//! This crate provides the [`quote!`] macro for turning Rust syntax tree data //! structures into tokens of source code. //! //! [`quote!`]: macro.quote.html //! //! Procedural macros in Rust receive a stream of tokens as input, execute //! arbitrary Rust code to determine how to manipulate those tokens, and produce //! a stream of tokens to hand back to the compiler to compile into the caller's //! crate. Quasi-quoting is a solution to one piece of that -- producing tokens //! to return to the compiler. //! //! The idea of quasi-quoting is that we write *code* that we treat as *data*. //! Within the `quote!` macro, we can write what looks like code to our text //! editor or IDE. We get all the benefits of the editor's brace matching, //! syntax highlighting, indentation, and maybe autocompletion. But rather than //! compiling that as code into the current crate, we can treat it as data, pass //! it around, mutate it, and eventually hand it back to the compiler as tokens //! to compile into the macro caller's crate. //! //! This crate is motivated by the procedural macro use case, but is a //! general-purpose Rust quasi-quoting library and is not specific to procedural //! macros. //! //! *Version requirement: Quote supports any compiler version back to Rust's //! very first support for procedural macros in Rust 1.15.0.* //! //! ```toml //! [dependencies] //! quote = "0.6" //! ``` //! //! # Example //! //! The following quasi-quoted block of code is something you might find in [a] //! procedural macro having to do with data structure serialization. The `#var` //! syntax performs interpolation of runtime variables into the quoted tokens. //! Check out the documentation of the [`quote!`] macro for more detail about //! the syntax. See also the [`quote_spanned!`] macro which is important for //! implementing hygienic procedural macros. //! //! [a]: https://serde.rs/ //! [`quote_spanned!`]: macro.quote_spanned.html //! //! ```edition2018 //! # use quote::quote; //! # //! # let generics = ""; //! # let where_clause = ""; //! # let field_ty = ""; //! # let item_ty = ""; //! # let path = ""; //! # let value = ""; //! # //! let tokens = quote! { //! struct SerializeWith #generics #where_clause { //! value: &'a #field_ty, //! phantom: core::marker::PhantomData<#item_ty>, //! } //! //! impl #generics serde::Serialize for SerializeWith #generics #where_clause { //! fn serialize(&self, serializer: S) -> Result //! where //! S: serde::Serializer, //! { //! #path(self.value, serializer) //! } //! } //! //! SerializeWith { //! value: #value, //! phantom: core::marker::PhantomData::<#item_ty>, //! } //! }; //! ``` //! //! # Recursion limit //! //! The `quote!` macro relies on deep recursion so some large invocations may //! fail with "recursion limit reached" when you compile. If it fails, bump up //! the recursion limit by adding `#![recursion_limit = "128"]` to your crate. //! An even higher limit may be necessary for especially large invocations. // Quote types in rustdoc of other crates get linked to here. #![doc(html_root_url = "https://docs.rs/quote/0.6.13")] #[cfg(all( not(all(target_arch = "wasm32", target_os = "unknown")), feature = "proc-macro" ))] extern crate proc_macro; extern crate proc_macro2; mod ext; pub use ext::TokenStreamExt; mod to_tokens; pub use to_tokens::ToTokens; // Not public API. #[doc(hidden)] #[path = "runtime.rs"] pub mod __rt; /// The whole point. /// /// Performs variable interpolation against the input and produces it as /// [`TokenStream`]. For returning tokens to the compiler in a procedural macro, use /// `into()` to build a `TokenStream`. /// /// [`TokenStream`]: https://docs.rs/proc-macro2/0.4/proc_macro2/struct.TokenStream.html /// /// # Interpolation /// /// Variable interpolation is done with `#var` (similar to `$var` in /// `macro_rules!` macros). This grabs the `var` variable that is currently in /// scope and inserts it in that location in the output tokens. Any type /// implementing the [`ToTokens`] trait can be interpolated. This includes most /// Rust primitive types as well as most of the syntax tree types from the [Syn] /// crate. /// /// [`ToTokens`]: trait.ToTokens.html /// [Syn]: https://github.com/dtolnay/syn /// /// Repetition is done using `#(...)*` or `#(...),*` again similar to /// `macro_rules!`. This iterates through the elements of any variable /// interpolated within the repetition and inserts a copy of the repetition body /// for each one. The variables in an interpolation may be anything that /// implements `IntoIterator`, including `Vec` or a pre-existing iterator. /// /// - `#(#var)*` — no separators /// - `#(#var),*` — the character before the asterisk is used as a separator /// - `#( struct #var; )*` — the repetition can contain other tokens /// - `#( #k => println!("{}", #v), )*` — even multiple interpolations /// /// There are two limitations around interpolations in a repetition: /// /// - Every interpolation inside of a repetition must be a distinct variable. /// That is, `#(#a #a)*` is not allowed. Work around this by collecting `a` /// into a vector and taking references `a1 = &a` and `a2 = &a` which you use /// inside the repetition: `#(#a1 #a2)*`. Where possible, use meaningful names /// that indicate the distinct role of each copy. /// /// - Every interpolation inside of a repetition must be iterable. If we have /// `vec` which is a vector and `ident` which is a single identifier, /// `#(#ident #vec)*` is not allowed. Work around this by using /// `std::iter::repeat(ident)` to produce an iterable that can be used from /// within the repetition. /// /// # Hygiene /// /// Any interpolated tokens preserve the `Span` information provided by their /// `ToTokens` implementation. Tokens that originate within the `quote!` /// invocation are spanned with [`Span::call_site()`]. /// /// [`Span::call_site()`]: https://docs.rs/proc-macro2/0.4/proc_macro2/struct.Span.html#method.call_site /// /// A different span can be provided through the [`quote_spanned!`] macro. /// /// [`quote_spanned!`]: macro.quote_spanned.html /// /// # Return type /// /// The macro evaluates to an expression of type `proc_macro2::TokenStream`. /// Meanwhile Rust procedural macros are expected to return the type /// `proc_macro::TokenStream`. /// /// The difference between the two types is that `proc_macro` types are entirely /// specific to procedural macros and cannot ever exist in code outside of a /// procedural macro, while `proc_macro2` types may exist anywhere including /// tests and non-macro code like main.rs and build.rs. This is why even the /// procedural macro ecosystem is largely built around `proc_macro2`, because /// that ensures the libraries are unit testable and accessible in non-macro /// contexts. /// /// There is a [`From`]-conversion in both directions so returning the output of /// `quote!` from a procedural macro usually looks like `tokens.into()` or /// `proc_macro::TokenStream::from(tokens)`. /// /// [`From`]: https://doc.rust-lang.org/std/convert/trait.From.html /// /// # Examples /// /// ## Procedural macro /// /// The structure of a basic procedural macro is as follows. Refer to the [Syn] /// crate for further useful guidance on using `quote!` as part of a procedural /// macro. /// /// [Syn]: https://github.com/dtolnay/syn /// /// ```edition2018 /// # #[cfg(any())] /// extern crate proc_macro; /// # use proc_macro2 as proc_macro; /// /// use proc_macro::TokenStream; /// use quote::quote; /// /// # const IGNORE_TOKENS: &'static str = stringify! { /// #[proc_macro_derive(HeapSize)] /// # }; /// pub fn derive_heap_size(input: TokenStream) -> TokenStream { /// // Parse the input and figure out what implementation to generate... /// # const IGNORE_TOKENS: &'static str = stringify! { /// let name = /* ... */; /// let expr = /* ... */; /// # }; /// # /// # let name = 0; /// # let expr = 0; /// /// let expanded = quote! { /// // The generated impl. /// impl heapsize::HeapSize for #name { /// fn heap_size_of_children(&self) -> usize { /// #expr /// } /// } /// }; /// /// // Hand the output tokens back to the compiler. /// TokenStream::from(expanded) /// } /// ``` /// /// ## Combining quoted fragments /// /// Usually you don't end up constructing an entire final `TokenStream` in one /// piece. Different parts may come from different helper functions. The tokens /// produced by `quote!` themselves implement `ToTokens` and so can be /// interpolated into later `quote!` invocations to build up a final result. /// /// ```edition2018 /// # use quote::quote; /// # /// let type_definition = quote! {...}; /// let methods = quote! {...}; /// /// let tokens = quote! { /// #type_definition /// #methods /// }; /// ``` /// /// ## Constructing identifiers /// /// Suppose we have an identifier `ident` which came from somewhere in a macro /// input and we need to modify it in some way for the macro output. Let's /// consider prepending the identifier with an underscore. /// /// Simply interpolating the identifier next to an underscore will not have the /// behavior of concatenating them. The underscore and the identifier will /// continue to be two separate tokens as if you had written `_ x`. /// /// ```edition2018 /// # use proc_macro2::{self as syn, Span}; /// # use quote::quote; /// # /// # let ident = syn::Ident::new("i", Span::call_site()); /// # /// // incorrect /// quote! { /// let mut _#ident = 0; /// } /// # ; /// ``` /// /// The solution is to perform token-level manipulations using the APIs provided /// by Syn and proc-macro2. /// /// ```edition2018 /// # use proc_macro2::{self as syn, Span}; /// # use quote::quote; /// # /// # let ident = syn::Ident::new("i", Span::call_site()); /// # /// let concatenated = format!("_{}", ident); /// let varname = syn::Ident::new(&concatenated, ident.span()); /// quote! { /// let mut #varname = 0; /// } /// # ; /// ``` /// /// ## Making method calls /// /// Let's say our macro requires some type specified in the macro input to have /// a constructor called `new`. We have the type in a variable called /// `field_type` of type `syn::Type` and want to invoke the constructor. /// /// ```edition2018 /// # use quote::quote; /// # /// # let field_type = quote!(...); /// # /// // incorrect /// quote! { /// let value = #field_type::new(); /// } /// # ; /// ``` /// /// This works only sometimes. If `field_type` is `String`, the expanded code /// contains `String::new()` which is fine. But if `field_type` is something /// like `Vec` then the expanded code is `Vec::new()` which is invalid /// syntax. Ordinarily in handwritten Rust we would write `Vec::::new()` /// but for macros often the following is more convenient. /// /// ```edition2018 /// # use quote::quote; /// # /// # let field_type = quote!(...); /// # /// quote! { /// let value = <#field_type>::new(); /// } /// # ; /// ``` /// /// This expands to `>::new()` which behaves correctly. /// /// A similar pattern is appropriate for trait methods. /// /// ```edition2018 /// # use quote::quote; /// # /// # let field_type = quote!(...); /// # /// quote! { /// let value = <#field_type as core::default::Default>::default(); /// } /// # ; /// ``` #[macro_export(local_inner_macros)] macro_rules! quote { ($($tt:tt)*) => { quote_spanned!($crate::__rt::Span::call_site()=> $($tt)*) }; } /// Same as `quote!`, but applies a given span to all tokens originating within /// the macro invocation. /// /// # Syntax /// /// A span expression of type [`Span`], followed by `=>`, followed by the tokens /// to quote. The span expression should be brief -- use a variable for anything /// more than a few characters. There should be no space before the `=>` token. /// /// [`Span`]: https://docs.rs/proc-macro2/0.4/proc_macro2/struct.Span.html /// /// ```edition2018 /// # use proc_macro2::Span; /// # use quote::quote_spanned; /// # /// # const IGNORE_TOKENS: &'static str = stringify! { /// let span = /* ... */; /// # }; /// # let span = Span::call_site(); /// # let init = 0; /// /// // On one line, use parentheses. /// let tokens = quote_spanned!(span=> Box::into_raw(Box::new(#init))); /// /// // On multiple lines, place the span at the top and use braces. /// let tokens = quote_spanned! {span=> /// Box::into_raw(Box::new(#init)) /// }; /// ``` /// /// The lack of space before the `=>` should look jarring to Rust programmers /// and this is intentional. The formatting is designed to be visibly /// off-balance and draw the eye a particular way, due to the span expression /// being evaluated in the context of the procedural macro and the remaining /// tokens being evaluated in the generated code. /// /// # Hygiene /// /// Any interpolated tokens preserve the `Span` information provided by their /// `ToTokens` implementation. Tokens that originate within the `quote_spanned!` /// invocation are spanned with the given span argument. /// /// # Example /// /// The following procedural macro code uses `quote_spanned!` to assert that a /// particular Rust type implements the [`Sync`] trait so that references can be /// safely shared between threads. /// /// [`Sync`]: https://doc.rust-lang.org/std/marker/trait.Sync.html /// /// ```edition2018 /// # use quote::{quote_spanned, TokenStreamExt, ToTokens}; /// # use proc_macro2::{Span, TokenStream}; /// # /// # struct Type; /// # /// # impl Type { /// # fn span(&self) -> Span { /// # Span::call_site() /// # } /// # } /// # /// # impl ToTokens for Type { /// # fn to_tokens(&self, _tokens: &mut TokenStream) {} /// # } /// # /// # let ty = Type; /// # let call_site = Span::call_site(); /// # /// let ty_span = ty.span(); /// let assert_sync = quote_spanned! {ty_span=> /// struct _AssertSync where #ty: Sync; /// }; /// ``` /// /// If the assertion fails, the user will see an error like the following. The /// input span of their type is hightlighted in the error. /// /// ```text /// error[E0277]: the trait bound `*const (): std::marker::Sync` is not satisfied /// --> src/main.rs:10:21 /// | /// 10 | static ref PTR: *const () = &(); /// | ^^^^^^^^^ `*const ()` cannot be shared between threads safely /// ``` /// /// In this example it is important for the where-clause to be spanned with the /// line/column information of the user's input type so that error messages are /// placed appropriately by the compiler. But it is also incredibly important /// that `Sync` resolves at the macro definition site and not the macro call /// site. If we resolve `Sync` at the same span that the user's type is going to /// be resolved, then they could bypass our check by defining their own trait /// named `Sync` that is implemented for their type. #[macro_export(local_inner_macros)] macro_rules! quote_spanned { ($span:expr=> $($tt:tt)*) => {{ let mut _s = $crate::__rt::TokenStream::new(); let _span = $span; quote_each_token!(_s _span $($tt)*); _s }}; } // Extract the names of all #metavariables and pass them to the $finish macro. // // in: pounded_var_names!(then () a #b c #( #d )* #e) // out: then!(() b d e) #[macro_export(local_inner_macros)] #[doc(hidden)] macro_rules! pounded_var_names { ($finish:ident ($($found:ident)*) # ( $($inner:tt)* ) $($rest:tt)*) => { pounded_var_names!($finish ($($found)*) $($inner)* $($rest)*) }; ($finish:ident ($($found:ident)*) # [ $($inner:tt)* ] $($rest:tt)*) => { pounded_var_names!($finish ($($found)*) $($inner)* $($rest)*) }; ($finish:ident ($($found:ident)*) # { $($inner:tt)* } $($rest:tt)*) => { pounded_var_names!($finish ($($found)*) $($inner)* $($rest)*) }; ($finish:ident ($($found:ident)*) # $first:ident $($rest:tt)*) => { pounded_var_names!($finish ($($found)* $first) $($rest)*) }; ($finish:ident ($($found:ident)*) ( $($inner:tt)* ) $($rest:tt)*) => { pounded_var_names!($finish ($($found)*) $($inner)* $($rest)*) }; ($finish:ident ($($found:ident)*) [ $($inner:tt)* ] $($rest:tt)*) => { pounded_var_names!($finish ($($found)*) $($inner)* $($rest)*) }; ($finish:ident ($($found:ident)*) { $($inner:tt)* } $($rest:tt)*) => { pounded_var_names!($finish ($($found)*) $($inner)* $($rest)*) }; ($finish:ident ($($found:ident)*) $ignore:tt $($rest:tt)*) => { pounded_var_names!($finish ($($found)*) $($rest)*) }; ($finish:ident ($($found:ident)*)) => { $finish!(() $($found)*) }; } // in: nested_tuples_pat!(() a b c d e) // out: ((((a b) c) d) e) // // in: nested_tuples_pat!(() a) // out: a #[macro_export(local_inner_macros)] #[doc(hidden)] macro_rules! nested_tuples_pat { (()) => { &() }; (() $first:ident $($rest:ident)*) => { nested_tuples_pat!(($first) $($rest)*) }; (($pat:pat) $first:ident $($rest:ident)*) => { nested_tuples_pat!((($pat, $first)) $($rest)*) }; (($done:pat)) => { $done }; } // in: multi_zip_expr!(() a b c d e) // out: a.into_iter().zip(b).zip(c).zip(d).zip(e) // // in: multi_zip_iter!(() a) // out: a #[macro_export(local_inner_macros)] #[doc(hidden)] macro_rules! multi_zip_expr { (()) => { &[] }; (() $single:ident) => { $single }; (() $first:ident $($rest:ident)*) => { multi_zip_expr!(($first.into_iter()) $($rest)*) }; (($zips:expr) $first:ident $($rest:ident)*) => { multi_zip_expr!(($zips.zip($first)) $($rest)*) }; (($done:expr)) => { $done }; } #[macro_export(local_inner_macros)] #[doc(hidden)] macro_rules! quote_each_token { ($tokens:ident $span:ident) => {}; ($tokens:ident $span:ident # ! $($rest:tt)*) => { quote_each_token!($tokens $span #); quote_each_token!($tokens $span !); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident # ( $($inner:tt)* ) * $($rest:tt)*) => { for pounded_var_names!(nested_tuples_pat () $($inner)*) in pounded_var_names!(multi_zip_expr () $($inner)*) { quote_each_token!($tokens $span $($inner)*); } quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident # ( $($inner:tt)* ) $sep:tt * $($rest:tt)*) => { for (_i, pounded_var_names!(nested_tuples_pat () $($inner)*)) in pounded_var_names!(multi_zip_expr () $($inner)*).into_iter().enumerate() { if _i > 0 { quote_each_token!($tokens $span $sep); } quote_each_token!($tokens $span $($inner)*); } quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident # [ $($inner:tt)* ] $($rest:tt)*) => { quote_each_token!($tokens $span #); $tokens.extend({ let mut g = $crate::__rt::Group::new( $crate::__rt::Delimiter::Bracket, quote_spanned!($span=> $($inner)*), ); g.set_span($span); Some($crate::__rt::TokenTree::from(g)) }); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident # $first:ident $($rest:tt)*) => { $crate::ToTokens::to_tokens(&$first, &mut $tokens); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident ( $($first:tt)* ) $($rest:tt)*) => { $tokens.extend({ let mut g = $crate::__rt::Group::new( $crate::__rt::Delimiter::Parenthesis, quote_spanned!($span=> $($first)*), ); g.set_span($span); Some($crate::__rt::TokenTree::from(g)) }); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident [ $($first:tt)* ] $($rest:tt)*) => { $tokens.extend({ let mut g = $crate::__rt::Group::new( $crate::__rt::Delimiter::Bracket, quote_spanned!($span=> $($first)*), ); g.set_span($span); Some($crate::__rt::TokenTree::from(g)) }); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident { $($first:tt)* } $($rest:tt)*) => { $tokens.extend({ let mut g = $crate::__rt::Group::new( $crate::__rt::Delimiter::Brace, quote_spanned!($span=> $($first)*), ); g.set_span($span); Some($crate::__rt::TokenTree::from(g)) }); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident + $($rest:tt)*) => { $crate::__rt::push_add(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident += $($rest:tt)*) => { $crate::__rt::push_add_eq(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident & $($rest:tt)*) => { $crate::__rt::push_and(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident && $($rest:tt)*) => { $crate::__rt::push_and_and(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident &= $($rest:tt)*) => { $crate::__rt::push_and_eq(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident @ $($rest:tt)*) => { $crate::__rt::push_at(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident ! $($rest:tt)*) => { $crate::__rt::push_bang(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident ^ $($rest:tt)*) => { $crate::__rt::push_caret(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident ^= $($rest:tt)*) => { $crate::__rt::push_caret_eq(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident : $($rest:tt)*) => { $crate::__rt::push_colon(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident :: $($rest:tt)*) => { $crate::__rt::push_colon2(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident , $($rest:tt)*) => { $crate::__rt::push_comma(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident / $($rest:tt)*) => { $crate::__rt::push_div(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident /= $($rest:tt)*) => { $crate::__rt::push_div_eq(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident . $($rest:tt)*) => { $crate::__rt::push_dot(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident .. $($rest:tt)*) => { $crate::__rt::push_dot2(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident ... $($rest:tt)*) => { $crate::__rt::push_dot3(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident ..= $($rest:tt)*) => { $crate::__rt::push_dot_dot_eq(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident = $($rest:tt)*) => { $crate::__rt::push_eq(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident == $($rest:tt)*) => { $crate::__rt::push_eq_eq(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident >= $($rest:tt)*) => { $crate::__rt::push_ge(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident > $($rest:tt)*) => { $crate::__rt::push_gt(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident <= $($rest:tt)*) => { $crate::__rt::push_le(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident < $($rest:tt)*) => { $crate::__rt::push_lt(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident *= $($rest:tt)*) => { $crate::__rt::push_mul_eq(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident != $($rest:tt)*) => { $crate::__rt::push_ne(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident | $($rest:tt)*) => { $crate::__rt::push_or(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident |= $($rest:tt)*) => { $crate::__rt::push_or_eq(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident || $($rest:tt)*) => { $crate::__rt::push_or_or(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident # $($rest:tt)*) => { $crate::__rt::push_pound(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident ? $($rest:tt)*) => { $crate::__rt::push_question(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident -> $($rest:tt)*) => { $crate::__rt::push_rarrow(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident <- $($rest:tt)*) => { $crate::__rt::push_larrow(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident % $($rest:tt)*) => { $crate::__rt::push_rem(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident %= $($rest:tt)*) => { $crate::__rt::push_rem_eq(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident => $($rest:tt)*) => { $crate::__rt::push_fat_arrow(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident ; $($rest:tt)*) => { $crate::__rt::push_semi(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident << $($rest:tt)*) => { $crate::__rt::push_shl(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident <<= $($rest:tt)*) => { $crate::__rt::push_shl_eq(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident >> $($rest:tt)*) => { $crate::__rt::push_shr(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident >>= $($rest:tt)*) => { $crate::__rt::push_shr_eq(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident * $($rest:tt)*) => { $crate::__rt::push_star(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident - $($rest:tt)*) => { $crate::__rt::push_sub(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident -= $($rest:tt)*) => { $crate::__rt::push_sub_eq(&mut $tokens, $span); quote_each_token!($tokens $span $($rest)*); }; ($tokens:ident $span:ident $first:tt $($rest:tt)*) => { $crate::__rt::parse(&mut $tokens, $span, quote_stringify!($first)); quote_each_token!($tokens $span $($rest)*); }; } // Unhygienically invoke whatever `stringify` the caller has in scope i.e. not a // local macro. The macros marked `local_inner_macros` above cannot invoke // `stringify` directly. #[macro_export] #[doc(hidden)] macro_rules! quote_stringify { ($tt:tt) => { stringify!($tt) }; }