// -*-C++-*- #version 120 varying float fogFactor; varying vec3 hazeColor; varying float mie_frag; varying float mie_frag_mod; varying vec3 internal_pos; varying float bottom_shade; varying float z_pos; varying float flogz; uniform float range; // From /sim/rendering/clouds3d-vis-range uniform float detail_range; // From /sim/rendering/clouds3d_detail-range uniform float scattering; uniform float terminator; uniform float altitude; uniform float cloud_self_shading; uniform float visibility; uniform float moonlight; uniform float air_pollution; uniform float flash; uniform float lightning_pos_x; uniform float lightning_pos_y; uniform float lightning_range; attribute vec3 usrAttr1; attribute vec3 usrAttr2; float alpha_factor = usrAttr1.r; float shade_factor = usrAttr1.g; float cloud_height = usrAttr1.b; float bottom_factor = usrAttr2.r; float middle_factor = usrAttr2.g; float top_factor = usrAttr2.b; const float EarthRadius = 5800000.0; // light_func is a generalized logistic function fit to the light intensity as a function // of scaled terminator position obtained from Flightgear core float light_func (in float x, in float a, in float b, in float c, in float d, in float e) { x = x-0.5; // use the asymptotics to shorten computations if (x > 30.0) {return e;} if (x < -15.0) {return 0.03;} return e / pow((1.0 + a * exp(-b * (x-c)) ),(1.0/d)); } float mie_func (in float x, in float Mie) { return x + 2.0 * x * Mie * (1.0 -0.8*x) * (1.0 -0.8*x); } void main(void) { //shade_factor = shade_factor * cloud_self_shading; //top_factor = top_factor * cloud_self_shading; //shade_factor = min(shade_factor, top_factor); //middle_factor = min(middle_factor, top_factor); //bottom_factor = min(bottom_factor, top_factor); float intensity; float mix_factor; bottom_shade = bottom_factor; vec3 shadedFogColor = vec3(0.55, 0.67, 0.88); vec3 moonLightColor = vec3 (0.095, 0.095, 0.15) * moonlight * scattering; gl_TexCoord[0] = gl_MultiTexCoord0; vec4 ep = gl_ModelViewMatrixInverse * vec4(0.0,0.0,0.0,1.0); vec4 l = gl_ModelViewMatrixInverse * vec4(0.0,0.0,1.0,1.0); vec3 u = normalize(ep.xyz - l.xyz); // Find a rotation matrix that rotates 1,0,0 into u. u, r and w are // the columns of that matrix. vec3 absu = abs(u); vec3 r = normalize(vec3(-u.y, u.x, 0.0)); vec3 w = cross(u, r); // Do the matrix multiplication by [ u r w pos]. Assume no // scaling in the homogeneous component of pos. gl_Position = vec4(0.0, 0.0, 0.0, 1.0); gl_Position.xyz = gl_Vertex.x * u; gl_Position.xyz += gl_Vertex.y * r; gl_Position.xyz += gl_Vertex.z * w; // Apply Z scaling to allow sprites to be squashed in the z-axis gl_Position.z = gl_Position.z * gl_Color.w; // Now shift the sprite to the correct position in the cloud. gl_Position.xyz += gl_Color.xyz; internal_pos = gl_Position.xyz/ cloud_height; // Determine a lighting normal based on the vertex position from the // center of the cloud, so that sprite on the opposite side of the cloud to the sun are darker. float n = dot(normalize(-gl_LightSource[0].position.xyz), normalize(vec3(gl_ModelViewMatrix * vec4(- gl_Position.x, - gl_Position.y, - gl_Position.z, 0.0)))); // prepare suppression of shadeward Mie terms float n1 = dot(normalize(-gl_LightSource[0].position.xyz), normalize(vec3(gl_ModelViewMatrix * vec4(- gl_Color.x, - gl_Color.y, - gl_Color.z, 0.0)))); //z_pos = dot(normalize(-gl_LightSource[0].position.xyz), // vec3(gl_ModelViewMatrix * vec4(- gl_Position.x, - gl_Position.y, - gl_Position.z, 0.0)))/cloud_height; float mie_suppress = smoothstep(0.0, 0.3, n1); // Determine the position - used for fog and shading calculations float fogCoord = length(vec3(gl_ModelViewMatrix * vec4(gl_Color.x, gl_Color.y, gl_Color.z, 1.0))); float center_dist = length(vec3(gl_ModelViewMatrix * vec4(0.0,0.0,0.0,1.0))); z_pos = (fogCoord - center_dist)/cloud_height; if ((fogCoord > detail_range) && (fogCoord > center_dist) && (shade_factor < 0.7)) { // More than detail_range away, so discard all sprites on opposite side of // cloud center by shifting them beyond the view fustrum gl_Position = vec4(0.0,0.0,10.0,1.0); gl_FrontColor.a = 0.0; } else { // Determine the shading of the vertex. We shade it based on it's position // in the cloud relative to the sun, and it's vertical position in the cloud. float shade = mix(shade_factor, top_factor, smoothstep(-0.3, 0.3, n)); //if (n < 0) { // shade = mix(top_factor, shade_factor, abs(n)); //} if (gl_Position.z < 0.5 * cloud_height) { shade = min(shade, mix(bottom_factor, middle_factor, gl_Position.z * 2.0 / cloud_height)); } else { shade = min(shade, mix(middle_factor, top_factor, gl_Position.z * 2.0 / cloud_height - 1.0)); } //float h = gl_Position.z / cloud_height; //if (h < 0.5) { // shade = min(shade, mix(bottom_factor, middle_factor, smoothstep(0.0, 0.5, h))); //} else { // shade = min(shade, mix(middle_factor, top_factor, smoothstep(2.0 * (h - 0.5))); // } // Final position of the sprite vec3 relVector = gl_Position.xyz - ep.xyz; gl_Position = gl_ModelViewProjectionMatrix * gl_Position; // logarithmic depth flogz = 1.0 + gl_Position.w; // Light at the final position // first obtain normal to sun position vec3 lightFull = (gl_ModelViewMatrixInverse * gl_LightSource[0].position).xyz; vec3 lightHorizon = normalize(vec3(lightFull.x,lightFull.y, 0.0)); // yprime is the distance of the vertex into sun direction, corrected for altitude // the altitude correction is clamped to reasonable values, sometimes altitude isn't parsed correctly, leading // to overbright or overdark clouds // float vertex_alt = clamp(altitude * 0.30480 + relVector.z,1000.0,10000.0); float vertex_alt = clamp(altitude + relVector.z, 300.0, 10000.0); float yprime = -dot(relVector, lightHorizon); float yprime_alt = yprime -sqrt(2.0 * EarthRadius * vertex_alt); // two times terminator width governs how quickly light fades into shadow float terminator_width = 200000.0; float earthShade = 1.0- 0.9* smoothstep(-terminator_width+ terminator, terminator_width + terminator, yprime_alt); float earthShadeFactor = 1.0 - smoothstep(0.4, 0.5, earthShade); // compute the light at the position vec4 light_diffuse; float lightArg = (terminator-yprime_alt)/100000.0; light_diffuse.b = light_func(lightArg -1.2 * air_pollution, 1.330e-05, 0.264, 2.227, 1.08e-05, 1.0); light_diffuse.g = light_func(lightArg -0.6 * air_pollution, 3.931e-06, 0.264, 3.827, 7.93e-06, 1.0); light_diffuse.r = light_func(lightArg, 8.305e-06, 0.161, 3.827, 3.04e-05, 1.0); light_diffuse.a = 1.0; //light_diffuse *= cloud_self_shading; intensity = (1.0 - (0.8 * (1.0 - earthShade))) * length(light_diffuse.rgb); light_diffuse.rgb = intensity * normalize(mix(light_diffuse.rgb, shadedFogColor, (1.0 - smoothstep(0.5,0.9, min(scattering, cloud_self_shading) )))); // correct ambient light intensity and hue before sunrise if (earthShade < 0.6) { light_diffuse.rgb = intensity * normalize(mix(light_diffuse.rgb, shadedFogColor, 1.0 -smoothstep(0.1, 0.6,earthShade ) )); } gl_FrontColor.rgb = intensity * shade * normalize(mix(light_diffuse.rgb, shadedFogColor, smoothstep(0.1,0.4, (1.0 - shade) ))) ; // lightning vec2 lightningRelVector = relVector.xy - vec2(lightning_pos_x, lightning_pos_y); float rCoord = length(lightningRelVector); vec3 flash_color = vec3 (0.43, 0.57, 1.0); float flash_factor = flash; if (flash == 2) { flash_color = vec3 (0.8, 0.7, 0.4); flash_factor = 1; } float rn = 0.5 + 0.5 * fract(gl_Color.x); gl_FrontColor.rgb += flash_factor * flash_color * (1.0 - smoothstep(lightning_range, 5.0 * lightning_range, rCoord)) * rn; // fading of cloudlets if ((fogCoord > (0.9 * detail_range)) && (fogCoord > center_dist) && (shade_factor < 0.7)) { // cloudlet is almost at the detail range, so fade it out. gl_FrontColor.a = 1.0 - smoothstep(0.9 * detail_range, detail_range, fogCoord); } else { // As we get within 100m of the sprite, it is faded out. Equally at large distances it also fades out. gl_FrontColor.a = min(smoothstep(10.0, 100.0, fogCoord), 1.0 - smoothstep(0.9 * range, range, fogCoord)); } gl_FrontColor.a = gl_FrontColor.a * (1.0 - smoothstep(visibility, 3.0* visibility, fogCoord)); fogFactor = exp(-fogCoord/visibility); // haze of ground haze shader is slightly bluish hazeColor = light_diffuse.rgb; hazeColor.r = hazeColor.r * 0.83; hazeColor.g = hazeColor.g * 0.9; hazeColor = hazeColor * scattering; // Mie correction float Mie = 0.0; float MieFactor = dot(normalize(lightFull), normalize(relVector)); mie_frag = MieFactor; mie_frag_mod = mie_suppress * (1.0 - smoothstep(0.4, 0.6, bottom_factor)) * (1.0 - smoothstep(detail_range, 1.5 * detail_range, fogCoord)) * smoothstep(0.65, 0.8, scattering) * smoothstep(0.7, 1.0, top_factor); if (bottom_factor < 0.4) {mie_frag_mod = 0.0;} if (bottom_factor > 0.4) { MieFactor = dot(normalize(lightFull), normalize(relVector)); Mie = 1.5 * smoothstep(0.9,1.0, MieFactor) * smoothstep(0.6, 0.8, bottom_factor) * (1.0-earthShadeFactor) ; //if (MieFactor < 0.0) {Mie = - Mie;} } //else {Mie = 0.0;} if (Mie > 0.0) { hazeColor.r = mie_func(hazeColor.r, Mie); hazeColor.g = mie_func(hazeColor.g, 0.8* Mie); hazeColor.b = mie_func(hazeColor.b, 0.5* Mie); gl_FrontColor.r = mie_func(gl_FrontColor.r, Mie); gl_FrontColor.g = mie_func(gl_FrontColor.g, 0.8* Mie); gl_FrontColor.b = mie_func(gl_FrontColor.b, 0.5*Mie); } else if (MieFactor < 0.0) { float thickness_reduction = smoothstep(0.4, 0.8, bottom_factor) ; float light_reduction = dot (lightFull, lightHorizon); light_reduction *= light_reduction; float factor_b = 0.8 + 0.2 * (1.0 - smoothstep(0.0, 0.7, -MieFactor) * thickness_reduction * light_reduction) ; float factor_r = 0.6 + 0.4 * (1.0 - smoothstep(0.0, 0.7, -MieFactor) * thickness_reduction * light_reduction) ; float factor_g = 0.65 + 0.35 * (1.0 - smoothstep(0.0, 0.7, -MieFactor) * thickness_reduction * light_reduction) ; hazeColor.r *= factor_r; hazeColor.g *= factor_g; hazeColor.b *= factor_b; gl_FrontColor.r *= factor_r; gl_FrontColor.g *= factor_g; gl_FrontColor.b *= factor_b; } gl_FrontColor.rgb = gl_FrontColor.rgb + moonLightColor * earthShadeFactor; hazeColor.rgb = hazeColor.rgb + moonLightColor * earthShadeFactor; gl_FrontColor.a = gl_FrontColor.a * alpha_factor; gl_BackColor = gl_FrontColor; } }