(); break; case 0x0b: reti(); break; case 0x0d: ldsp(); break; case 0x0e: push_st(); break; case 0x12: am_r2a(&tms7000_device::op_mov); break; case 0x13: am_r2a(&tms7000_device::op_and); break; case 0x14: am_r2a(&tms7000_device::op_or); break; case 0x15: am_r2a(&tms7000_device::op_xor); break; case 0x16: am_r2a(&tms7000_device::op_btjo); break; case 0x17: am_r2a(&tms7000_device::op_btjz); break; case 0x18: am_r2a(&tms7000_device::op_add); break; case 0x19: am_r2a(&tms7000_device::op_adc); break; case 0x1a: am_r2a(&tms7000_device::op_sub); break; case 0x1b: am_r2a(&tms7000_device::op_sbb); break; case 0x1c: am_r2a(&tms7000_device::op_mpy); break; case 0x1d: am_r2a(&tms7000_device::op_cmp); break; case 0x1e: am_r2a(&tms7000_device::op_dac); break; case 0x1f: am_r2a(&tms7000_device::op_dsb); break; case 0x22: am_i2a(&tms7000_device::op_mov); break; case 0x23: am_i2a(&tms7000_device::op_and); break; case 0x24: am_i2a(&tms7000_device::op_or); break; case 0x25: am_i2a(&tms7000_device::op_xor); break; case 0x26: am_i2a(&tms7000_device::op_btjo); break; case 0x27: am_i2a(&tms7000_device::op_btjz); break; case 0x28: am_i2a(&tms7000_device::op_add); break; case 0x29: am_i2a(&tms7000_device::op_adc); break; case 0x2a: am_i2a(&tms7000_device::op_sub); break; case 0x2b: am_i2a(&tms7000_device::op_sbb); break; case 0x2c: am_i2a(&tms7000_device::op_mpy); break; case 0x2d: am_i2a(&tms7000_device::op_cmp); break; case 0x2e: am_i2a(&tms7000_device::op_dac); break; case 0x2f: am_i2a(&tms7000_device::op_dsb); break; case 0x32: am_r2b(&tms7000_device::op_mov); break; case 0x33: am_r2b(&tms7000_device::op_and); break; case 0x34: am_r2b(&tms7000_device::op_or); break; case 0x35: am_r2b(&tms7000_device::op_xor); break; case 0x36: am_r2b(&tms7000_device::op_btjo); break; case 0x37: am_r2b(&tms7000_device::op_btjz); break; case 0x38: am_r2b(&tms7000_device::op_add); break; case 0x39: am_r2b(&tms7000_device::op_adc); break; case 0x3a: am_r2b(&tms7000_device::op_sub); break; case 0x3b: am_r2b(&tms7000_device::op_sbb); break; case 0x3c: am_r2b(&tms7000_device::op_mpy); break; case 0x3d: am_r2b(&tms7000_device::op_cmp); break; case 0x3e: am_r2b(&tms7000_device::op_dac); break; case 0x3f: am_r2b(&tms7000_device::op_dsb); break; case 0x42: am_r2r(&tms7000_device::op_mov); break; case 0x43: am_r2r(&tms7000_device::op_and); break; case 0x44: am_r2r(&tms7000_device::op_or); break; case 0x45: am_r2r(&tms7000_device::op_xor); break; case 0x46: am_r2r(&tms7000_device::op_btjo); break; case 0x47: am_r2r(&tms7000_device::op_btjz); break; case 0x48: am_r2r(&tms7000_device::op_add); break; case 0x49: am_r2r(&tms7000_device::op_adc); break; case 0x4a: am_r2r(&tms7000_device::op_sub); break; case 0x4b: am_r2r(&tms7000_device::op_sbb); break; case 0x4c: am_r2r(&tms7000_device::op_mpy); break; case 0x4d: am_r2r(&tms7000_device::op_cmp); break; case 0x4e: am_r2r(&tms7000_device::op_dac); break; case 0x4f: am_r2r(&tms7000_device::op_dsb); break; case 0x52: am_i2b(&tms7000_device::op_mov); break; case 0x53: am_i2b(&tms7000_device::op_and); break; case 0x54: am_i2b(&tms7000_device::op_or); break; case 0x55: am_i2b(&tms7000_device::op_xor); break; case 0x56: am_i2b(&tms7000_device::op_btjo); break; case 0x57: am_i2b(&tms7000_device::op_btjz); break; case 0x58: am_i2b(&tms7000_device::op_add); break; case 0x59: am_i2b(&tms7000_device::op_adc); break; case 0x5a: am_i2b(&tms7000_device::op_sub); break; case 0x5b: am_i2b(&tms7000_device::op_sbb); break; case 0x5c: am_i2b(&tms7000_device::op_mpy); break; case 0x5d: am_i2b(&tms7000_device::op_cmp); break; case 0x5e: am_i2b(&tms7000_device::op_dac); break; case 0x5f: am_i2b(&tms7000_device::op_dsb); break; case 0x62: am_b2a(&tms7000_device::op_mov); break; case 0x63: am_b2a(&tms7000_device::op_and); break; case 0x64: am_b2a(&tms7000_device::op_or); break; case 0x65: am_b2a(&tms7000_device::op_xor); break; case 0x66: am_b2a(&tms7000_device::op_btjo); break; case 0x67: am_b2a(&tms7000_device::op_btjz); break; case 0x68: am_b2a(&tms7000_device::op_add); break; case 0x69: am_b2a(&tms7000_device::op_adc); break; case 0x6a: am_b2a(&tms7000_device::op_sub); break; case 0x6b: am_b2a(&tms7000_device::op_sbb); break; case 0x6c: am_b2a(&tms7000_device::op_mpy); break; case 0x6d: am_b2a(&tms7000_device::op_cmp); break; case 0x6e: am_b2a(&tms7000_device::op_dac); break; case 0x6f: am_b2a(&tms7000_device::op_dsb); break; case 0x72: am_i2r(&tms7000_device::op_mov); break; case 0x73: am_i2r(&tms7000_device::op_and); break; case 0x74: am_i2r(&tms7000_device::op_or); break; case 0x75: am_i2r(&tms7000_device::op_xor); break; case 0x76: am_i2r(&tms7000_device::op_btjo); break; case 0x77: am_i2r(&tms7000_device::op_btjz); break; case 0x78: am_i2r(&tms7000_device::op_add); break; case 0x79: am_i2r(&tms7000_device::op_adc); break; case 0x7a: am_i2r(&tms7000_device::op_sub); break; case 0x7b: am_i2r(&tms7000_device::op_sbb); break; case 0x7c: am_i2r(&tms7000_device::op_mpy); break; case 0x7d: am_i2r(&tms7000_device::op_cmp); break; case 0x7e: am_i2r(&tms7000_device::op_dac); break; case 0x7f: am_i2r(&tms7000_device::op_dsb); break; case 0x80: am_p2a(&tms7000_device::op_mov); break; case 0x82: am_a2p(&tms7000_device::op_mov); break; case 0x83: am_a2p(&tms7000_device::op_and); break; case 0x84: am_a2p(&tms7000_device::op_or); break; case 0x85: am_a2p(&tms7000_device::op_xor); break; case 0x86: am_a2p(&tms7000_device::op_btjo); break; case 0x87: am_a2p(&tms7000_device::op_btjz); break; case 0x88: movd_dir(); break; case 0x8a: lda_dir(); break; case 0x8b: sta_dir(); break; case 0x8c: br_dir(); break; case 0x8d: cmpa_dir(); break; case 0x8e: call_dir(); break; case 0x91: am_p2b(&tms7000_device::op_mov); break; case 0x92: am_b2p(&tms7000_device::op_mov); break; case 0x93: am_b2p(&tms7000_device::op_and); break; case 0x94: am_b2p(&tms7000_device::op_or); break; case 0x95: am_b2p(&tms7000_device::op_xor); break; case 0x96: am_b2p(&tms7000_device::op_btjo); break; case 0x97: am_b2p(&tms7000_device::op_btjz); break; case 0x98: movd_ind(); break; case 0x9a: lda_ind(); break; case 0x9b: sta_ind(); break; case 0x9c: br_ind(); break; case 0x9d: cmpa_ind(); break; case 0x9e: call_ind(); break; case 0xa2: am_i2p(&tms7000_device::op_mov); break; case 0xa3: am_i2p(&tms7000_device::op_and); break; case 0xa4: am_i2p(&tms7000_device::op_or); break; case 0xa5: am_i2p(&tms7000_device::op_xor); break; case 0xa6: am_i2p(&tms7000_device::op_btjo); break; case 0xa7: am_i2p(&tms7000_device::op_btjz); break; case 0xa8: movd_inx(); break; case 0xaa: lda_inx(); break; case 0xab: sta_inx(); break; case 0xac: br_inx(); break; case 0xad: cmpa_inx(); break; case 0xae: call_inx(); break; case 0xb0: am_a2a(&tms7000_device::op_mov); break; // aka clrc/tsta case 0xb1: am_b2a(&tms7000_device::op_mov); break; // undocumented case 0xb2: am_a(&tms7000_device::op_dec); break; case 0xb3: am_a(&tms7000_device::op_inc); break; case 0xb4: am_a(&tms7000_device::op_inv); break; case 0xb5: am_a(&tms7000_device::op_clr); break; case 0xb6: am_a(&tms7000_device::op_xchb); break; case 0xb7: am_a(&tms7000_device::op_swap); break; case 0xb8: push_a(); break; case 0xb9: pop_a(); break; case 0xba: am_a(&tms7000_device::op_djnz); break; case 0xbb: decd_a(); break; case 0xbc: am_a(&tms7000_device::op_rr); break; case 0xbd: am_a(&tms7000_device::op_rrc); break; case 0xbe: am_a(&tms7000_device::op_rl); break; case 0xbf: am_a(&tms7000_device::op_rlc); break; case 0xc0: am_a2b(&tms7000_device::op_mov); break; case 0xc1: am_b2b(&tms7000_device::op_mov); break; // aka tstb case 0xc2: am_b(&tms7000_device::op_dec); break; case 0xc3: am_b(&tms7000_device::op_inc); break; case 0xc4: am_b(&tms7000_device::op_inv); break; case 0xc5: am_b(&tms7000_device::op_clr); break; case 0xc6: am_b(&tms7000_device::op_xchb); break; // result equivalent to tstb case 0xc7: am_b(&tms7000_device::op_swap); break; case 0xc8: push_b(); break; case 0xc9: pop_b(); break; case 0xca: am_b(&tms7000_device::op_djnz); break; case 0xcb: decd_b(); break; case 0xcc: am_b(&tms7000_device::op_rr); break; case 0xcd: am_b(&tms7000_device::op_rrc); break; case 0xce: am_b(&tms7000_device::op_rl); break; case 0xcf: am_b(&tms7000_device::op_rlc); break; case 0xd0: am_a2r(&tms7000_device::op_mov); break; case 0xd1: am_b2r(&tms7000_device::op_mov); break; case 0xd2: am_r(&tms7000_device::op_dec); break; case 0xd3: am_r(&tms7000_device::op_inc); break; case 0xd4: am_r(&tms7000_device::op_inv); break; case 0xd5: am_r(&tms7000_device::op_clr); break; case 0xd6: am_r(&tms7000_device::op_xchb); break; case 0xd7: am_r(&tms7000_device::op_swap); break; case 0xd8: push_r(); break; case 0xd9: pop_r(); break; case 0xda: am_r(&tms7000_device::op_djnz); break; case 0xdb: decd_r(); break; case 0xdc: am_r(&tms7000_device::op_rr); break; case 0xdd: am_r(&tms7000_device::op_rrc); break; case 0xde: am_r(&tms7000_device::op_rl); break; case 0xdf: am_r(&tms7000_device::op_rlc); break; case 0xe0: jmp(true); break; case 0xe1: jmp(m_sr & SR_N); break; // jn/jlt case 0xe2: jmp(m_sr & SR_Z); break; // jz/jeq case 0xe3: jmp(m_sr & SR_C); break; // jc/jhs case 0xe4: jmp(!(m_sr & (SR_Z | SR_N))); break; // jp/jgt case 0xe5: jmp(!(m_sr & SR_N)); break; // jpz/jge - note: error in TI official documentation case 0xe6: jmp(!(m_sr & SR_Z)); break; // jnz/jne case 0xe7: jmp(!(m_sr & SR_C)); break; // jnc/jl case 0xe8: case 0xe9: case 0xea: case 0xeb: case 0xec: case 0xed: case 0xee: case 0xef: case 0xf0: case 0xf1: case 0xf2: case 0xf3: case 0xf4: case 0xf5: case 0xf6: case 0xf7: case 0xf8: case 0xf9: case 0xfa: case 0xfb: case 0xfc: case 0xfd: case 0xfe: case 0xff: trap(op << 1); break; default: illegal(op); break; } } void tms7020_exl_device::execute_one(uint8_t op) { // TMS7020 Exelvision EXL 100 custom opcode(s) if (op == 0xd7) lvdp(); else tms7000_device::execute_one(op); } //------------------------------------------------- // TMS70C46 specifics //------------------------------------------------- void tms70c46_device::device_start() { // init/zerofill m_control = 0; // register for savestates save_item(NAME(m_control)); tms7000_device::device_start(); } void tms70c46_device::device_reset() { m_control = 0; // reset port E m_port_out_cb[4](0xff); tms7000_device::device_reset(); } uint8_t tms70c46_device::control_r() { return m_control; } void tms70c46_device::control_w(uint8_t data) { // d5: enable external databus if (~m_control & data & 0x20) m_port_out_cb[4](0xff); // put port E into high impedance // d4: enable clock divider when accessing slow memory (not emulated) // known fast memory areas: internal ROM/RAM, system RAM // known slow memory areas: system ROM, cartridge ROM/RAM // d0-d3(all bits?): clock divider when d4 is set and address bus is in slow memory area // needs to be measured, i just know that $30 is full speed, and $38 is about 4 times slower m_control = data; } // DOCK-BUS: TODO.. // right now pretend that nothing is connected // external pins are HD0-HD3(data), HSK(handshake), BAV(bus available) uint8_t tms70c46_device::dockbus_status_r() { // d0: slave _HSK // d1: slave _BAV // d2: unused? // d3: IRQ active return 0; } void tms70c46_device::dockbus_status_w(uint8_t data) { // d0: master _HSK (setting it low(write 1) also clears IRQ) // d1: master _BAV // other bits: unused? } uint8_t tms70c46_device::dockbus_data_r() { return 0xff; } void tms70c46_device::dockbus_data_w(uint8_t data) { }