/* =========================================================================== Copyright (C) 1999 - 2005, Id Software, Inc. Copyright (C) 2000 - 2013, Raven Software, Inc. Copyright (C) 2001 - 2013, Activision, Inc. Copyright (C) 2013 - 2015, OpenJK contributors This file is part of the OpenJK source code. OpenJK is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, see . =========================================================================== */ // cg_effects.c -- these functions generate localentities, usually as a result // of event processing #include "cg_local.h" /* ================== CG_BubbleTrail Bullets shot underwater ================== */ void CG_BubbleTrail( vec3_t start, vec3_t end, float spacing ) { vec3_t move; vec3_t vec; float len; int i; if ( cg_noProjectileTrail.integer ) { return; } VectorCopy (start, move); VectorSubtract (end, start, vec); len = VectorNormalize (vec); // advance a random amount first i = rand() % (int)spacing; VectorMA( move, i, vec, move ); VectorScale (vec, spacing, vec); for ( ; i < len; i += spacing ) { localEntity_t *le; refEntity_t *re; le = CG_AllocLocalEntity(); le->leFlags = LEF_PUFF_DONT_SCALE; le->leType = LE_MOVE_SCALE_FADE; le->startTime = cg.time; le->endTime = cg.time + 1000 + Q_flrand(-250.0f, 250.0f); le->lifeRate = 1.0 / ( le->endTime - le->startTime ); re = &le->refEntity; re->shaderTime = cg.time / 1000.0f; re->reType = RT_SPRITE; re->rotation = 0; re->radius = 3; re->customShader = 0;//cgs.media.waterBubbleShader; re->shaderRGBA[0] = 0xff; re->shaderRGBA[1] = 0xff; re->shaderRGBA[2] = 0xff; re->shaderRGBA[3] = 0xff; le->color[3] = 1.0; le->pos.trType = TR_LINEAR; le->pos.trTime = cg.time; VectorCopy( move, le->pos.trBase ); le->pos.trDelta[0] = Q_flrand(-5.0f, 5.0f); le->pos.trDelta[1] = Q_flrand(-5.0f, 5.0f); le->pos.trDelta[2] = Q_flrand(-5.0f, 5.0f) + 6; VectorAdd (move, vec, move); } } /* ===================== CG_SmokePuff Adds a smoke puff or blood trail localEntity. ===================== */ localEntity_t *CG_SmokePuff( const vec3_t p, const vec3_t vel, float radius, float r, float g, float b, float a, float duration, int startTime, int fadeInTime, int leFlags, qhandle_t hShader ) { static int seed = 0x92; localEntity_t *le; refEntity_t *re; // int fadeInTime = startTime + duration / 2; le = CG_AllocLocalEntity(); le->leFlags = leFlags; le->radius = radius; re = &le->refEntity; re->rotation = Q_random( &seed ) * 360; re->radius = radius; re->shaderTime = startTime / 1000.0f; le->leType = LE_MOVE_SCALE_FADE; le->startTime = startTime; le->fadeInTime = fadeInTime; le->endTime = startTime + duration; if ( fadeInTime > startTime ) { le->lifeRate = 1.0 / ( le->endTime - le->fadeInTime ); } else { le->lifeRate = 1.0 / ( le->endTime - le->startTime ); } le->color[0] = r; le->color[1] = g; le->color[2] = b; le->color[3] = a; le->pos.trType = TR_LINEAR; le->pos.trTime = startTime; VectorCopy( vel, le->pos.trDelta ); VectorCopy( p, le->pos.trBase ); VectorCopy( p, re->origin ); re->customShader = hShader; re->shaderRGBA[0] = le->color[0] * 0xff; re->shaderRGBA[1] = le->color[1] * 0xff; re->shaderRGBA[2] = le->color[2] * 0xff; re->shaderRGBA[3] = 0xff; re->reType = RT_SPRITE; re->radius = le->radius; return le; } int CGDEBUG_SaberColor( int saberColor ) { switch( (int)(saberColor) ) { case SABER_RED: return 0x000000ff; break; case SABER_ORANGE: return 0x000088ff; break; case SABER_YELLOW: return 0x0000ffff; break; case SABER_GREEN: return 0x0000ff00; break; case SABER_BLUE: return 0x00ff0000; break; case SABER_PURPLE: return 0x00ff00ff; break; default: return saberColor; break; } } void CG_TestLine( vec3_t start, vec3_t end, int time, unsigned int color, int radius) { localEntity_t *le; refEntity_t *re; le = CG_AllocLocalEntity(); le->leType = LE_LINE; le->startTime = cg.time; le->endTime = cg.time + time; le->lifeRate = 1.0 / ( le->endTime - le->startTime ); re = &le->refEntity; VectorCopy( start, re->origin ); VectorCopy( end, re->oldorigin); re->shaderTime = cg.time / 1000.0f; re->reType = RT_LINE; re->radius = 0.5*radius; re->customShader = cgs.media.whiteShader; //trap->R_RegisterShaderNoMip("textures/colombia/canvas_doublesided"); re->shaderTexCoord[0] = re->shaderTexCoord[1] = 1.0f; if (color==0) { re->shaderRGBA[0] = re->shaderRGBA[1] = re->shaderRGBA[2] = re->shaderRGBA[3] = 0xff; } else { color = CGDEBUG_SaberColor( color ); re->shaderRGBA[0] = color & 0xff; color >>= 8; re->shaderRGBA[1] = color & 0xff; color >>= 8; re->shaderRGBA[2] = color & 0xff; // color >>= 8; // re->shaderRGBA[3] = color & 0xff; re->shaderRGBA[3] = 0xff; } le->color[3] = 1.0; //re->renderfx |= RF_DEPTHHACK; } //---------------------------- // // Breaking Glass Technology // //---------------------------- // Since we have shared verts when we tesselate the glass sheet, it helps to have a // random offset table set up up front. static float offX[20][20], offZ[20][20]; #define FX_ALPHA_NONLINEAR 0x00000004 #define FX_APPLY_PHYSICS 0x02000000 #define FX_USE_ALPHA 0x08000000 static void CG_DoGlassQuad( vec3_t p[4], vec2_t uv[4], qboolean stick, int time, vec3_t dmgDir ) { float bounce; vec3_t rotDelta; vec3_t vel, accel; vec3_t rgb1; addpolyArgStruct_t apArgs; int i, i_2; VectorSet( vel, Q_flrand(-12.0f, 12.0f), Q_flrand(-12.0f, 12.0f), -1 ); if ( !stick ) { // We aren't a motion delayed chunk, so let us move quickly VectorMA( vel, 0.3f, dmgDir, vel ); } // Set up acceleration due to gravity, 800 is standard QuakeIII gravity, so let's use something close VectorSet( accel, 0.0f, 0.0f, -(600.0f + Q_flrand(0.0f, 1.0f) * 100.0f ) ); // We are using an additive shader, so let's set the RGB low so we look more like transparent glass // VectorSet( rgb1, 0.1f, 0.1f, 0.1f ); VectorSet( rgb1, 1.0f, 1.0f, 1.0f ); // Being glass, we don't want to bounce much bounce = Q_flrand(0.0f, 1.0f) * 0.2f + 0.15f; // Set up our random rotate, we only do PITCH and YAW, not ROLL. This is something like degrees per second VectorSet( rotDelta, Q_flrand(-40.0f, 40.0f), Q_flrand(-40.0f, 40.0f), 0.0f ); //In an ideal world, this might actually work. /* CPoly *pol = FX_AddPoly(p, uv, 4, // verts, ST, vertCount vel, accel, // motion 0.15f, 0.0f, 85.0f, // alpha start, alpha end, alpha parm ( begin alpha fade when 85% of life is complete ) rgb1, rgb1, 0.0f, // rgb start, rgb end, rgb parm ( not used ) rotDelta, bounce, time, // rotation amount, bounce, and time to delay motion for ( zero if no delay ); 6000, // life cgi_R_RegisterShader( "gfx/misc/test_crackle" ), FX_APPLY_PHYSICS | FX_ALPHA_NONLINEAR | FX_USE_ALPHA ); if ( Q_flrand(0.0f, 1.0f) > 0.95f && pol ) { pol->AddFlags( FX_IMPACT_RUNS_FX | FX_KILL_ON_IMPACT ); pol->SetImpactFxID( theFxScheduler.RegisterEffect( "glass_impact" )); } */ //rww - this is dirty. i = 0; i_2 = 0; while (i < 4) { while (i_2 < 3) { apArgs.p[i][i_2] = p[i][i_2]; i_2++; } i_2 = 0; i++; } i = 0; i_2 = 0; while (i < 4) { while (i_2 < 2) { apArgs.ev[i][i_2] = uv[i][i_2]; i_2++; } i_2 = 0; i++; } apArgs.numVerts = 4; VectorCopy(vel, apArgs.vel); VectorCopy(accel, apArgs.accel); apArgs.alpha1 = 0.15f; apArgs.alpha2 = 0.0f; apArgs.alphaParm = 85.0f; VectorCopy(rgb1, apArgs.rgb1); VectorCopy(rgb1, apArgs.rgb2); apArgs.rgbParm = 0.0f; VectorCopy(rotDelta, apArgs.rotationDelta); apArgs.bounce = bounce; apArgs.motionDelay = time; apArgs.killTime = 6000; apArgs.shader = cgs.media.glassShardShader; apArgs.flags = (FX_APPLY_PHYSICS | FX_ALPHA_NONLINEAR | FX_USE_ALPHA); trap->FX_AddPoly(&apArgs); } static void CG_CalcBiLerp( vec3_t verts[4], vec3_t subVerts[4], vec2_t uv[4] ) { vec3_t temp; // Nasty crap VectorScale( verts[0], 1.0f - uv[0][0], subVerts[0] ); VectorMA( subVerts[0], uv[0][0], verts[1], subVerts[0] ); VectorScale( subVerts[0], 1.0f - uv[0][1], temp ); VectorScale( verts[3], 1.0f - uv[0][0], subVerts[0] ); VectorMA( subVerts[0], uv[0][0], verts[2], subVerts[0] ); VectorMA( temp, uv[0][1], subVerts[0], subVerts[0] ); VectorScale( verts[0], 1.0f - uv[1][0], subVerts[1] ); VectorMA( subVerts[1], uv[1][0], verts[1], subVerts[1] ); VectorScale( subVerts[1], 1.0f - uv[1][1], temp ); VectorScale( verts[3], 1.0f - uv[1][0], subVerts[1] ); VectorMA( subVerts[1], uv[1][0], verts[2], subVerts[1] ); VectorMA( temp, uv[1][1], subVerts[1], subVerts[1] ); VectorScale( verts[0], 1.0f - uv[2][0], subVerts[2] ); VectorMA( subVerts[2], uv[2][0], verts[1], subVerts[2] ); VectorScale( subVerts[2], 1.0f - uv[2][1], temp ); VectorScale( verts[3], 1.0f - uv[2][0], subVerts[2] ); VectorMA( subVerts[2], uv[2][0], verts[2], subVerts[2] ); VectorMA( temp, uv[2][1], subVerts[2], subVerts[2] ); VectorScale( verts[0], 1.0f - uv[3][0], subVerts[3] ); VectorMA( subVerts[3], uv[3][0], verts[1], subVerts[3] ); VectorScale( subVerts[3], 1.0f - uv[3][1], temp ); VectorScale( verts[3], 1.0f - uv[3][0], subVerts[3] ); VectorMA( subVerts[3], uv[3][0], verts[2], subVerts[3] ); VectorMA( temp, uv[3][1], subVerts[3], subVerts[3] ); } // bilinear //f(p',q') = (1 - y) × {[(1 - x) × f(p,q)] + [x × f(p,q+1)]} + y × {[(1 - x) × f(p+1,q)] + [x × f(p+1,q+1)]}. static void CG_CalcHeightWidth( vec3_t verts[4], float *height, float *width ) { vec3_t dir1, dir2, cross; VectorSubtract( verts[3], verts[0], dir1 ); // v VectorSubtract( verts[1], verts[0], dir2 ); // p-a CrossProduct( dir1, dir2, cross ); *width = VectorNormalize( cross ) / VectorNormalize( dir1 ); // v VectorSubtract( verts[2], verts[0], dir2 ); // p-a CrossProduct( dir1, dir2, cross ); *width += VectorNormalize( cross ) / VectorNormalize( dir1 ); // v *width *= 0.5f; VectorSubtract( verts[1], verts[0], dir1 ); // v VectorSubtract( verts[2], verts[0], dir2 ); // p-a CrossProduct( dir1, dir2, cross ); *height = VectorNormalize( cross ) / VectorNormalize( dir1 ); // v VectorSubtract( verts[3], verts[0], dir2 ); // p-a CrossProduct( dir1, dir2, cross ); *height += VectorNormalize( cross ) / VectorNormalize( dir1 ); // v *height *= 0.5f; } //Consider a line in 3D with position vector "a" and direction vector "v" and // let "p" be the position vector of an arbitrary point in 3D //dist = len( crossprod(p-a,v) ) / len(v); void CG_InitGlass( void ) { int i, t; // Build a table first, so that we can do a more unpredictable crack scheme // do it once, up front to save a bit of time. for ( i = 0; i < 20; i++ ) { for ( t = 0; t < 20; t++ ) { offX[t][i] = Q_flrand(-1.0f, 1.0f) * 0.03f; offZ[i][t] = Q_flrand(-1.0f, 1.0f) * 0.03f; } } } #define TIME_DECAY_SLOW 0.1f #define TIME_DECAY_MED 0.04f #define TIME_DECAY_FAST 0.009f void CG_DoGlass( vec3_t verts[4], vec3_t normal, vec3_t dmgPt, vec3_t dmgDir, float dmgRadius, int maxShards ) { int i, t; int mxHeight, mxWidth; float height, width; float stepWidth, stepHeight; float timeDecay; float x, z; float xx, zz; float dif; int time = 0; int glassShards = 0; qboolean stick = qtrue; vec3_t subVerts[4]; vec2_t biPoints[4]; // To do a smarter tesselation, we should figure out the relative height and width of the brush face, // then use this to pick a lod value from 1-3 in each axis. This will give us 1-9 lod levels, which will // hopefully be sufficient. CG_CalcHeightWidth( verts, &height, &width ); trap->S_StartSound( dmgPt, -1, CHAN_AUTO, trap->S_RegisterSound("sound/effects/glassbreak1.wav")); // Pick "LOD" for height if ( height < 100 ) { stepHeight = 0.2f; mxHeight = 5; timeDecay = TIME_DECAY_SLOW; } else if ( height > 220 ) { stepHeight = 0.05f; mxHeight = 20; timeDecay = TIME_DECAY_FAST; } else { stepHeight = 0.1f; mxHeight = 10; timeDecay = TIME_DECAY_MED; } // Pick "LOD" for width /* if ( width < 100 ) { stepWidth = 0.2f; mxWidth = 5; timeDecay = ( timeDecay + TIME_DECAY_SLOW ) * 0.5f; } else if ( width > 220 ) { stepWidth = 0.05f; mxWidth = 20; timeDecay = ( timeDecay + TIME_DECAY_FAST ) * 0.5f; } else { stepWidth = 0.1f; mxWidth = 10; timeDecay = ( timeDecay + TIME_DECAY_MED ) * 0.5f; } */ //Attempt to scale the glass directly to the size of the window stepWidth = (0.25f - (width*0.0002)); //(width*0.0005)); mxWidth = width*0.2; timeDecay = ( timeDecay + TIME_DECAY_FAST ) * 0.5f; if (stepWidth < 0.01f) { stepWidth = 0.01f; } if (mxWidth < 5) { mxWidth = 5; } for ( z = 0.0f, i = 0; z < 1.0f; z += stepHeight, i++ ) { for ( x = 0.0f, t = 0; x < 1.0f; x += stepWidth, t++ ) { // This is nasty.. if ( t > 0 && t < mxWidth ) { xx = x - offX[i][t]; } else { xx = x; } if ( i > 0 && i < mxHeight ) { zz = z - offZ[t][i]; } else { zz = z; } VectorSet2( biPoints[0], xx, zz ); if ( t + 1 > 0 && t + 1 < mxWidth ) { xx = x - offX[i][t + 1]; } else { xx = x; } if ( i > 0 && i < mxHeight ) { zz = z - offZ[t + 1][i]; } else { zz = z; } VectorSet2( biPoints[1], xx + stepWidth, zz ); if ( t + 1 > 0 && t + 1 < mxWidth ) { xx = x - offX[i + 1][t + 1]; } else { xx = x; } if ( i + 1 > 0 && i + 1 < mxHeight ) { zz = z - offZ[t + 1][i + 1]; } else { zz = z; } VectorSet2( biPoints[2], xx + stepWidth, zz + stepHeight); if ( t > 0 && t < mxWidth ) { xx = x - offX[i + 1][t]; } else { xx = x; } if ( i + 1 > 0 && i + 1 < mxHeight ) { zz = z - offZ[t][i + 1]; } else { zz = z; } VectorSet2( biPoints[3], xx, zz + stepHeight ); CG_CalcBiLerp( verts, subVerts, biPoints ); dif = DistanceSquared( subVerts[0], dmgPt ) * timeDecay - Q_flrand(0.0f, 1.0f) * 32; // If we decrease dif, we are increasing the impact area, making it more likely to blow out large holes dif -= dmgRadius * dmgRadius; if ( dif > 1 ) { stick = qtrue; time = dif + Q_flrand(0.0f, 1.0f) * 200; } else { stick = qfalse; time = 0; } CG_DoGlassQuad( subVerts, biPoints, stick, time, dmgDir ); glassShards++; if (maxShards && glassShards >= maxShards) { return; } } } } /* ================== CG_GlassShatter Break glass with fancy method ================== */ void CG_GlassShatter(int entnum, vec3_t dmgPt, vec3_t dmgDir, float dmgRadius, int maxShards) { vec3_t verts[4], normal; if (cgs.inlineDrawModel[cg_entities[entnum].currentState.modelindex]) { trap->R_GetBModelVerts(cgs.inlineDrawModel[cg_entities[entnum].currentState.modelindex], verts, normal); CG_DoGlass(verts, normal, dmgPt, dmgDir, dmgRadius, maxShards); } //otherwise something awful has happened. } //========================================================== //SP-style chunks //========================================================== /* ------------------------- CG_ExplosionEffects Used to find the player and shake the camera if close enough intensity ranges from 1 (minor tremble) to 16 (major quake) ------------------------- */ void CG_ExplosionEffects( vec3_t origin, float intensity, int radius, int time ) { //FIXME: When exactly is the vieworg calculated in relation to the rest of the frame?s vec3_t dir; float dist, intensityScale; float realIntensity; VectorSubtract( cg.refdef.vieworg, origin, dir ); dist = VectorNormalize( dir ); //Use the dir to add kick to the explosion if ( dist > radius ) return; intensityScale = 1 - ( dist / (float) radius ); realIntensity = intensity * intensityScale; CGCam_Shake( realIntensity, time ); } /* ------------------------- CG_MiscModelExplosion Adds an explosion to a misc model breakables ------------------------- */ void CG_MiscModelExplosion( vec3_t mins, vec3_t maxs, int size, material_t chunkType ) { int ct = 13; float r; vec3_t org, mid, dir; char *effect = NULL, *effect2 = NULL; int eID1, eID2 = 0; int i; VectorAdd( mins, maxs, mid ); VectorScale( mid, 0.5f, mid ); switch( chunkType ) { default: break; case MAT_GLASS: effect = "chunks/glassbreak"; ct = 5; break; case MAT_GLASS_METAL: effect = "chunks/glassbreak"; effect2 = "chunks/metalexplode"; ct = 5; break; case MAT_ELECTRICAL: case MAT_ELEC_METAL: effect = "chunks/sparkexplode"; ct = 5; break; case MAT_METAL: case MAT_METAL2: case MAT_METAL3: case MAT_CRATE1: case MAT_CRATE2: effect = "chunks/metalexplode"; ct = 2; break; case MAT_GRATE1: effect = "chunks/grateexplode"; ct = 8; break; case MAT_ROPE: ct = 20; effect = "chunks/ropebreak"; break; case MAT_WHITE_METAL: //not sure what this crap is really supposed to be.. case MAT_DRK_STONE: case MAT_LT_STONE: case MAT_GREY_STONE: case MAT_SNOWY_ROCK: switch( size ) { case 2: effect = "chunks/rockbreaklg"; break; case 1: default: effect = "chunks/rockbreakmed"; break; } } if ( !effect ) { return; } ct += 7 * size; // FIXME: real precache .. VERify that these need to be here...don't think they would because the effects should be registered in g_breakable //rww - No they don't.. indexed effects gameside get precached on load clientside, as server objects are setup before client asset load time. //However, we need to index them, so.. eID1 = trap->FX_RegisterEffect( effect ); if ( effect2 && effect2[0] ) { // FIXME: real precache eID2 = trap->FX_RegisterEffect( effect2 ); } // spawn chunk roughly in the bbox of the thing.. for ( i = 0; i < ct; i++ ) { int j; for( j = 0; j < 3; j++ ) { r = Q_flrand(0.0f, 1.0f) * 0.8f + 0.1f; org[j] = ( r * mins[j] + ( 1 - r ) * maxs[j] ); } // shoot effect away from center VectorSubtract( org, mid, dir ); VectorNormalize( dir ); if ( effect2 && effect2[0] && ( rand() & 1 )) { trap->FX_PlayEffectID( eID2, org, dir, -1, -1, qfalse ); } else { trap->FX_PlayEffectID( eID1, org, dir, -1, -1, qfalse ); } } } /* ------------------------- CG_Chunks Fun chunk spewer ------------------------- */ void CG_Chunks( int owner, vec3_t origin, const vec3_t normal, const vec3_t mins, const vec3_t maxs, float speed, int numChunks, material_t chunkType, int customChunk, float baseScale ) { localEntity_t *le; refEntity_t *re; vec3_t dir; int i, j, k; int chunkModel = 0; leBounceSoundType_t bounce = LEBS_NONE; float r, speedMod = 1.0f; qboolean chunk = qfalse; if ( chunkType == MAT_NONE ) { // Well, we should do nothing return; } // Set up our chunk sound info...breaking sounds are done here so they are done once on breaking..some return instantly because the chunks are done with effects instead of models switch( chunkType ) { default: break; case MAT_GLASS: trap->S_StartSound( NULL, owner, CHAN_BODY, cgs.media.glassChunkSound ); return; break; case MAT_GRATE1: trap->S_StartSound( NULL, owner, CHAN_BODY, cgs.media.grateSound ); return; break; case MAT_ELECTRICAL:// (sparks) trap->S_StartSound( NULL, owner, CHAN_BODY, trap->S_RegisterSound (va("sound/ambience/spark%d.wav", Q_irand(1, 6))) ); return; break; case MAT_DRK_STONE: case MAT_LT_STONE: case MAT_GREY_STONE: case MAT_WHITE_METAL: // not quite sure what this stuff is supposed to be...it's for Stu case MAT_SNOWY_ROCK: trap->S_StartSound( NULL, owner, CHAN_BODY, cgs.media.rockBreakSound ); bounce = LEBS_ROCK; speedMod = 0.5f; // rock blows up less break; case MAT_GLASS_METAL: trap->S_StartSound( NULL, owner, CHAN_BODY, cgs.media.glassChunkSound ); // FIXME: should probably have a custom sound bounce = LEBS_METAL; break; case MAT_CRATE1: case MAT_CRATE2: trap->S_StartSound( NULL, owner, CHAN_BODY, cgs.media.crateBreakSound[Q_irand(0,1)] ); break; case MAT_METAL: case MAT_METAL2: case MAT_METAL3: case MAT_ELEC_METAL:// FIXME: maybe have its own sound? trap->S_StartSound( NULL, owner, CHAN_BODY, cgs.media.chunkSound ); bounce = LEBS_METAL; speedMod = 0.8f; // metal blows up a bit more break; case MAT_ROPE: // trap->S_StartSound( NULL, owner, CHAN_BODY, cgi_S_RegisterSound( "" )); FIXME: needs a sound return; break; } if ( baseScale <= 0.0f ) { baseScale = 1.0f; } // Chunks for( i = 0; i < numChunks; i++ ) { if ( customChunk > 0 ) { // Try to use a custom chunk. if ( cgs.gameModels[customChunk] ) { chunk = qtrue; chunkModel = cgs.gameModels[customChunk]; } } if ( !chunk ) { // No custom chunk. Pick a random chunk type at run-time so we don't get the same chunks switch( chunkType ) { default: break; case MAT_METAL2: //bluegrey chunkModel = cgs.media.chunkModels[CHUNK_METAL2][Q_irand(0, 3)]; break; case MAT_GREY_STONE://gray chunkModel = cgs.media.chunkModels[CHUNK_ROCK1][Q_irand(0, 3)]; break; case MAT_LT_STONE: //tan chunkModel = cgs.media.chunkModels[CHUNK_ROCK2][Q_irand(0, 3)]; break; case MAT_DRK_STONE://brown chunkModel = cgs.media.chunkModels[CHUNK_ROCK3][Q_irand(0, 3)]; break; case MAT_SNOWY_ROCK://gray & brown if ( Q_irand( 0, 1 ) ) { chunkModel = cgs.media.chunkModels[CHUNK_ROCK1][Q_irand(0, 3)]; } else { chunkModel = cgs.media.chunkModels[CHUNK_ROCK3][Q_irand(0, 3)]; } break; case MAT_WHITE_METAL: chunkModel = cgs.media.chunkModels[CHUNK_WHITE_METAL][Q_irand(0, 3)]; break; case MAT_CRATE1://yellow multi-colored crate chunks chunkModel = cgs.media.chunkModels[CHUNK_CRATE1][Q_irand(0, 3)]; break; case MAT_CRATE2://red multi-colored crate chunks chunkModel = cgs.media.chunkModels[CHUNK_CRATE2][Q_irand(0, 3)]; break; case MAT_ELEC_METAL: case MAT_GLASS_METAL: case MAT_METAL://grey chunkModel = cgs.media.chunkModels[CHUNK_METAL1][Q_irand(0, 3)]; break; case MAT_METAL3: if ( rand() & 1 ) { chunkModel = cgs.media.chunkModels[CHUNK_METAL1][Q_irand(0, 3)]; } else { chunkModel = cgs.media.chunkModels[CHUNK_METAL2][Q_irand(0, 3)]; } break; } } // It wouldn't look good to throw a bunch of RGB axis models...so make sure we have something to work with. if ( chunkModel ) { le = CG_AllocLocalEntity(); re = &le->refEntity; re->hModel = chunkModel; le->leType = LE_FRAGMENT; le->endTime = cg.time + 1300 + Q_flrand(0.0f, 1.0f) * 900; // spawn chunk roughly in the bbox of the thing...bias towards center in case thing blowing up doesn't complete fill its bbox. for( j = 0; j < 3; j++ ) { r = Q_flrand(0.0f, 1.0f) * 0.8f + 0.1f; re->origin[j] = ( r * mins[j] + ( 1 - r ) * maxs[j] ); } VectorCopy( re->origin, le->pos.trBase ); // Move out from center of thing, otherwise you can end up things moving across the brush in an undesirable direction. Visually looks wrong VectorSubtract( re->origin, origin, dir ); VectorNormalize( dir ); VectorScale( dir, flrand( speed * 0.5f, speed * 1.25f ) * speedMod, le->pos.trDelta ); // Angular Velocity VectorSet( le->angles.trBase, Q_flrand(0.0f, 1.0f) * 360, Q_flrand(0.0f, 1.0f) * 360, Q_flrand(0.0f, 1.0f) * 360 ); le->angles.trDelta[0] = Q_flrand(-1.0f, 1.0f); le->angles.trDelta[1] = Q_flrand(-1.0f, 1.0f); le->angles.trDelta[2] = 0; // don't do roll VectorScale( le->angles.trDelta, Q_flrand(0.0f, 1.0f) * 600.0f + 200.0f, le->angles.trDelta ); le->pos.trType = TR_GRAVITY; le->angles.trType = TR_LINEAR; le->pos.trTime = le->angles.trTime = cg.time; le->bounceFactor = 0.2f + Q_flrand(0.0f, 1.0f) * 0.2f; le->leFlags |= LEF_TUMBLE; //le->ownerGentNum = owner; le->leBounceSoundType = bounce; // Make sure that we have the desired start size set le->radius = flrand( baseScale * 0.75f, baseScale * 1.25f ); re->nonNormalizedAxes = qtrue; AxisCopy( axisDefault, re->axis ); // could do an angles to axis, but this is cheaper and works ok for( k = 0; k < 3; k++ ) { re->modelScale[k] = le->radius; } ScaleModelAxis(re); /* for( k = 0; k < 3; k++ ) { VectorScale( re->axis[k], le->radius, re->axis[k] ); } */ } } } /* ================== CG_ScorePlum ================== */ void CG_ScorePlum( int client, vec3_t org, int score ) { localEntity_t *le; refEntity_t *re; vec3_t angles; static vec3_t lastPos; // only visualize for the client that scored if (client != cg.predictedPlayerState.clientNum || cg_scorePlums.integer == 0) { return; } le = CG_AllocLocalEntity(); le->leFlags = 0; le->leType = LE_SCOREPLUM; le->startTime = cg.time; le->endTime = cg.time + 4000; le->lifeRate = 1.0 / ( le->endTime - le->startTime ); le->color[0] = le->color[1] = le->color[2] = le->color[3] = 1.0; le->radius = score; VectorCopy( org, le->pos.trBase ); if (org[2] >= lastPos[2] - 20 && org[2] <= lastPos[2] + 20) { le->pos.trBase[2] -= 20; } //trap->Print( "Plum origin %i %i %i -- %i\n", (int)org[0], (int)org[1], (int)org[2], (int)Distance(org, lastPos)); VectorCopy(org, lastPos); re = &le->refEntity; re->reType = RT_SPRITE; re->radius = 16; VectorClear(angles); AnglesToAxis( angles, re->axis ); } /* ==================== CG_MakeExplosion ==================== */ localEntity_t *CG_MakeExplosion( vec3_t origin, vec3_t dir, qhandle_t hModel, int numFrames, qhandle_t shader, int msec, qboolean isSprite, float scale, int flags ) { float ang = 0; localEntity_t *ex; int offset; vec3_t tmpVec, newOrigin; if ( msec <= 0 ) { trap->Error( ERR_DROP, "CG_MakeExplosion: msec = %i", msec ); } // skew the time a bit so they aren't all in sync offset = rand() & 63; ex = CG_AllocLocalEntity(); if ( isSprite ) { ex->leType = LE_SPRITE_EXPLOSION; ex->refEntity.rotation = rand() % 360; ex->radius = scale; VectorScale( dir, 16, tmpVec ); VectorAdd( tmpVec, origin, newOrigin ); } else { ex->leType = LE_EXPLOSION; VectorCopy( origin, newOrigin ); // set axis with random rotate when necessary if ( !dir ) { AxisClear( ex->refEntity.axis ); } else { if ( !(flags & LEF_NO_RANDOM_ROTATE) ) ang = rand() % 360; VectorCopy( dir, ex->refEntity.axis[0] ); RotateAroundDirection( ex->refEntity.axis, ang ); } } ex->startTime = cg.time - offset; ex->endTime = ex->startTime + msec; // bias the time so all shader effects start correctly ex->refEntity.shaderTime = ex->startTime / 1000.0f; ex->refEntity.hModel = hModel; ex->refEntity.customShader = shader; ex->lifeRate = (float)numFrames / msec; ex->leFlags = flags; //Scale the explosion if (scale != 1) { ex->refEntity.nonNormalizedAxes = qtrue; VectorScale( ex->refEntity.axis[0], scale, ex->refEntity.axis[0] ); VectorScale( ex->refEntity.axis[1], scale, ex->refEntity.axis[1] ); VectorScale( ex->refEntity.axis[2], scale, ex->refEntity.axis[2] ); } // set origin VectorCopy ( newOrigin, ex->refEntity.origin); VectorCopy ( newOrigin, ex->refEntity.oldorigin ); ex->color[0] = ex->color[1] = ex->color[2] = 1.0; return ex; } /* ------------------------- CG_SurfaceExplosion Adds an explosion to a surface ------------------------- */ #define NUM_SPARKS 12 #define NUM_PUFFS 1 #define NUM_EXPLOSIONS 4 void CG_SurfaceExplosion( vec3_t origin, vec3_t normal, float radius, float shake_speed, qboolean smoke ) { localEntity_t *le; //FXTrail *particle; vec3_t direction, new_org; vec3_t velocity = { 0, 0, 0 }; vec3_t temp_org, temp_vel; // float scale; int i, numSparks; //Sparks numSparks = 16 + (Q_flrand(0.0f, 1.0f) * 16.0f); for ( i = 0; i < numSparks; i++ ) { // scale = 0.25f + (Q_flrand(0.0f, 1.0f) * 2.0f); /* particle = FX_AddTrail( origin, NULL, NULL, 32.0f, -64.0f, scale, -scale, 1.0f, 0.0f, 0.25f, 4000.0f, cgs.media.sparkShader, rand() & FXF_BOUNCE); if ( particle == NULL ) return; FXE_Spray( normal, 500, 150, 1.0f, 768 + (rand() & 255), (FXPrimitive *) particle );*/ } //Smoke //Move this out a little from the impact surface VectorMA( origin, 4, normal, new_org ); VectorSet( velocity, 0.0f, 0.0f, 16.0f ); for ( i = 0; i < 4; i++ ) { VectorSet( temp_org, new_org[0] + (Q_flrand(-1.0f, 1.0f) * 16.0f), new_org[1] + (Q_flrand(-1.0f, 1.0f) * 16.0f), new_org[2] + (Q_flrand(0.0f, 1.0f) * 4.0f) ); VectorSet( temp_vel, velocity[0] + (Q_flrand(-1.0f, 1.0f) * 8.0f), velocity[1] + (Q_flrand(-1.0f, 1.0f) * 8.0f), velocity[2] + (Q_flrand(-1.0f, 1.0f) * 8.0f) ); /* FX_AddSprite( temp_org, temp_vel, NULL, 64.0f + (Q_flrand(0.0f, 1.0f) * 32.0f), 16.0f, 1.0f, 0.0f, 20.0f + (Q_flrand(-1.0f, 1.0f) * 90.0f), 0.5f, 1500.0f, cgs.media.smokeShader, FXF_USE_ALPHA_CHAN );*/ } //Core of the explosion //Orient the explosions to face the camera VectorSubtract( cg.refdef.vieworg, origin, direction ); VectorNormalize( direction ); //Tag the last one with a light le = CG_MakeExplosion( origin, direction, cgs.media.explosionModel, 6, cgs.media.surfaceExplosionShader, 500, qfalse, radius * 0.02f + (Q_flrand(0.0f, 1.0f) * 0.3f), 0); le->light = 150; VectorSet( le->lightColor, 0.9f, 0.8f, 0.5f ); for ( i = 0; i < NUM_EXPLOSIONS-1; i ++) { VectorSet( new_org, (origin[0] + (16 + (Q_flrand(-1.0f, 1.0f) * 8))*Q_flrand(-1.0f, 1.0f)), (origin[1] + (16 + (Q_flrand(-1.0f, 1.0f) * 8))*Q_flrand(-1.0f, 1.0f)), (origin[2] + (16 + (Q_flrand(-1.0f, 1.0f) * 8))*Q_flrand(-1.0f, 1.0f)) ); le = CG_MakeExplosion( new_org, direction, cgs.media.explosionModel, 6, cgs.media.surfaceExplosionShader, 300 + (rand() & 99), qfalse, radius * 0.05f + (Q_flrand(-1.0f, 1.0f) *0.3f), 0); } //Shake the camera CG_ExplosionEffects( origin, shake_speed, 350, 750 ); // The level designers wanted to be able to turn the smoke spawners off. The rationale is that they // want to blow up catwalks and such that fall down...when that happens, it shouldn't really leave a mark // and a smoke spewer at the explosion point... if ( smoke ) { VectorMA( origin, -8, normal, temp_org ); // FX_AddSpawner( temp_org, normal, NULL, NULL, 100, Q_flrand(0.0f, 1.0f)*25.0f, 5000.0f, (void *) CG_SmokeSpawn ); //Impact mark //FIXME: Replace mark //CG_ImpactMark( cgs.media.burnMarkShader, origin, normal, Q_flrand(0.0f, 1.0f)*360, 1,1,1,1, qfalse, 8, qfalse ); } } /* ================== CG_LaunchGib ================== */ void CG_LaunchGib( vec3_t origin, vec3_t velocity, qhandle_t hModel ) { localEntity_t *le; refEntity_t *re; le = CG_AllocLocalEntity(); re = &le->refEntity; le->leType = LE_FRAGMENT; le->startTime = cg.time; le->endTime = le->startTime + 5000 + Q_flrand(0.0f, 1.0f) * 3000; VectorCopy( origin, re->origin ); AxisCopy( axisDefault, re->axis ); re->hModel = hModel; le->pos.trType = TR_GRAVITY; VectorCopy( origin, le->pos.trBase ); VectorCopy( velocity, le->pos.trDelta ); le->pos.trTime = cg.time; le->bounceFactor = 0.6f; le->leBounceSoundType = LEBS_BLOOD; le->leMarkType = LEMT_BLOOD; }