/* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include // For std::memset and std::memcpy #include #include #include #include #include #include #include #include "../bitboard.h" #include "../movegen.h" #include "../position.h" #include "../search.h" #include "../types.h" #include "../uci.h" #include "tbprobe.h" #ifndef _WIN32 #include #include #include #include #else #define WIN32_LEAN_AND_MEAN #ifndef NOMINMAX # define NOMINMAX // Disable macros min() and max() #endif #include #endif using namespace Stockfish::Tablebases; int Stockfish::Tablebases::MaxCardinality; namespace Stockfish { namespace { constexpr int TBPIECES = 7; // Max number of supported pieces enum { BigEndian, LittleEndian }; enum TBType { WDL, DTZ }; // Used as template parameter // Each table has a set of flags: all of them refer to DTZ tables, the last one to WDL tables enum TBFlag { STM = 1, Mapped = 2, WinPlies = 4, LossPlies = 8, Wide = 16, SingleValue = 128 }; inline WDLScore operator-(WDLScore d) { return WDLScore(-int(d)); } inline Square operator^(Square s, int i) { return Square(int(s) ^ i); } const std::string PieceToChar = " PNBRQK pnbrqk"; int MapPawns[SQUARE_NB]; int MapB1H1H7[SQUARE_NB]; int MapA1D1D4[SQUARE_NB]; int MapKK[10][SQUARE_NB]; // [MapA1D1D4][SQUARE_NB] int Binomial[6][SQUARE_NB]; // [k][n] k elements from a set of n elements int LeadPawnIdx[6][SQUARE_NB]; // [leadPawnsCnt][SQUARE_NB] int LeadPawnsSize[6][4]; // [leadPawnsCnt][FILE_A..FILE_D] // Comparison function to sort leading pawns in ascending MapPawns[] order bool pawns_comp(Square i, Square j) { return MapPawns[i] < MapPawns[j]; } int off_A1H8(Square sq) { return int(rank_of(sq)) - file_of(sq); } constexpr Value WDL_to_value[] = { -VALUE_MATE + MAX_PLY + 1, VALUE_DRAW - 2, VALUE_DRAW, VALUE_DRAW + 2, VALUE_MATE - MAX_PLY - 1 }; template inline void swap_endian(T& x) { static_assert(std::is_unsigned::value, "Argument of swap_endian not unsigned"); uint8_t tmp, *c = (uint8_t*)&x; for (int i = 0; i < Half; ++i) tmp = c[i], c[i] = c[End - i], c[End - i] = tmp; } template<> inline void swap_endian(uint8_t&) {} template T number(void* addr) { T v; if ((uintptr_t)addr & (alignof(T) - 1)) // Unaligned pointer (very rare) std::memcpy(&v, addr, sizeof(T)); else v = *((T*)addr); if (LE != IsLittleEndian) swap_endian(v); return v; } // DTZ tables don't store valid scores for moves that reset the rule50 counter // like captures and pawn moves but we can easily recover the correct dtz of the // previous move if we know the position's WDL score. int dtz_before_zeroing(WDLScore wdl) { return wdl == WDLWin ? 1 : wdl == WDLCursedWin ? 101 : wdl == WDLBlessedLoss ? -101 : wdl == WDLLoss ? -1 : 0; } // Return the sign of a number (-1, 0, 1) template int sign_of(T val) { return (T(0) < val) - (val < T(0)); } // Numbers in little endian used by sparseIndex[] to point into blockLength[] struct SparseEntry { char block[4]; // Number of block char offset[2]; // Offset within the block }; static_assert(sizeof(SparseEntry) == 6, "SparseEntry must be 6 bytes"); typedef uint16_t Sym; // Huffman symbol struct LR { enum Side { Left, Right }; uint8_t lr[3]; // The first 12 bits is the left-hand symbol, the second 12 // bits is the right-hand symbol. If symbol has length 1, // then the left-hand symbol is the stored value. template Sym get() { return S == Left ? ((lr[1] & 0xF) << 8) | lr[0] : S == Right ? (lr[2] << 4) | (lr[1] >> 4) : (assert(false), Sym(-1)); } }; static_assert(sizeof(LR) == 3, "LR tree entry must be 3 bytes"); // Tablebases data layout is structured as following: // // TBFile: memory maps/unmaps the physical .rtbw and .rtbz files // TBTable: one object for each file with corresponding indexing information // TBTables: has ownership of TBTable objects, keeping a list and a hash // class TBFile memory maps/unmaps the single .rtbw and .rtbz files. Files are // memory mapped for best performance. Files are mapped at first access: at init // time only existence of the file is checked. class TBFile : public std::ifstream { std::string fname; public: // Look for and open the file among the Paths directories where the .rtbw // and .rtbz files can be found. Multiple directories are separated by ";" // on Windows and by ":" on Unix-based operating systems. // // Example: // C:\tb\wdl345;C:\tb\wdl6;D:\tb\dtz345;D:\tb\dtz6 static std::string Paths; TBFile(const std::string& f) { #ifndef _WIN32 constexpr char SepChar = ':'; #else constexpr char SepChar = ';'; #endif std::stringstream ss(Paths); std::string path; while (std::getline(ss, path, SepChar)) { fname = path + "/" + f; std::ifstream::open(fname); if (is_open()) return; } } // Memory map the file and check it. File should be already open and will be // closed after mapping. uint8_t* map(void** baseAddress, uint64_t* mapping, TBType type) { assert(is_open()); close(); // Need to re-open to get native file descriptor #ifndef _WIN32 struct stat statbuf; int fd = ::open(fname.c_str(), O_RDONLY); if (fd == -1) return *baseAddress = nullptr, nullptr; fstat(fd, &statbuf); if (statbuf.st_size % 64 != 16) { std::cerr << "Corrupt tablebase file " << fname << std::endl; exit(EXIT_FAILURE); } *mapping = statbuf.st_size; *baseAddress = mmap(nullptr, statbuf.st_size, PROT_READ, MAP_SHARED, fd, 0); #if defined(MADV_RANDOM) madvise(*baseAddress, statbuf.st_size, MADV_RANDOM); #endif ::close(fd); if (*baseAddress == MAP_FAILED) { std::cerr << "Could not mmap() " << fname << std::endl; exit(EXIT_FAILURE); } #else // Note FILE_FLAG_RANDOM_ACCESS is only a hint to Windows and as such may get ignored. HANDLE fd = CreateFile(fname.c_str(), GENERIC_READ, FILE_SHARE_READ, nullptr, OPEN_EXISTING, FILE_FLAG_RANDOM_ACCESS, nullptr); if (fd == INVALID_HANDLE_VALUE) return *baseAddress = nullptr, nullptr; DWORD size_high; DWORD size_low = GetFileSize(fd, &size_high); if (size_low % 64 != 16) { std::cerr << "Corrupt tablebase file " << fname << std::endl; exit(EXIT_FAILURE); } HANDLE mmap = CreateFileMapping(fd, nullptr, PAGE_READONLY, size_high, size_low, nullptr); CloseHandle(fd); if (!mmap) { std::cerr << "CreateFileMapping() failed" << std::endl; exit(EXIT_FAILURE); } *mapping = (uint64_t)mmap; *baseAddress = MapViewOfFile(mmap, FILE_MAP_READ, 0, 0, 0); if (!*baseAddress) { std::cerr << "MapViewOfFile() failed, name = " << fname << ", error = " << GetLastError() << std::endl; exit(EXIT_FAILURE); } #endif uint8_t* data = (uint8_t*)*baseAddress; constexpr uint8_t Magics[][4] = { { 0xD7, 0x66, 0x0C, 0xA5 }, { 0x71, 0xE8, 0x23, 0x5D } }; if (memcmp(data, Magics[type == WDL], 4)) { std::cerr << "Corrupted table in file " << fname << std::endl; unmap(*baseAddress, *mapping); return *baseAddress = nullptr, nullptr; } return data + 4; // Skip Magics's header } static void unmap(void* baseAddress, uint64_t mapping) { #ifndef _WIN32 munmap(baseAddress, mapping); #else UnmapViewOfFile(baseAddress); CloseHandle((HANDLE)mapping); #endif } }; std::string TBFile::Paths; // struct PairsData contains low level indexing information to access TB data. // There are 8, 4 or 2 PairsData records for each TBTable, according to type of // table and if positions have pawns or not. It is populated at first access. struct PairsData { uint8_t flags; // Table flags, see enum TBFlag uint8_t maxSymLen; // Maximum length in bits of the Huffman symbols uint8_t minSymLen; // Minimum length in bits of the Huffman symbols uint32_t blocksNum; // Number of blocks in the TB file size_t sizeofBlock; // Block size in bytes size_t span; // About every span values there is a SparseIndex[] entry Sym* lowestSym; // lowestSym[l] is the symbol of length l with the lowest value LR* btree; // btree[sym] stores the left and right symbols that expand sym uint16_t* blockLength; // Number of stored positions (minus one) for each block: 1..65536 uint32_t blockLengthSize; // Size of blockLength[] table: padded so it's bigger than blocksNum SparseEntry* sparseIndex; // Partial indices into blockLength[] size_t sparseIndexSize; // Size of SparseIndex[] table uint8_t* data; // Start of Huffman compressed data std::vector base64; // base64[l - min_sym_len] is the 64bit-padded lowest symbol of length l std::vector symlen; // Number of values (-1) represented by a given Huffman symbol: 1..256 Piece pieces[TBPIECES]; // Position pieces: the order of pieces defines the groups uint64_t groupIdx[TBPIECES+1]; // Start index used for the encoding of the group's pieces int groupLen[TBPIECES+1]; // Number of pieces in a given group: KRKN -> (3, 1) uint16_t map_idx[4]; // WDLWin, WDLLoss, WDLCursedWin, WDLBlessedLoss (used in DTZ) }; // struct TBTable contains indexing information to access the corresponding TBFile. // There are 2 types of TBTable, corresponding to a WDL or a DTZ file. TBTable // is populated at init time but the nested PairsData records are populated at // first access, when the corresponding file is memory mapped. template struct TBTable { typedef typename std::conditional::type Ret; static constexpr int Sides = Type == WDL ? 2 : 1; std::atomic_bool ready; void* baseAddress; uint8_t* map; uint64_t mapping; Key key; Key key2; int pieceCount; bool hasPawns; bool hasUniquePieces; uint8_t pawnCount[2]; // [Lead color / other color] PairsData items[Sides][4]; // [wtm / btm][FILE_A..FILE_D or 0] PairsData* get(int stm, int f) { return &items[stm % Sides][hasPawns ? f : 0]; } TBTable() : ready(false), baseAddress(nullptr) {} explicit TBTable(const std::string& code); explicit TBTable(const TBTable& wdl); ~TBTable() { if (baseAddress) TBFile::unmap(baseAddress, mapping); } }; template<> TBTable::TBTable(const std::string& code) : TBTable() { StateInfo st; Position pos; key = pos.set(code, WHITE, &st).material_key(); pieceCount = pos.count(); hasPawns = pos.pieces(PAWN); hasUniquePieces = false; for (Color c : { WHITE, BLACK }) for (PieceType pt = PAWN; pt < KING; ++pt) if (popcount(pos.pieces(c, pt)) == 1) hasUniquePieces = true; // Set the leading color. In case both sides have pawns the leading color // is the side with less pawns because this leads to better compression. bool c = !pos.count(BLACK) || ( pos.count(WHITE) && pos.count(BLACK) >= pos.count(WHITE)); pawnCount[0] = pos.count(c ? WHITE : BLACK); pawnCount[1] = pos.count(c ? BLACK : WHITE); key2 = pos.set(code, BLACK, &st).material_key(); } template<> TBTable::TBTable(const TBTable& wdl) : TBTable() { // Use the corresponding WDL table to avoid recalculating all from scratch key = wdl.key; key2 = wdl.key2; pieceCount = wdl.pieceCount; hasPawns = wdl.hasPawns; hasUniquePieces = wdl.hasUniquePieces; pawnCount[0] = wdl.pawnCount[0]; pawnCount[1] = wdl.pawnCount[1]; } // class TBTables creates and keeps ownership of the TBTable objects, one for // each TB file found. It supports a fast, hash based, table lookup. Populated // at init time, accessed at probe time. class TBTables { struct Entry { Key key; TBTable* wdl; TBTable* dtz; template TBTable* get() const { return (TBTable*)(Type == WDL ? (void*)wdl : (void*)dtz); } }; static constexpr int Size = 1 << 12; // 4K table, indexed by key's 12 lsb static constexpr int Overflow = 1; // Number of elements allowed to map to the last bucket Entry hashTable[Size + Overflow]; std::deque> wdlTable; std::deque> dtzTable; void insert(Key key, TBTable* wdl, TBTable* dtz) { uint32_t homeBucket = (uint32_t)key & (Size - 1); Entry entry{ key, wdl, dtz }; // Ensure last element is empty to avoid overflow when looking up for (uint32_t bucket = homeBucket; bucket < Size + Overflow - 1; ++bucket) { Key otherKey = hashTable[bucket].key; if (otherKey == key || !hashTable[bucket].get()) { hashTable[bucket] = entry; return; } // Robin Hood hashing: If we've probed for longer than this element, // insert here and search for a new spot for the other element instead. uint32_t otherHomeBucket = (uint32_t)otherKey & (Size - 1); if (otherHomeBucket > homeBucket) { std::swap(entry, hashTable[bucket]); key = otherKey; homeBucket = otherHomeBucket; } } std::cerr << "TB hash table size too low!" << std::endl; exit(EXIT_FAILURE); } public: template TBTable* get(Key key) { for (const Entry* entry = &hashTable[(uint32_t)key & (Size - 1)]; ; ++entry) { if (entry->key == key || !entry->get()) return entry->get(); } } void clear() { memset(hashTable, 0, sizeof(hashTable)); wdlTable.clear(); dtzTable.clear(); } size_t size() const { return wdlTable.size(); } void add(const std::vector& pieces); }; TBTables TBTables; // If the corresponding file exists two new objects TBTable and TBTable // are created and added to the lists and hash table. Called at init time. void TBTables::add(const std::vector& pieces) { std::string code; for (PieceType pt : pieces) code += PieceToChar[pt]; TBFile file(code.insert(code.find('K', 1), "v") + ".rtbw"); // KRK -> KRvK if (!file.is_open()) // Only WDL file is checked return; file.close(); MaxCardinality = std::max((int)pieces.size(), MaxCardinality); wdlTable.emplace_back(code); dtzTable.emplace_back(wdlTable.back()); // Insert into the hash keys for both colors: KRvK with KR white and black insert(wdlTable.back().key , &wdlTable.back(), &dtzTable.back()); insert(wdlTable.back().key2, &wdlTable.back(), &dtzTable.back()); } // TB tables are compressed with canonical Huffman code. The compressed data is divided into // blocks of size d->sizeofBlock, and each block stores a variable number of symbols. // Each symbol represents either a WDL or a (remapped) DTZ value, or a pair of other symbols // (recursively). If you keep expanding the symbols in a block, you end up with up to 65536 // WDL or DTZ values. Each symbol represents up to 256 values and will correspond after // Huffman coding to at least 1 bit. So a block of 32 bytes corresponds to at most // 32 x 8 x 256 = 65536 values. This maximum is only reached for tables that consist mostly // of draws or mostly of wins, but such tables are actually quite common. In principle, the // blocks in WDL tables are 64 bytes long (and will be aligned on cache lines). But for // mostly-draw or mostly-win tables this can leave many 64-byte blocks only half-filled, so // in such cases blocks are 32 bytes long. The blocks of DTZ tables are up to 1024 bytes long. // The generator picks the size that leads to the smallest table. The "book" of symbols and // Huffman codes is the same for all blocks in the table. A non-symmetric pawnless TB file // will have one table for wtm and one for btm, a TB file with pawns will have tables per // file a,b,c,d also in this case one set for wtm and one for btm. int decompress_pairs(PairsData* d, uint64_t idx) { // Special case where all table positions store the same value if (d->flags & TBFlag::SingleValue) return d->minSymLen; // First we need to locate the right block that stores the value at index "idx". // Because each block n stores blockLength[n] + 1 values, the index i of the block // that contains the value at position idx is: // // for (i = -1, sum = 0; sum <= idx; i++) // sum += blockLength[i + 1] + 1; // // This can be slow, so we use SparseIndex[] populated with a set of SparseEntry that // point to known indices into blockLength[]. Namely SparseIndex[k] is a SparseEntry // that stores the blockLength[] index and the offset within that block of the value // with index I(k), where: // // I(k) = k * d->span + d->span / 2 (1) // First step is to get the 'k' of the I(k) nearest to our idx, using definition (1) uint32_t k = uint32_t(idx / d->span); // Then we read the corresponding SparseIndex[] entry uint32_t block = number(&d->sparseIndex[k].block); int offset = number(&d->sparseIndex[k].offset); // Now compute the difference idx - I(k). From definition of k we know that // // idx = k * d->span + idx % d->span (2) // // So from (1) and (2) we can compute idx - I(K): int diff = idx % d->span - d->span / 2; // Sum the above to offset to find the offset corresponding to our idx offset += diff; // Move to previous/next block, until we reach the correct block that contains idx, // that is when 0 <= offset <= d->blockLength[block] while (offset < 0) offset += d->blockLength[--block] + 1; while (offset > d->blockLength[block]) offset -= d->blockLength[block++] + 1; // Finally, we find the start address of our block of canonical Huffman symbols uint32_t* ptr = (uint32_t*)(d->data + ((uint64_t)block * d->sizeofBlock)); // Read the first 64 bits in our block, this is a (truncated) sequence of // unknown number of symbols of unknown length but we know the first one // is at the beginning of this 64 bits sequence. uint64_t buf64 = number(ptr); ptr += 2; int buf64Size = 64; Sym sym; while (true) { int len = 0; // This is the symbol length - d->min_sym_len // Now get the symbol length. For any symbol s64 of length l right-padded // to 64 bits we know that d->base64[l-1] >= s64 >= d->base64[l] so we // can find the symbol length iterating through base64[]. while (buf64 < d->base64[len]) ++len; // All the symbols of a given length are consecutive integers (numerical // sequence property), so we can compute the offset of our symbol of // length len, stored at the beginning of buf64. sym = Sym((buf64 - d->base64[len]) >> (64 - len - d->minSymLen)); // Now add the value of the lowest symbol of length len to get our symbol sym += number(&d->lowestSym[len]); // If our offset is within the number of values represented by symbol sym // we are done... if (offset < d->symlen[sym] + 1) break; // ...otherwise update the offset and continue to iterate offset -= d->symlen[sym] + 1; len += d->minSymLen; // Get the real length buf64 <<= len; // Consume the just processed symbol buf64Size -= len; if (buf64Size <= 32) { // Refill the buffer buf64Size += 32; buf64 |= (uint64_t)number(ptr++) << (64 - buf64Size); } } // Ok, now we have our symbol that expands into d->symlen[sym] + 1 symbols. // We binary-search for our value recursively expanding into the left and // right child symbols until we reach a leaf node where symlen[sym] + 1 == 1 // that will store the value we need. while (d->symlen[sym]) { Sym left = d->btree[sym].get(); // If a symbol contains 36 sub-symbols (d->symlen[sym] + 1 = 36) and // expands in a pair (d->symlen[left] = 23, d->symlen[right] = 11), then // we know that, for instance the ten-th value (offset = 10) will be on // the left side because in Recursive Pairing child symbols are adjacent. if (offset < d->symlen[left] + 1) sym = left; else { offset -= d->symlen[left] + 1; sym = d->btree[sym].get(); } } return d->btree[sym].get(); } bool check_dtz_stm(TBTable*, int, File) { return true; } bool check_dtz_stm(TBTable* entry, int stm, File f) { auto flags = entry->get(stm, f)->flags; return (flags & TBFlag::STM) == stm || ((entry->key == entry->key2) && !entry->hasPawns); } // DTZ scores are sorted by frequency of occurrence and then assigned the // values 0, 1, 2, ... in order of decreasing frequency. This is done for each // of the four WDLScore values. The mapping information necessary to reconstruct // the original values is stored in the TB file and read during map[] init. WDLScore map_score(TBTable*, File, int value, WDLScore) { return WDLScore(value - 2); } int map_score(TBTable* entry, File f, int value, WDLScore wdl) { constexpr int WDLMap[] = { 1, 3, 0, 2, 0 }; auto flags = entry->get(0, f)->flags; uint8_t* map = entry->map; uint16_t* idx = entry->get(0, f)->map_idx; if (flags & TBFlag::Mapped) { if (flags & TBFlag::Wide) value = ((uint16_t *)map)[idx[WDLMap[wdl + 2]] + value]; else value = map[idx[WDLMap[wdl + 2]] + value]; } // DTZ tables store distance to zero in number of moves or plies. We // want to return plies, so we have convert to plies when needed. if ( (wdl == WDLWin && !(flags & TBFlag::WinPlies)) || (wdl == WDLLoss && !(flags & TBFlag::LossPlies)) || wdl == WDLCursedWin || wdl == WDLBlessedLoss) value *= 2; return value + 1; } // Compute a unique index out of a position and use it to probe the TB file. To // encode k pieces of same type and color, first sort the pieces by square in // ascending order s1 <= s2 <= ... <= sk then compute the unique index as: // // idx = Binomial[1][s1] + Binomial[2][s2] + ... + Binomial[k][sk] // template Ret do_probe_table(const Position& pos, T* entry, WDLScore wdl, ProbeState* result) { Square squares[TBPIECES]; Piece pieces[TBPIECES]; uint64_t idx; int next = 0, size = 0, leadPawnsCnt = 0; PairsData* d; Bitboard b, leadPawns = 0; File tbFile = FILE_A; // A given TB entry like KRK has associated two material keys: KRvk and Kvkr. // If both sides have the same pieces keys are equal. In this case TB tables // only store the 'white to move' case, so if the position to lookup has black // to move, we need to switch the color and flip the squares before to lookup. bool symmetricBlackToMove = (entry->key == entry->key2 && pos.side_to_move()); // TB files are calculated for white as stronger side. For instance we have // KRvK, not KvKR. A position where stronger side is white will have its // material key == entry->key, otherwise we have to switch the color and // flip the squares before to lookup. bool blackStronger = (pos.material_key() != entry->key); int flipColor = (symmetricBlackToMove || blackStronger) * 8; int flipSquares = (symmetricBlackToMove || blackStronger) * 56; int stm = (symmetricBlackToMove || blackStronger) ^ pos.side_to_move(); // For pawns, TB files store 4 separate tables according if leading pawn is on // file a, b, c or d after reordering. The leading pawn is the one with maximum // MapPawns[] value, that is the one most toward the edges and with lowest rank. if (entry->hasPawns) { // In all the 4 tables, pawns are at the beginning of the piece sequence and // their color is the reference one. So we just pick the first one. Piece pc = Piece(entry->get(0, 0)->pieces[0] ^ flipColor); assert(type_of(pc) == PAWN); leadPawns = b = pos.pieces(color_of(pc), PAWN); do squares[size++] = pop_lsb(b) ^ flipSquares; while (b); leadPawnsCnt = size; std::swap(squares[0], *std::max_element(squares, squares + leadPawnsCnt, pawns_comp)); tbFile = File(edge_distance(file_of(squares[0]))); } // DTZ tables are one-sided, i.e. they store positions only for white to // move or only for black to move, so check for side to move to be stm, // early exit otherwise. if (!check_dtz_stm(entry, stm, tbFile)) return *result = CHANGE_STM, Ret(); // Now we are ready to get all the position pieces (but the lead pawns) and // directly map them to the correct color and square. b = pos.pieces() ^ leadPawns; do { Square s = pop_lsb(b); squares[size] = s ^ flipSquares; pieces[size++] = Piece(pos.piece_on(s) ^ flipColor); } while (b); assert(size >= 2); d = entry->get(stm, tbFile); // Then we reorder the pieces to have the same sequence as the one stored // in pieces[i]: the sequence that ensures the best compression. for (int i = leadPawnsCnt; i < size - 1; ++i) for (int j = i + 1; j < size; ++j) if (d->pieces[i] == pieces[j]) { std::swap(pieces[i], pieces[j]); std::swap(squares[i], squares[j]); break; } // Now we map again the squares so that the square of the lead piece is in // the triangle A1-D1-D4. if (file_of(squares[0]) > FILE_D) for (int i = 0; i < size; ++i) squares[i] = flip_file(squares[i]); // Encode leading pawns starting with the one with minimum MapPawns[] and // proceeding in ascending order. if (entry->hasPawns) { idx = LeadPawnIdx[leadPawnsCnt][squares[0]]; std::stable_sort(squares + 1, squares + leadPawnsCnt, pawns_comp); for (int i = 1; i < leadPawnsCnt; ++i) idx += Binomial[i][MapPawns[squares[i]]]; goto encode_remaining; // With pawns we have finished special treatments } // In positions withouth pawns, we further flip the squares to ensure leading // piece is below RANK_5. if (rank_of(squares[0]) > RANK_4) for (int i = 0; i < size; ++i) squares[i] = flip_rank(squares[i]); // Look for the first piece of the leading group not on the A1-D4 diagonal // and ensure it is mapped below the diagonal. for (int i = 0; i < d->groupLen[0]; ++i) { if (!off_A1H8(squares[i])) continue; if (off_A1H8(squares[i]) > 0) // A1-H8 diagonal flip: SQ_A3 -> SQ_C1 for (int j = i; j < size; ++j) squares[j] = Square(((squares[j] >> 3) | (squares[j] << 3)) & 63); break; } // Encode the leading group. // // Suppose we have KRvK. Let's say the pieces are on square numbers wK, wR // and bK (each 0...63). The simplest way to map this position to an index // is like this: // // index = wK * 64 * 64 + wR * 64 + bK; // // But this way the TB is going to have 64*64*64 = 262144 positions, with // lots of positions being equivalent (because they are mirrors of each // other) and lots of positions being invalid (two pieces on one square, // adjacent kings, etc.). // Usually the first step is to take the wK and bK together. There are just // 462 ways legal and not-mirrored ways to place the wK and bK on the board. // Once we have placed the wK and bK, there are 62 squares left for the wR // Mapping its square from 0..63 to available squares 0..61 can be done like: // // wR -= (wR > wK) + (wR > bK); // // In words: if wR "comes later" than wK, we deduct 1, and the same if wR // "comes later" than bK. In case of two same pieces like KRRvK we want to // place the two Rs "together". If we have 62 squares left, we can place two // Rs "together" in 62 * 61 / 2 ways (we divide by 2 because rooks can be // swapped and still get the same position.) // // In case we have at least 3 unique pieces (inlcuded kings) we encode them // together. if (entry->hasUniquePieces) { int adjust1 = squares[1] > squares[0]; int adjust2 = (squares[2] > squares[0]) + (squares[2] > squares[1]); // First piece is below a1-h8 diagonal. MapA1D1D4[] maps the b1-d1-d3 // triangle to 0...5. There are 63 squares for second piece and and 62 // (mapped to 0...61) for the third. if (off_A1H8(squares[0])) idx = ( MapA1D1D4[squares[0]] * 63 + (squares[1] - adjust1)) * 62 + squares[2] - adjust2; // First piece is on a1-h8 diagonal, second below: map this occurence to // 6 to differentiate from the above case, rank_of() maps a1-d4 diagonal // to 0...3 and finally MapB1H1H7[] maps the b1-h1-h7 triangle to 0..27. else if (off_A1H8(squares[1])) idx = ( 6 * 63 + rank_of(squares[0]) * 28 + MapB1H1H7[squares[1]]) * 62 + squares[2] - adjust2; // First two pieces are on a1-h8 diagonal, third below else if (off_A1H8(squares[2])) idx = 6 * 63 * 62 + 4 * 28 * 62 + rank_of(squares[0]) * 7 * 28 + (rank_of(squares[1]) - adjust1) * 28 + MapB1H1H7[squares[2]]; // All 3 pieces on the diagonal a1-h8 else idx = 6 * 63 * 62 + 4 * 28 * 62 + 4 * 7 * 28 + rank_of(squares[0]) * 7 * 6 + (rank_of(squares[1]) - adjust1) * 6 + (rank_of(squares[2]) - adjust2); } else // We don't have at least 3 unique pieces, like in KRRvKBB, just map // the kings. idx = MapKK[MapA1D1D4[squares[0]]][squares[1]]; encode_remaining: idx *= d->groupIdx[0]; Square* groupSq = squares + d->groupLen[0]; // Encode remainig pawns then pieces according to square, in ascending order bool remainingPawns = entry->hasPawns && entry->pawnCount[1]; while (d->groupLen[++next]) { std::stable_sort(groupSq, groupSq + d->groupLen[next]); uint64_t n = 0; // Map down a square if "comes later" than a square in the previous // groups (similar to what done earlier for leading group pieces). for (int i = 0; i < d->groupLen[next]; ++i) { auto f = [&](Square s) { return groupSq[i] > s; }; auto adjust = std::count_if(squares, groupSq, f); n += Binomial[i + 1][groupSq[i] - adjust - 8 * remainingPawns]; } remainingPawns = false; idx += n * d->groupIdx[next]; groupSq += d->groupLen[next]; } // Now that we have the index, decompress the pair and get the score return map_score(entry, tbFile, decompress_pairs(d, idx), wdl); } // Group together pieces that will be encoded together. The general rule is that // a group contains pieces of same type and color. The exception is the leading // group that, in case of positions withouth pawns, can be formed by 3 different // pieces (default) or by the king pair when there is not a unique piece apart // from the kings. When there are pawns, pawns are always first in pieces[]. // // As example KRKN -> KRK + N, KNNK -> KK + NN, KPPKP -> P + PP + K + K // // The actual grouping depends on the TB generator and can be inferred from the // sequence of pieces in piece[] array. template void set_groups(T& e, PairsData* d, int order[], File f) { int n = 0, firstLen = e.hasPawns ? 0 : e.hasUniquePieces ? 3 : 2; d->groupLen[n] = 1; // Number of pieces per group is stored in groupLen[], for instance in KRKN // the encoder will default on '111', so groupLen[] will be (3, 1). for (int i = 1; i < e.pieceCount; ++i) if (--firstLen > 0 || d->pieces[i] == d->pieces[i - 1]) d->groupLen[n]++; else d->groupLen[++n] = 1; d->groupLen[++n] = 0; // Zero-terminated // The sequence in pieces[] defines the groups, but not the order in which // they are encoded. If the pieces in a group g can be combined on the board // in N(g) different ways, then the position encoding will be of the form: // // g1 * N(g2) * N(g3) + g2 * N(g3) + g3 // // This ensures unique encoding for the whole position. The order of the // groups is a per-table parameter and could not follow the canonical leading // pawns/pieces -> remainig pawns -> remaining pieces. In particular the // first group is at order[0] position and the remaining pawns, when present, // are at order[1] position. bool pp = e.hasPawns && e.pawnCount[1]; // Pawns on both sides int next = pp ? 2 : 1; int freeSquares = 64 - d->groupLen[0] - (pp ? d->groupLen[1] : 0); uint64_t idx = 1; for (int k = 0; next < n || k == order[0] || k == order[1]; ++k) if (k == order[0]) // Leading pawns or pieces { d->groupIdx[0] = idx; idx *= e.hasPawns ? LeadPawnsSize[d->groupLen[0]][f] : e.hasUniquePieces ? 31332 : 462; } else if (k == order[1]) // Remaining pawns { d->groupIdx[1] = idx; idx *= Binomial[d->groupLen[1]][48 - d->groupLen[0]]; } else // Remainig pieces { d->groupIdx[next] = idx; idx *= Binomial[d->groupLen[next]][freeSquares]; freeSquares -= d->groupLen[next++]; } d->groupIdx[n] = idx; } // In Recursive Pairing each symbol represents a pair of childern symbols. So // read d->btree[] symbols data and expand each one in his left and right child // symbol until reaching the leafs that represent the symbol value. uint8_t set_symlen(PairsData* d, Sym s, std::vector& visited) { visited[s] = true; // We can set it now because tree is acyclic Sym sr = d->btree[s].get(); if (sr == 0xFFF) return 0; Sym sl = d->btree[s].get(); if (!visited[sl]) d->symlen[sl] = set_symlen(d, sl, visited); if (!visited[sr]) d->symlen[sr] = set_symlen(d, sr, visited); return d->symlen[sl] + d->symlen[sr] + 1; } uint8_t* set_sizes(PairsData* d, uint8_t* data) { d->flags = *data++; if (d->flags & TBFlag::SingleValue) { d->blocksNum = d->blockLengthSize = 0; d->span = d->sparseIndexSize = 0; // Broken MSVC zero-init d->minSymLen = *data++; // Here we store the single value return data; } // groupLen[] is a zero-terminated list of group lengths, the last groupIdx[] // element stores the biggest index that is the tb size. uint64_t tbSize = d->groupIdx[std::find(d->groupLen, d->groupLen + 7, 0) - d->groupLen]; d->sizeofBlock = 1ULL << *data++; d->span = 1ULL << *data++; d->sparseIndexSize = size_t((tbSize + d->span - 1) / d->span); // Round up auto padding = number(data++); d->blocksNum = number(data); data += sizeof(uint32_t); d->blockLengthSize = d->blocksNum + padding; // Padded to ensure SparseIndex[] // does not point out of range. d->maxSymLen = *data++; d->minSymLen = *data++; d->lowestSym = (Sym*)data; d->base64.resize(d->maxSymLen - d->minSymLen + 1); // The canonical code is ordered such that longer symbols (in terms of // the number of bits of their Huffman code) have lower numeric value, // so that d->lowestSym[i] >= d->lowestSym[i+1] (when read as LittleEndian). // Starting from this we compute a base64[] table indexed by symbol length // and containing 64 bit values so that d->base64[i] >= d->base64[i+1]. // See https://en.wikipedia.org/wiki/Huffman_coding for (int i = d->base64.size() - 2; i >= 0; --i) { d->base64[i] = (d->base64[i + 1] + number(&d->lowestSym[i]) - number(&d->lowestSym[i + 1])) / 2; assert(d->base64[i] * 2 >= d->base64[i+1]); } // Now left-shift by an amount so that d->base64[i] gets shifted 1 bit more // than d->base64[i+1] and given the above assert condition, we ensure that // d->base64[i] >= d->base64[i+1]. Moreover for any symbol s64 of length i // and right-padded to 64 bits holds d->base64[i-1] >= s64 >= d->base64[i]. for (size_t i = 0; i < d->base64.size(); ++i) d->base64[i] <<= 64 - i - d->minSymLen; // Right-padding to 64 bits data += d->base64.size() * sizeof(Sym); d->symlen.resize(number(data)); data += sizeof(uint16_t); d->btree = (LR*)data; // The compression scheme used is "Recursive Pairing", that replaces the most // frequent adjacent pair of symbols in the source message by a new symbol, // reevaluating the frequencies of all of the symbol pairs with respect to // the extended alphabet, and then repeating the process. // See http://www.larsson.dogma.net/dcc99.pdf std::vector visited(d->symlen.size()); for (Sym sym = 0; sym < d->symlen.size(); ++sym) if (!visited[sym]) d->symlen[sym] = set_symlen(d, sym, visited); return data + d->symlen.size() * sizeof(LR) + (d->symlen.size() & 1); } uint8_t* set_dtz_map(TBTable&, uint8_t* data, File) { return data; } uint8_t* set_dtz_map(TBTable& e, uint8_t* data, File maxFile) { e.map = data; for (File f = FILE_A; f <= maxFile; ++f) { auto flags = e.get(0, f)->flags; if (flags & TBFlag::Mapped) { if (flags & TBFlag::Wide) { data += (uintptr_t)data & 1; // Word alignment, we may have a mixed table for (int i = 0; i < 4; ++i) { // Sequence like 3,x,x,x,1,x,0,2,x,x e.get(0, f)->map_idx[i] = (uint16_t)((uint16_t *)data - (uint16_t *)e.map + 1); data += 2 * number(data) + 2; } } else { for (int i = 0; i < 4; ++i) { e.get(0, f)->map_idx[i] = (uint16_t)(data - e.map + 1); data += *data + 1; } } } } return data += (uintptr_t)data & 1; // Word alignment } // Populate entry's PairsData records with data from the just memory mapped file. // Called at first access. template void set(T& e, uint8_t* data) { PairsData* d; enum { Split = 1, HasPawns = 2 }; assert(e.hasPawns == bool(*data & HasPawns)); assert((e.key != e.key2) == bool(*data & Split)); data++; // First byte stores flags const int sides = T::Sides == 2 && (e.key != e.key2) ? 2 : 1; const File maxFile = e.hasPawns ? FILE_D : FILE_A; bool pp = e.hasPawns && e.pawnCount[1]; // Pawns on both sides assert(!pp || e.pawnCount[0]); for (File f = FILE_A; f <= maxFile; ++f) { for (int i = 0; i < sides; i++) *e.get(i, f) = PairsData(); int order[][2] = { { *data & 0xF, pp ? *(data + 1) & 0xF : 0xF }, { *data >> 4, pp ? *(data + 1) >> 4 : 0xF } }; data += 1 + pp; for (int k = 0; k < e.pieceCount; ++k, ++data) for (int i = 0; i < sides; i++) e.get(i, f)->pieces[k] = Piece(i ? *data >> 4 : *data & 0xF); for (int i = 0; i < sides; ++i) set_groups(e, e.get(i, f), order[i], f); } data += (uintptr_t)data & 1; // Word alignment for (File f = FILE_A; f <= maxFile; ++f) for (int i = 0; i < sides; i++) data = set_sizes(e.get(i, f), data); data = set_dtz_map(e, data, maxFile); for (File f = FILE_A; f <= maxFile; ++f) for (int i = 0; i < sides; i++) { (d = e.get(i, f))->sparseIndex = (SparseEntry*)data; data += d->sparseIndexSize * sizeof(SparseEntry); } for (File f = FILE_A; f <= maxFile; ++f) for (int i = 0; i < sides; i++) { (d = e.get(i, f))->blockLength = (uint16_t*)data; data += d->blockLengthSize * sizeof(uint16_t); } for (File f = FILE_A; f <= maxFile; ++f) for (int i = 0; i < sides; i++) { data = (uint8_t*)(((uintptr_t)data + 0x3F) & ~0x3F); // 64 byte alignment (d = e.get(i, f))->data = data; data += d->blocksNum * d->sizeofBlock; } } // If the TB file corresponding to the given position is already memory mapped // then return its base address, otherwise try to memory map and init it. Called // at every probe, memory map and init only at first access. Function is thread // safe and can be called concurrently. template void* mapped(TBTable& e, const Position& pos) { static std::mutex mutex; // Use 'acquire' to avoid a thread reading 'ready' == true while // another is still working. (compiler reordering may cause this). if (e.ready.load(std::memory_order_acquire)) return e.baseAddress; // Could be nullptr if file does not exist std::scoped_lock lk(mutex); if (e.ready.load(std::memory_order_relaxed)) // Recheck under lock return e.baseAddress; // Pieces strings in decreasing order for each color, like ("KPP","KR") std::string fname, w, b; for (PieceType pt = KING; pt >= PAWN; --pt) { w += std::string(popcount(pos.pieces(WHITE, pt)), PieceToChar[pt]); b += std::string(popcount(pos.pieces(BLACK, pt)), PieceToChar[pt]); } fname = (e.key == pos.material_key() ? w + 'v' + b : b + 'v' + w) + (Type == WDL ? ".rtbw" : ".rtbz"); uint8_t* data = TBFile(fname).map(&e.baseAddress, &e.mapping, Type); if (data) set(e, data); e.ready.store(true, std::memory_order_release); return e.baseAddress; } template::Ret> Ret probe_table(const Position& pos, ProbeState* result, WDLScore wdl = WDLDraw) { if (pos.count() == 2) // KvK return Ret(WDLDraw); TBTable* entry = TBTables.get(pos.material_key()); if (!entry || !mapped(*entry, pos)) return *result = FAIL, Ret(); return do_probe_table(pos, entry, wdl, result); } // For a position where the side to move has a winning capture it is not necessary // to store a winning value so the generator treats such positions as "don't cares" // and tries to assign to it a value that improves the compression ratio. Similarly, // if the side to move has a drawing capture, then the position is at least drawn. // If the position is won, then the TB needs to store a win value. But if the // position is drawn, the TB may store a loss value if that is better for compression. // All of this means that during probing, the engine must look at captures and probe // their results and must probe the position itself. The "best" result of these // probes is the correct result for the position. // DTZ tables do not store values when a following move is a zeroing winning move // (winning capture or winning pawn move). Also DTZ store wrong values for positions // where the best move is an ep-move (even if losing). So in all these cases set // the state to ZEROING_BEST_MOVE. template WDLScore search(Position& pos, ProbeState* result) { WDLScore value, bestValue = WDLLoss; StateInfo st; auto moveList = MoveList(pos); size_t totalCount = moveList.size(), moveCount = 0; for (const Move move : moveList) { if ( !pos.capture(move) && (!CheckZeroingMoves || type_of(pos.moved_piece(move)) != PAWN)) continue; moveCount++; pos.do_move(move, st); value = -search(pos, result); pos.undo_move(move); if (*result == FAIL) return WDLDraw; if (value > bestValue) { bestValue = value; if (value >= WDLWin) { *result = ZEROING_BEST_MOVE; // Winning DTZ-zeroing move return value; } } } // In case we have already searched all the legal moves we don't have to probe // the TB because the stored score could be wrong. For instance TB tables // do not contain information on position with ep rights, so in this case // the result of probe_wdl_table is wrong. Also in case of only capture // moves, for instance here 4K3/4q3/6p1/2k5/6p1/8/8/8 w - - 0 7, we have to // return with ZEROING_BEST_MOVE set. bool noMoreMoves = (moveCount && moveCount == totalCount); if (noMoreMoves) value = bestValue; else { value = probe_table(pos, result); if (*result == FAIL) return WDLDraw; } // DTZ stores a "don't care" value if bestValue is a win if (bestValue >= value) return *result = ( bestValue > WDLDraw || noMoreMoves ? ZEROING_BEST_MOVE : OK), bestValue; return *result = OK, value; } } // namespace /// Tablebases::init() is called at startup and after every change to /// "SyzygyPath" UCI option to (re)create the various tables. It is not thread /// safe, nor it needs to be. void Tablebases::init(const std::string& paths) { TBTables.clear(); MaxCardinality = 0; TBFile::Paths = paths; if (paths.empty() || paths == "") return; // MapB1H1H7[] encodes a square below a1-h8 diagonal to 0..27 int code = 0; for (Square s = SQ_A1; s <= SQ_H8; ++s) if (off_A1H8(s) < 0) MapB1H1H7[s] = code++; // MapA1D1D4[] encodes a square in the a1-d1-d4 triangle to 0..9 std::vector diagonal; code = 0; for (Square s = SQ_A1; s <= SQ_D4; ++s) if (off_A1H8(s) < 0 && file_of(s) <= FILE_D) MapA1D1D4[s] = code++; else if (!off_A1H8(s) && file_of(s) <= FILE_D) diagonal.push_back(s); // Diagonal squares are encoded as last ones for (auto s : diagonal) MapA1D1D4[s] = code++; // MapKK[] encodes all the 461 possible legal positions of two kings where // the first is in the a1-d1-d4 triangle. If the first king is on the a1-d4 // diagonal, the other one shall not to be above the a1-h8 diagonal. std::vector> bothOnDiagonal; code = 0; for (int idx = 0; idx < 10; idx++) for (Square s1 = SQ_A1; s1 <= SQ_D4; ++s1) if (MapA1D1D4[s1] == idx && (idx || s1 == SQ_B1)) // SQ_B1 is mapped to 0 { for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) if ((PseudoAttacks[KING][s1] | s1) & s2) continue; // Illegal position else if (!off_A1H8(s1) && off_A1H8(s2) > 0) continue; // First on diagonal, second above else if (!off_A1H8(s1) && !off_A1H8(s2)) bothOnDiagonal.emplace_back(idx, s2); else MapKK[idx][s2] = code++; } // Legal positions with both kings on diagonal are encoded as last ones for (auto p : bothOnDiagonal) MapKK[p.first][p.second] = code++; // Binomial[] stores the Binomial Coefficents using Pascal rule. There // are Binomial[k][n] ways to choose k elements from a set of n elements. Binomial[0][0] = 1; for (int n = 1; n < 64; n++) // Squares for (int k = 0; k < 6 && k <= n; ++k) // Pieces Binomial[k][n] = (k > 0 ? Binomial[k - 1][n - 1] : 0) + (k < n ? Binomial[k ][n - 1] : 0); // MapPawns[s] encodes squares a2-h7 to 0..47. This is the number of possible // available squares when the leading one is in 's'. Moreover the pawn with // highest MapPawns[] is the leading pawn, the one nearest the edge and, // among pawns with same file, the one with lowest rank. int availableSquares = 47; // Available squares when lead pawn is in a2 // Init the tables for the encoding of leading pawns group: with 7-men TB we // can have up to 5 leading pawns (KPPPPPK). for (int leadPawnsCnt = 1; leadPawnsCnt <= 5; ++leadPawnsCnt) for (File f = FILE_A; f <= FILE_D; ++f) { // Restart the index at every file because TB table is splitted // by file, so we can reuse the same index for different files. int idx = 0; // Sum all possible combinations for a given file, starting with // the leading pawn on rank 2 and increasing the rank. for (Rank r = RANK_2; r <= RANK_7; ++r) { Square sq = make_square(f, r); // Compute MapPawns[] at first pass. // If sq is the leading pawn square, any other pawn cannot be // below or more toward the edge of sq. There are 47 available // squares when sq = a2 and reduced by 2 for any rank increase // due to mirroring: sq == a3 -> no a2, h2, so MapPawns[a3] = 45 if (leadPawnsCnt == 1) { MapPawns[sq] = availableSquares--; MapPawns[flip_file(sq)] = availableSquares--; } LeadPawnIdx[leadPawnsCnt][sq] = idx; idx += Binomial[leadPawnsCnt - 1][MapPawns[sq]]; } // After a file is traversed, store the cumulated per-file index LeadPawnsSize[leadPawnsCnt][f] = idx; } // Add entries in TB tables if the corresponding ".rtbw" file exists for (PieceType p1 = PAWN; p1 < KING; ++p1) { TBTables.add({KING, p1, KING}); for (PieceType p2 = PAWN; p2 <= p1; ++p2) { TBTables.add({KING, p1, p2, KING}); TBTables.add({KING, p1, KING, p2}); for (PieceType p3 = PAWN; p3 < KING; ++p3) TBTables.add({KING, p1, p2, KING, p3}); for (PieceType p3 = PAWN; p3 <= p2; ++p3) { TBTables.add({KING, p1, p2, p3, KING}); for (PieceType p4 = PAWN; p4 <= p3; ++p4) { TBTables.add({KING, p1, p2, p3, p4, KING}); for (PieceType p5 = PAWN; p5 <= p4; ++p5) TBTables.add({KING, p1, p2, p3, p4, p5, KING}); for (PieceType p5 = PAWN; p5 < KING; ++p5) TBTables.add({KING, p1, p2, p3, p4, KING, p5}); } for (PieceType p4 = PAWN; p4 < KING; ++p4) { TBTables.add({KING, p1, p2, p3, KING, p4}); for (PieceType p5 = PAWN; p5 <= p4; ++p5) TBTables.add({KING, p1, p2, p3, KING, p4, p5}); } } for (PieceType p3 = PAWN; p3 <= p1; ++p3) for (PieceType p4 = PAWN; p4 <= (p1 == p3 ? p2 : p3); ++p4) TBTables.add({KING, p1, p2, KING, p3, p4}); } } sync_cout << "info string Found " << TBTables.size() << " tablebases" << sync_endl; } // Probe the WDL table for a particular position. // If *result != FAIL, the probe was successful. // The return value is from the point of view of the side to move: // -2 : loss // -1 : loss, but draw under 50-move rule // 0 : draw // 1 : win, but draw under 50-move rule // 2 : win WDLScore Tablebases::probe_wdl(Position& pos, ProbeState* result) { *result = OK; return search(pos, result); } // Probe the DTZ table for a particular position. // If *result != FAIL, the probe was successful. // The return value is from the point of view of the side to move: // n < -100 : loss, but draw under 50-move rule // -100 <= n < -1 : loss in n ply (assuming 50-move counter == 0) // -1 : loss, the side to move is mated // 0 : draw // 1 < n <= 100 : win in n ply (assuming 50-move counter == 0) // 100 < n : win, but draw under 50-move rule // // The return value n can be off by 1: a return value -n can mean a loss // in n+1 ply and a return value +n can mean a win in n+1 ply. This // cannot happen for tables with positions exactly on the "edge" of // the 50-move rule. // // This implies that if dtz > 0 is returned, the position is certainly // a win if dtz + 50-move-counter <= 99. Care must be taken that the engine // picks moves that preserve dtz + 50-move-counter <= 99. // // If n = 100 immediately after a capture or pawn move, then the position // is also certainly a win, and during the whole phase until the next // capture or pawn move, the inequality to be preserved is // dtz + 50-move-counter <= 100. // // In short, if a move is available resulting in dtz + 50-move-counter <= 99, // then do not accept moves leading to dtz + 50-move-counter == 100. int Tablebases::probe_dtz(Position& pos, ProbeState* result) { *result = OK; WDLScore wdl = search(pos, result); if (*result == FAIL || wdl == WDLDraw) // DTZ tables don't store draws return 0; // DTZ stores a 'don't care' value in this case, or even a plain wrong // one as in case the best move is a losing ep, so it cannot be probed. if (*result == ZEROING_BEST_MOVE) return dtz_before_zeroing(wdl); int dtz = probe_table(pos, result, wdl); if (*result == FAIL) return 0; if (*result != CHANGE_STM) return (dtz + 100 * (wdl == WDLBlessedLoss || wdl == WDLCursedWin)) * sign_of(wdl); // DTZ stores results for the other side, so we need to do a 1-ply search and // find the winning move that minimizes DTZ. StateInfo st; int minDTZ = 0xFFFF; for (const Move move : MoveList(pos)) { bool zeroing = pos.capture(move) || type_of(pos.moved_piece(move)) == PAWN; pos.do_move(move, st); // For zeroing moves we want the dtz of the move _before_ doing it, // otherwise we will get the dtz of the next move sequence. Search the // position after the move to get the score sign (because even in a // winning position we could make a losing capture or going for a draw). dtz = zeroing ? -dtz_before_zeroing(search(pos, result)) : -probe_dtz(pos, result); // If the move mates, force minDTZ to 1 if (dtz == 1 && pos.checkers() && MoveList(pos).size() == 0) minDTZ = 1; // Convert result from 1-ply search. Zeroing moves are already accounted // by dtz_before_zeroing() that returns the DTZ of the previous move. if (!zeroing) dtz += sign_of(dtz); // Skip the draws and if we are winning only pick positive dtz if (dtz < minDTZ && sign_of(dtz) == sign_of(wdl)) minDTZ = dtz; pos.undo_move(move); if (*result == FAIL) return 0; } // When there are no legal moves, the position is mate: we return -1 return minDTZ == 0xFFFF ? -1 : minDTZ; } // Use the DTZ tables to rank root moves. // // A return value false indicates that not all probes were successful. bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves) { ProbeState result; StateInfo st; // Obtain 50-move counter for the root position int cnt50 = pos.rule50_count(); // Check whether a position was repeated since the last zeroing move. bool rep = pos.has_repeated(); int dtz, bound = Options["Syzygy50MoveRule"] ? 900 : 1; // Probe and rank each move for (auto& m : rootMoves) { pos.do_move(m.pv[0], st); // Calculate dtz for the current move counting from the root position if (pos.rule50_count() == 0) { // In case of a zeroing move, dtz is one of -101/-1/0/1/101 WDLScore wdl = -probe_wdl(pos, &result); dtz = dtz_before_zeroing(wdl); } else if (pos.is_draw(1)) { // In case a root move leads to a draw by repetition or // 50-move rule, we set dtz to zero. Note: since we are // only 1 ply from the root, this must be a true 3-fold // repetition inside the game history. dtz = 0; } else { // Otherwise, take dtz for the new position and correct by 1 ply dtz = -probe_dtz(pos, &result); dtz = dtz > 0 ? dtz + 1 : dtz < 0 ? dtz - 1 : dtz; } // Make sure that a mating move is assigned a dtz value of 1 if ( pos.checkers() && dtz == 2 && MoveList(pos).size() == 0) dtz = 1; pos.undo_move(m.pv[0]); if (result == FAIL) return false; // Better moves are ranked higher. Certain wins are ranked equally. // Losing moves are ranked equally unless a 50-move draw is in sight. int r = dtz > 0 ? (dtz + cnt50 <= 99 && !rep ? 1000 : 1000 - (dtz + cnt50)) : dtz < 0 ? (-dtz * 2 + cnt50 < 100 ? -1000 : -1000 + (-dtz + cnt50)) : 0; m.tbRank = r; // Determine the score to be displayed for this move. Assign at least // 1 cp to cursed wins and let it grow to 49 cp as the positions gets // closer to a real win. m.tbScore = r >= bound ? VALUE_MATE - MAX_PLY - 1 : r > 0 ? Value((std::max( 3, r - 800) * int(PawnValueEg)) / 200) : r == 0 ? VALUE_DRAW : r > -bound ? Value((std::min(-3, r + 800) * int(PawnValueEg)) / 200) : -VALUE_MATE + MAX_PLY + 1; } return true; } // Use the WDL tables to rank root moves. // This is a fallback for the case that some or all DTZ tables are missing. // // A return value false indicates that not all probes were successful. bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves) { static const int WDL_to_rank[] = { -1000, -899, 0, 899, 1000 }; ProbeState result; StateInfo st; WDLScore wdl; bool rule50 = Options["Syzygy50MoveRule"]; // Probe and rank each move for (auto& m : rootMoves) { pos.do_move(m.pv[0], st); if (pos.is_draw(1)) wdl = WDLDraw; else wdl = -probe_wdl(pos, &result); pos.undo_move(m.pv[0]); if (result == FAIL) return false; m.tbRank = WDL_to_rank[wdl + 2]; if (!rule50) wdl = wdl > WDLDraw ? WDLWin : wdl < WDLDraw ? WDLLoss : WDLDraw; m.tbScore = WDL_to_value[wdl + 2]; } return true; } } // namespace Stockfish