/*Copyright (C) 2008-2009 Timothy B. Terriberry (tterribe@xiph.org) You can redistribute this library and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.*/ #include #include #include #include #include #include "qrcode.h" #include "qrdec.h" #include "bch15_5.h" #include "rs.h" #include "isaac.h" #include "util.h" #include "binarize.h" #include "image.h" #include "error.h" #include "svg.h" typedef int qr_line[3]; typedef struct qr_finder_cluster qr_finder_cluster; typedef struct qr_finder_edge_pt qr_finder_edge_pt; typedef struct qr_finder_center qr_finder_center; typedef struct qr_aff qr_aff; typedef struct qr_hom qr_hom; typedef struct qr_finder qr_finder; typedef struct qr_hom_cell qr_hom_cell; typedef struct qr_sampling_grid qr_sampling_grid; typedef struct qr_pack_buf qr_pack_buf; /*The number of bits in an int. Note the cast to (int): this prevents this value from "promoting" whole expressions to an (unsigned) size_t.*/ #define QR_INT_BITS ((int)sizeof(int)*CHAR_BIT) #define QR_INT_LOGBITS (QR_ILOG(QR_INT_BITS)) /*A 14 bit resolution for a homography ensures that the ideal module size for a version 40 code differs from that of a version 39 code by at least 2.*/ #define QR_HOM_BITS (14) /*The number of bits of sub-module precision to use when searching for alignment patterns. Two bits allows an alignment pattern to be found even if the modules have been eroded by up to 50% (due to blurring, etc.). This must be at least one, since it affects the dynamic range of the transforms, and we sample at half-module resolution to compute a bounding quadrilateral for the code.*/ #define QR_ALIGN_SUBPREC (2) /* collection of finder lines */ typedef struct qr_finder_lines { qr_finder_line *lines; int nlines, clines; } qr_finder_lines; struct qr_reader { /*The GF(256) representation used in Reed-Solomon decoding.*/ rs_gf256 gf; /*The random number generator used by RANSAC.*/ isaac_ctx isaac; /* current finder state, horizontal and vertical lines */ qr_finder_lines finder_lines[2]; }; /*Initializes a client reader handle.*/ static void qr_reader_init (qr_reader *reader) { /*time_t now; now=time(NULL); isaac_init(&_reader->isaac,&now,sizeof(now));*/ isaac_init(&reader->isaac, NULL, 0); rs_gf256_init(&reader->gf, QR_PPOLY); } /*Allocates a client reader handle.*/ qr_reader *_zbar_qr_create (void) { qr_reader *reader = (qr_reader*)calloc(1, sizeof(*reader)); qr_reader_init(reader); return(reader); } /*Frees a client reader handle.*/ void _zbar_qr_destroy (qr_reader *reader) { zprintf(1, "max finder lines = %dx%d\n", reader->finder_lines[0].clines, reader->finder_lines[1].clines); if(reader->finder_lines[0].lines) free(reader->finder_lines[0].lines); if(reader->finder_lines[1].lines) free(reader->finder_lines[1].lines); free(reader); } /* reset finder state between scans */ void _zbar_qr_reset (qr_reader *reader) { reader->finder_lines[0].nlines = 0; reader->finder_lines[1].nlines = 0; } /*A cluster of lines crossing a finder pattern (all in the same direction).*/ struct qr_finder_cluster{ /*Pointers to the lines crossing the pattern.*/ qr_finder_line **lines; /*The number of lines in the cluster.*/ int nlines; }; /*A point on the edge of a finder pattern. These are obtained from the endpoints of the lines crossing this particular pattern.*/ struct qr_finder_edge_pt{ /*The location of the edge point.*/ qr_point pos; /*A label classifying which edge this belongs to: 0: negative u edge (left) 1: positive u edge (right) 2: negative v edge (top) 3: positive v edge (bottom)*/ int edge; /*The (signed) perpendicular distance of the edge point from a line parallel to the edge passing through the finder center, in (u,v) coordinates. This is also re-used by RANSAC to store inlier flags.*/ int extent; }; /*The center of a finder pattern obtained from the crossing of one or more clusters of horizontal finder lines with one or more clusters of vertical finder lines.*/ struct qr_finder_center{ /*The estimated location of the finder center.*/ qr_point pos; /*The list of edge points from the crossing lines.*/ qr_finder_edge_pt *edge_pts; /*The number of edge points from the crossing lines.*/ int nedge_pts; }; static int qr_finder_vline_cmp(const void *_a,const void *_b){ const qr_finder_line *a; const qr_finder_line *b; a=(const qr_finder_line *)_a; b=(const qr_finder_line *)_b; return ((a->pos[0]>b->pos[0])-(a->pos[0]pos[0])<<1)+ (a->pos[1]>b->pos[1])-(a->pos[1]pos[1]); } /*Clusters adjacent lines into groups that are large enough to be crossing a finder pattern (relative to their length). _clusters: The buffer in which to store the clusters found. _neighbors: The buffer used to store the lists of lines in each cluster. _lines: The list of lines to cluster. Horizontal lines must be sorted in ascending order by Y coordinate, with ties broken by X coordinate. Vertical lines must be sorted in ascending order by X coordinate, with ties broken by Y coordinate. _nlines: The number of lines in the set of lines to cluster. _v: 0 for horizontal lines, or 1 for vertical lines. Return: The number of clusters.*/ static int qr_finder_cluster_lines(qr_finder_cluster *_clusters, qr_finder_line **_neighbors,qr_finder_line *_lines,int _nlines,int _v){ unsigned char *mark; qr_finder_line **neighbors; int nneighbors; int nclusters; int i; /*TODO: Kalman filters!*/ mark=(unsigned char *)calloc(_nlines,sizeof(*mark)); neighbors=_neighbors; nclusters=0; for(i=0;i<_nlines-1;i++)if(!mark[i]){ int len; int j; nneighbors=1; neighbors[0]=_lines+i; len=_lines[i].len; for(j=i+1;j<_nlines;j++)if(!mark[j]){ const qr_finder_line *a; const qr_finder_line *b; int thresh; a=neighbors[nneighbors-1]; b=_lines+j; /*The clustering threshold is proportional to the size of the lines, since minor noise in large areas can interrupt patterns more easily at high resolutions.*/ thresh=a->len+7>>2; if(abs(a->pos[1-_v]-b->pos[1-_v])>thresh)break; if(abs(a->pos[_v]-b->pos[_v])>thresh)continue; if(abs(a->pos[_v]+a->len-b->pos[_v]-b->len)>thresh)continue; if(a->boffs>0&&b->boffs>0&& abs(a->pos[_v]-a->boffs-b->pos[_v]+b->boffs)>thresh){ continue; } if(a->eoffs>0&&b->eoffs>0&& abs(a->pos[_v]+a->len+a->eoffs-b->pos[_v]-b->len-b->eoffs)>thresh){ continue; } neighbors[nneighbors++]=_lines+j; len+=b->len; } /*We require at least three lines to form a cluster, which eliminates a large number of false positives, saving considerable decoding time. This should still be sufficient for 1-pixel codes with no noise.*/ if(nneighbors<3)continue; /*The expected number of lines crossing a finder pattern is equal to their average length. We accept the cluster if size is at least 1/3 their average length (this is a very small threshold, but was needed for some test images).*/ len=((len<<1)+nneighbors)/(nneighbors<<1); if(nneighbors*(5<=len){ _clusters[nclusters].lines=neighbors; _clusters[nclusters].nlines=nneighbors; for(j=0;jnlines;j++){ qr_finder_line *l; l=c->lines[j]; if(l->boffs>0){ _edge_pts[_nedge_pts].pos[0]=l->pos[0]; _edge_pts[_nedge_pts].pos[1]=l->pos[1]; _edge_pts[_nedge_pts].pos[_v]-=l->boffs; _nedge_pts++; } if(l->eoffs>0){ _edge_pts[_nedge_pts].pos[0]=l->pos[0]; _edge_pts[_nedge_pts].pos[1]=l->pos[1]; _edge_pts[_nedge_pts].pos[_v]+=l->len+l->eoffs; _nedge_pts++; } } } return _nedge_pts; } static int qr_finder_center_cmp(const void *_a,const void *_b){ const qr_finder_center *a; const qr_finder_center *b; a=(const qr_finder_center *)_a; b=(const qr_finder_center *)_b; return ((b->nedge_pts>a->nedge_pts)-(b->nedge_ptsnedge_pts)<<2)+ ((a->pos[1]>b->pos[1])-(a->pos[1]pos[1])<<1)+ (a->pos[0]>b->pos[0])-(a->pos[0]pos[0]); } /*Determine if a horizontal line crosses a vertical line. _hline: The horizontal line. _vline: The vertical line. Return: A non-zero value if the lines cross, or zero if they do not.*/ static int qr_finder_lines_are_crossing(const qr_finder_line *_hline, const qr_finder_line *_vline){ return _hline->pos[0]<=_vline->pos[0]&&_vline->pos[0]<_hline->pos[0]+_hline->len&& _vline->pos[1]<=_hline->pos[1]&&_hline->pos[1]<_vline->pos[1]+_vline->len; } /*Finds horizontal clusters that cross corresponding vertical clusters, presumably corresponding to a finder center. _center: The buffer in which to store putative finder centers. _edge_pts: The buffer to use for the edge point lists for each finder center. _hclusters: The clusters of horizontal lines crossing finder patterns. _nhclusters: The number of horizontal line clusters. _vclusters: The clusters of vertical lines crossing finder patterns. _nvclusters: The number of vertical line clusters. Return: The number of putative finder centers.*/ static int qr_finder_find_crossings(qr_finder_center *_centers, qr_finder_edge_pt *_edge_pts,qr_finder_cluster *_hclusters,int _nhclusters, qr_finder_cluster *_vclusters,int _nvclusters){ qr_finder_cluster **hneighbors; qr_finder_cluster **vneighbors; unsigned char *hmark; unsigned char *vmark; int ncenters; int i; int j; hneighbors=(qr_finder_cluster **)malloc(_nhclusters*sizeof(*hneighbors)); vneighbors=(qr_finder_cluster **)malloc(_nvclusters*sizeof(*vneighbors)); hmark=(unsigned char *)calloc(_nhclusters,sizeof(*hmark)); vmark=(unsigned char *)calloc(_nvclusters,sizeof(*vmark)); ncenters=0; /*TODO: This may need some re-working. We should be finding groups of clusters such that _all_ horizontal lines in _all_ horizontal clusters in the group cross _all_ vertical lines in _all_ vertical clusters in the group. This is equivalent to finding the maximum bipartite clique in the connectivity graph, which requires linear progamming to solve efficiently. In principle, that is easy to do, but a realistic implementation without floating point is a lot of work (and computationally expensive). Right now we are relying on a sufficient border around the finder patterns to prevent false positives.*/ for(i=0;i<_nhclusters;i++)if(!hmark[i]){ qr_finder_line *a; qr_finder_line *b; int nvneighbors; int nedge_pts; int y; a=_hclusters[i].lines[_hclusters[i].nlines>>1]; y=nvneighbors=0; for(j=0;j<_nvclusters;j++)if(!vmark[j]){ b=_vclusters[j].lines[_vclusters[j].nlines>>1]; if(qr_finder_lines_are_crossing(a,b)){ vmark[j]=1; y+=(b->pos[1]<<1)+b->len; if(b->boffs>0&&b->eoffs>0)y+=b->eoffs-b->boffs; vneighbors[nvneighbors++]=_vclusters+j; } } if(nvneighbors>0){ qr_finder_center *c; int nhneighbors; int x; x=(a->pos[0]<<1)+a->len; if(a->boffs>0&&a->eoffs>0)x+=a->eoffs-a->boffs; hneighbors[0]=_hclusters+i; nhneighbors=1; j=nvneighbors>>1; b=vneighbors[j]->lines[vneighbors[j]->nlines>>1]; for(j=i+1;j<_nhclusters;j++)if(!hmark[j]){ a=_hclusters[j].lines[_hclusters[j].nlines>>1]; if(qr_finder_lines_are_crossing(a,b)){ hmark[j]=1; x+=(a->pos[0]<<1)+a->len; if(a->boffs>0&&a->eoffs>0)x+=a->eoffs-a->boffs; hneighbors[nhneighbors++]=_hclusters+j; } } c=_centers+ncenters++; c->pos[0]=(x+nhneighbors)/(nhneighbors<<1); c->pos[1]=(y+nvneighbors)/(nvneighbors<<1); c->edge_pts=_edge_pts; nedge_pts=qr_finder_edge_pts_fill(_edge_pts,0, hneighbors,nhneighbors,0); nedge_pts=qr_finder_edge_pts_fill(_edge_pts,nedge_pts, vneighbors,nvneighbors,1); c->nedge_pts=nedge_pts; _edge_pts+=nedge_pts; } } free(vmark); free(hmark); free(vneighbors); free(hneighbors); /*Sort the centers by decreasing numbers of edge points.*/ qsort(_centers,ncenters,sizeof(*_centers),qr_finder_center_cmp); return ncenters; } /*Locates a set of putative finder centers in the image. First we search for horizontal and vertical lines that have (dark:light:dark:light:dark) runs with size ratios of roughly (1:1:3:1:1). Then we cluster them into groups such that each subsequent pair of endpoints is close to the line before it in the cluster. This will locate many line clusters that don't cross a finder pattern, but qr_finder_find_crossings() will filter most of them out. Where horizontal and vertical clusters cross, a prospective finder center is returned. _centers: Returns a pointer to a freshly-allocated list of finder centers. This must be freed by the caller. _edge_pts: Returns a pointer to a freshly-allocated list of edge points around those centers. This must be freed by the caller. _img: The binary image to search. _width: The width of the image. _height: The height of the image. Return: The number of putative finder centers located.*/ static int qr_finder_centers_locate(qr_finder_center **_centers, qr_finder_edge_pt **_edge_pts, qr_reader *reader, int _width,int _height){ qr_finder_line *hlines = reader->finder_lines[0].lines; int nhlines = reader->finder_lines[0].nlines; qr_finder_line *vlines = reader->finder_lines[1].lines; int nvlines = reader->finder_lines[1].nlines; qr_finder_line **hneighbors; qr_finder_cluster *hclusters; int nhclusters; qr_finder_line **vneighbors; qr_finder_cluster *vclusters; int nvclusters; int ncenters; /*Cluster the detected lines.*/ hneighbors=(qr_finder_line **)malloc(nhlines*sizeof(*hneighbors)); /*We require more than one line per cluster, so there are at most nhlines/2.*/ hclusters=(qr_finder_cluster *)malloc((nhlines>>1)*sizeof(*hclusters)); nhclusters=qr_finder_cluster_lines(hclusters,hneighbors,hlines,nhlines,0); /*We need vertical lines to be sorted by X coordinate, with ties broken by Y coordinate, for clustering purposes. We scan the image in the opposite order for cache efficiency, so sort the lines we found here.*/ qsort(vlines,nvlines,sizeof(*vlines),qr_finder_vline_cmp); vneighbors=(qr_finder_line **)malloc(nvlines*sizeof(*vneighbors)); /*We require more than one line per cluster, so there are at most nvlines/2.*/ vclusters=(qr_finder_cluster *)malloc((nvlines>>1)*sizeof(*vclusters)); nvclusters=qr_finder_cluster_lines(vclusters,vneighbors,vlines,nvlines,1); /*Find line crossings among the clusters.*/ if(nhclusters>=3&&nvclusters>=3){ qr_finder_edge_pt *edge_pts; qr_finder_center *centers; int nedge_pts; int i; nedge_pts=0; for(i=0;i>1)); dround=(1<>1; if(_sxx>_syy){ _l[0]=v+dround>>dshift; _l[1]=u+w+dround>>dshift; } else{ _l[0]=u+w+dround>>dshift; _l[1]=v+dround>>dshift; } _l[2]=-(_x0*_l[0]+_y0*_l[1]); } /*Perform a least-squares line fit to a list of points. At least two points are required.*/ static void qr_line_fit_points(qr_line _l,qr_point *_p,int _np,int _res){ int sx; int sy; int xmin; int xmax; int ymin; int ymax; int xbar; int ybar; int dx; int dy; int sxx; int sxy; int syy; int sshift; int sround; int i; sx=sy=0; ymax=xmax=INT_MIN; ymin=xmin=INT_MAX; for(i=0;i<_np;i++){ sx+=_p[i][0]; xmin=QR_MINI(xmin,_p[i][0]); xmax=QR_MAXI(xmax,_p[i][0]); sy+=_p[i][1]; ymin=QR_MINI(ymin,_p[i][1]); ymax=QR_MAXI(ymax,_p[i][1]); } xbar=(sx+(_np>>1))/_np; ybar=(sy+(_np>>1))/_np; sshift=QR_MAXI(0,qr_ilog(_np*QR_MAXI(QR_MAXI(xmax-xbar,xbar-xmin), QR_MAXI(ymax-ybar,ybar-ymin)))-(QR_INT_BITS-1>>1)); sround=(1<>1; sxx=sxy=syy=0; for(i=0;i<_np;i++){ dx=_p[i][0]-xbar+sround>>sshift; dy=_p[i][1]-ybar+sround>>sshift; sxx+=dx*dx; sxy+=dx*dy; syy+=dy*dy; } qr_line_fit(_l,xbar,ybar,sxx,sxy,syy,_res); } static void qr_line_orient(qr_line _l,int _x,int _y){ if(qr_line_eval(_l,_x,_y)<0){ _l[0]=-_l[0]; _l[1]=-_l[1]; _l[2]=-_l[2]; } } static int qr_line_isect(qr_point _p,const qr_line _l0,const qr_line _l1){ int d; int x; int y; d=_l0[0]*_l1[1]-_l0[1]*_l1[0]; if(d==0)return -1; x=_l0[1]*_l1[2]-_l1[1]*_l0[2]; y=_l1[0]*_l0[2]-_l0[0]*_l1[2]; if(d<0){ x=-x; y=-y; d=-d; } _p[0]=QR_DIVROUND(x,d); _p[1]=QR_DIVROUND(y,d); return 0; } /*An affine homography. This maps from the image (at subpel resolution) to a square domain with power-of-two sides (of res bits) and back.*/ struct qr_aff{ int fwd[2][2]; int inv[2][2]; int x0; int y0; int res; int ires; }; static void qr_aff_init(qr_aff *_aff, const qr_point _p0,const qr_point _p1,const qr_point _p2,int _res){ int det; int ires; int dx1; int dy1; int dx2; int dy2; /*det is ensured to be positive by our caller.*/ dx1=_p1[0]-_p0[0]; dx2=_p2[0]-_p0[0]; dy1=_p1[1]-_p0[1]; dy2=_p2[1]-_p0[1]; det=dx1*dy2-dy1*dx2; ires=QR_MAXI((qr_ilog(abs(det))>>1)-2,0); _aff->fwd[0][0]=dx1; _aff->fwd[0][1]=dx2; _aff->fwd[1][0]=dy1; _aff->fwd[1][1]=dy2; _aff->inv[0][0]=QR_DIVROUND(dy2<<_res,det>>ires); _aff->inv[0][1]=QR_DIVROUND(-dx2<<_res,det>>ires); _aff->inv[1][0]=QR_DIVROUND(-dy1<<_res,det>>ires); _aff->inv[1][1]=QR_DIVROUND(dx1<<_res,det>>ires); _aff->x0=_p0[0]; _aff->y0=_p0[1]; _aff->res=_res; _aff->ires=ires; } /*Map from the image (at subpel resolution) into the square domain.*/ static void qr_aff_unproject(qr_point _q,const qr_aff *_aff, int _x,int _y){ _q[0]=_aff->inv[0][0]*(_x-_aff->x0)+_aff->inv[0][1]*(_y-_aff->y0) +(1<<_aff->ires>>1)>>_aff->ires; _q[1]=_aff->inv[1][0]*(_x-_aff->x0)+_aff->inv[1][1]*(_y-_aff->y0) +(1<<_aff->ires>>1)>>_aff->ires; } /*Map from the square domain into the image (at subpel resolution).*/ static void qr_aff_project(qr_point _p,const qr_aff *_aff, int _u,int _v){ _p[0]=(_aff->fwd[0][0]*_u+_aff->fwd[0][1]*_v+(1<<_aff->res-1)>>_aff->res) +_aff->x0; _p[1]=(_aff->fwd[1][0]*_u+_aff->fwd[1][1]*_v+(1<<_aff->res-1)>>_aff->res) +_aff->y0; } /*A full homography. Like the affine homography, this maps from the image (at subpel resolution) to a square domain with power-of-two sides (of res bits) and back.*/ struct qr_hom{ int fwd[3][2]; int inv[3][2]; int fwd22; int inv22; int x0; int y0; int res; }; static void qr_hom_init(qr_hom *_hom,int _x0,int _y0, int _x1,int _y1,int _x2,int _y2,int _x3,int _y3,int _res){ int dx10; int dx20; int dx30; int dx31; int dx32; int dy10; int dy20; int dy30; int dy31; int dy32; int a20; int a21; int a22; int b0; int b1; int b2; int s1; int s2; int r1; int r2; dx10=_x1-_x0; dx20=_x2-_x0; dx30=_x3-_x0; dx31=_x3-_x1; dx32=_x3-_x2; dy10=_y1-_y0; dy20=_y2-_y0; dy30=_y3-_y0; dy31=_y3-_y1; dy32=_y3-_y2; a20=dx32*dy10-dx10*dy32; a21=dx20*dy31-dx31*dy20; a22=dx32*dy31-dx31*dy32; /*Figure out if we need to downscale anything.*/ b0=qr_ilog(QR_MAXI(abs(dx10),abs(dy10)))+qr_ilog(abs(a20+a22)); b1=qr_ilog(QR_MAXI(abs(dx20),abs(dy20)))+qr_ilog(abs(a21+a22)); b2=qr_ilog(QR_MAXI(QR_MAXI(abs(a20),abs(a21)),abs(a22))); s1=QR_MAXI(0,_res+QR_MAXI(QR_MAXI(b0,b1),b2)-(QR_INT_BITS-2)); r1=(1<>1; /*Compute the final coefficients of the forward transform. The 32x32->64 bit multiplies are really needed for accuracy with large versions.*/ _hom->fwd[0][0]=QR_FIXMUL(dx10,a20+a22,r1,s1); _hom->fwd[0][1]=QR_FIXMUL(dx20,a21+a22,r1,s1); _hom->x0=_x0; _hom->fwd[1][0]=QR_FIXMUL(dy10,a20+a22,r1,s1); _hom->fwd[1][1]=QR_FIXMUL(dy20,a21+a22,r1,s1); _hom->y0=_y0; _hom->fwd[2][0]=a20+r1>>s1; _hom->fwd[2][1]=a21+r1>>s1; _hom->fwd22=s1>_res?a22+(r1>>_res)>>s1-_res:a22<<_res-s1; /*Now compute the inverse transform.*/ b0=qr_ilog(QR_MAXI(QR_MAXI(abs(dx10),abs(dx20)),abs(dx30)))+ qr_ilog(QR_MAXI(abs(_hom->fwd[0][0]),abs(_hom->fwd[1][0]))); b1=qr_ilog(QR_MAXI(QR_MAXI(abs(dy10),abs(dy20)),abs(dy30)))+ qr_ilog(QR_MAXI(abs(_hom->fwd[0][1]),abs(_hom->fwd[1][1]))); b2=qr_ilog(abs(a22))-s1; s2=QR_MAXI(0,QR_MAXI(b0,b1)+b2-(QR_INT_BITS-3)); r2=(1<>1; s1+=s2; r1<<=s2; /*The 32x32->64 bit multiplies are really needed for accuracy with large versions.*/ _hom->inv[0][0]=QR_FIXMUL(_hom->fwd[1][1],a22,r1,s1); _hom->inv[0][1]=QR_FIXMUL(-_hom->fwd[0][1],a22,r1,s1); _hom->inv[1][0]=QR_FIXMUL(-_hom->fwd[1][0],a22,r1,s1); _hom->inv[1][1]=QR_FIXMUL(_hom->fwd[0][0],a22,r1,s1); _hom->inv[2][0]=QR_FIXMUL(_hom->fwd[1][0],_hom->fwd[2][1], -QR_EXTMUL(_hom->fwd[1][1],_hom->fwd[2][0],r2),s2); _hom->inv[2][1]=QR_FIXMUL(_hom->fwd[0][1],_hom->fwd[2][0], -QR_EXTMUL(_hom->fwd[0][0],_hom->fwd[2][1],r2),s2); _hom->inv22=QR_FIXMUL(_hom->fwd[0][0],_hom->fwd[1][1], -QR_EXTMUL(_hom->fwd[0][1],_hom->fwd[1][0],r2),s2); _hom->res=_res; } /*Map from the image (at subpel resolution) into the square domain. Returns a negative value if the point went to infinity.*/ static int qr_hom_unproject(qr_point _q,const qr_hom *_hom,int _x,int _y){ int x; int y; int w; _x-=_hom->x0; _y-=_hom->y0; x=_hom->inv[0][0]*_x+_hom->inv[0][1]*_y; y=_hom->inv[1][0]*_x+_hom->inv[1][1]*_y; w=_hom->inv[2][0]*_x+_hom->inv[2][1]*_y +_hom->inv22+(1<<_hom->res-1)>>_hom->res; if(w==0){ _q[0]=x<0?INT_MIN:INT_MAX; _q[1]=y<0?INT_MIN:INT_MAX; return -1; } else{ if(w<0){ x=-x; y=-y; w=-w; } _q[0]=QR_DIVROUND(x,w); _q[1]=QR_DIVROUND(y,w); } return 0; } /*Finish a partial projection, converting from homogeneous coordinates to the normal 2-D representation. In loops, we can avoid many multiplies by computing the homogeneous _x, _y, and _w incrementally, but we cannot avoid the divisions, done here.*/ static void qr_hom_fproject(qr_point _p,const qr_hom *_hom, int _x,int _y,int _w){ if(_w==0){ _p[0]=_x<0?INT_MIN:INT_MAX; _p[1]=_y<0?INT_MIN:INT_MAX; } else{ if(_w<0){ _x=-_x; _y=-_y; _w=-_w; } _p[0]=QR_DIVROUND(_x,_w)+_hom->x0; _p[1]=QR_DIVROUND(_y,_w)+_hom->y0; } } #if defined(QR_DEBUG) /*Map from the square domain into the image (at subpel resolution). Currently only used directly by debug code.*/ static void qr_hom_project(qr_point _p,const qr_hom *_hom, int _u,int _v){ qr_hom_fproject(_p,_hom, _hom->fwd[0][0]*_u+_hom->fwd[0][1]*_v, _hom->fwd[1][0]*_u+_hom->fwd[1][1]*_v, _hom->fwd[2][0]*_u+_hom->fwd[2][1]*_v+_hom->fwd22); } #endif /*All the information we've collected about a finder pattern in the current configuration.*/ struct qr_finder{ /*The module size along each axis (in the square domain).*/ int size[2]; /*The version estimated from the module size along each axis.*/ int eversion[2]; /*The list of classified edge points for each edge.*/ qr_finder_edge_pt *edge_pts[4]; /*The number of edge points classified as belonging to each edge.*/ int nedge_pts[4]; /*The number of inliers found after running RANSAC on each edge.*/ int ninliers[4]; /*The center of the finder pattern (in the square domain).*/ qr_point o; /*The finder center information from the original image.*/ qr_finder_center *c; }; static int qr_cmp_edge_pt(const void *_a,const void *_b){ const qr_finder_edge_pt *a; const qr_finder_edge_pt *b; a=(const qr_finder_edge_pt *)_a; b=(const qr_finder_edge_pt *)_b; return ((a->edge>b->edge)-(a->edgeedge)<<1)+ (a->extent>b->extent)-(a->extentextent); } /*Computes the index of the edge each edge point belongs to, and its (signed) distance along the corresponding axis from the center of the finder pattern (in the square domain). The resulting list of edge points is sorted by edge index, with ties broken by extent.*/ static void qr_finder_edge_pts_aff_classify(qr_finder *_f,const qr_aff *_aff){ qr_finder_center *c; int i; int e; c=_f->c; for(e=0;e<4;e++)_f->nedge_pts[e]=0; for(i=0;inedge_pts;i++){ qr_point q; int d; qr_aff_unproject(q,_aff,c->edge_pts[i].pos[0],c->edge_pts[i].pos[1]); qr_point_translate(q,-_f->o[0],-_f->o[1]); d=abs(q[1])>abs(q[0]); e=d<<1|(q[d]>=0); _f->nedge_pts[e]++; c->edge_pts[i].edge=e; c->edge_pts[i].extent=q[d]; } qsort(c->edge_pts,c->nedge_pts,sizeof(*c->edge_pts),qr_cmp_edge_pt); _f->edge_pts[0]=c->edge_pts; for(e=1;e<4;e++)_f->edge_pts[e]=_f->edge_pts[e-1]+_f->nedge_pts[e-1]; } /*Computes the index of the edge each edge point belongs to, and its (signed) distance along the corresponding axis from the center of the finder pattern (in the square domain). The resulting list of edge points is sorted by edge index, with ties broken by extent.*/ static void qr_finder_edge_pts_hom_classify(qr_finder *_f,const qr_hom *_hom){ qr_finder_center *c; int i; int e; c=_f->c; for(e=0;e<4;e++)_f->nedge_pts[e]=0; for(i=0;inedge_pts;i++){ qr_point q; int d; if(qr_hom_unproject(q,_hom, c->edge_pts[i].pos[0],c->edge_pts[i].pos[1])>=0){ qr_point_translate(q,-_f->o[0],-_f->o[1]); d=abs(q[1])>abs(q[0]); e=d<<1|(q[d]>=0); _f->nedge_pts[e]++; c->edge_pts[i].edge=e; c->edge_pts[i].extent=q[d]; } else{ c->edge_pts[i].edge=4; c->edge_pts[i].extent=q[0]; } } qsort(c->edge_pts,c->nedge_pts,sizeof(*c->edge_pts),qr_cmp_edge_pt); _f->edge_pts[0]=c->edge_pts; for(e=1;e<4;e++)_f->edge_pts[e]=_f->edge_pts[e-1]+_f->nedge_pts[e-1]; } /*TODO: Perhaps these thresholds should be on the module size instead? Unfortunately, I'd need real-world images of codes with larger versions to see if these thresholds are still effective, but such versions aren't used often.*/ /*The amount that the estimated version numbers are allowed to differ from the real version number and still be considered valid.*/ #define QR_SMALL_VERSION_SLACK (1) /*Since cell phone cameras can have severe radial distortion, the estimated version for larger versions can be off by larger amounts.*/ #define QR_LARGE_VERSION_SLACK (3) /*Estimates the size of a module after classifying the edge points. _width: The distance between UL and UR in the square domain. _height: The distance between UL and DL in the square domain.*/ static int qr_finder_estimate_module_size_and_version(qr_finder *_f, int _width,int _height){ qr_point offs; int sums[4]; int nsums[4]; int usize; int nusize; int vsize; int nvsize; int uversion; int vversion; int e; offs[0]=offs[1]=0; for(e=0;e<4;e++)if(_f->nedge_pts[e]>0){ qr_finder_edge_pt *edge_pts; int sum; int mean; int n; int i; /*Average the samples for this edge, dropping the top and bottom 25%.*/ edge_pts=_f->edge_pts[e]; n=_f->nedge_pts[e]; sum=0; for(i=(n>>2);i>2);i++)sum+=edge_pts[i].extent; n=n-((n>>2)<<1); mean=QR_DIVROUND(sum,n); offs[e>>1]+=mean; sums[e]=sum; nsums[e]=n; } else nsums[e]=sums[e]=0; /*If we have samples on both sides of an axis, refine our idea of where the unprojected finder center is located.*/ if(_f->nedge_pts[0]>0&&_f->nedge_pts[1]>0){ _f->o[0]-=offs[0]>>1; sums[0]-=offs[0]*nsums[0]>>1; sums[1]-=offs[0]*nsums[1]>>1; } if(_f->nedge_pts[2]>0&&_f->nedge_pts[3]>0){ _f->o[1]-=offs[1]>>1; sums[2]-=offs[1]*nsums[2]>>1; sums[3]-=offs[1]*nsums[3]>>1; } /*We must have _some_ samples along each axis... if we don't, our transform must be pretty severely distorting the original square (e.g., with coordinates so large as to cause overflow).*/ nusize=nsums[0]+nsums[1]; if(nusize<=0)return -1; /*The module size is 1/3 the average edge extent.*/ nusize*=3; usize=sums[1]-sums[0]; usize=((usize<<1)+nusize)/(nusize<<1); if(usize<=0)return -1; /*Now estimate the version directly from the module size and the distance between the finder patterns. This is done independently using the extents along each axis. If either falls significantly outside the valid range (1 to 40), reject the configuration.*/ uversion=(_width-8*usize)/(usize<<2); if(uversion<1||uversion>40+QR_LARGE_VERSION_SLACK)return -1; /*Now do the same for the other axis.*/ nvsize=nsums[2]+nsums[3]; if(nvsize<=0)return -1; nvsize*=3; vsize=sums[3]-sums[2]; vsize=((vsize<<1)+nvsize)/(nvsize<<1); if(vsize<=0)return -1; vversion=(_height-8*vsize)/(vsize<<2); if(vversion<1||vversion>40+QR_LARGE_VERSION_SLACK)return -1; /*If the estimated version using extents along one axis is significantly different than the estimated version along the other axis, then the axes have significantly different scalings (relative to the grid). This can happen, e.g., when we have multiple adjacent QR codes, and we've picked two finder patterns from one and the third finder pattern from another, e.g.: X---DL UL---X |.... |.... X.... UR.... Such a configuration might even pass any other geometric checks if we didn't reject it here.*/ if(abs(uversion-vversion)>QR_LARGE_VERSION_SLACK)return -1; _f->size[0]=usize; _f->size[1]=vsize; /*We intentionally do not compute an average version from the sizes along both axes. In the presence of projective distortion, one of them will be much more accurate than the other.*/ _f->eversion[0]=uversion; _f->eversion[1]=vversion; return 0; } /*Eliminate outliers from the classified edge points with RANSAC.*/ static void qr_finder_ransac(qr_finder *_f,const qr_aff *_hom, isaac_ctx *_isaac,int _e){ qr_finder_edge_pt *edge_pts; int best_ninliers; int n; edge_pts=_f->edge_pts[_e]; n=_f->nedge_pts[_e]; best_ninliers=0; if(n>1){ int max_iters; int i; int j; /*17 iterations is enough to guarantee an outlier-free sample with more than 99% probability given as many as 50% outliers.*/ max_iters=17; for(i=0;i=p0i)p1i++; p0=edge_pts[p0i].pos; p1=edge_pts[p1i].pos; /*If the corresponding line is not within 45 degrees of the proper orientation in the square domain, reject it outright. This can happen, e.g., when highly skewed orientations cause points to be misclassified into the wrong edge. The irony is that using such points might produce a line which _does_ pass the corresponding validity checks.*/ qr_aff_unproject(q0,_hom,p0[0],p0[1]); qr_aff_unproject(q1,_hom,p1[0],p1[1]); qr_point_translate(q0,-_f->o[0],-_f->o[1]); qr_point_translate(q1,-_f->o[0],-_f->o[1]); if(abs(q0[_e>>1]-q1[_e>>1])>abs(q0[1-(_e>>1)]-q1[1-(_e>>1)]))continue; /*Identify the other edge points which are inliers. The squared distance should be distributed as a \Chi^2 distribution with one degree of freedom, which means for a 95% confidence the point should lie within a factor 3.8414588 ~= 4 times the expected variance of the point locations. We grossly approximate the standard deviation as 1 pixel in one direction, and 0.5 pixels in the other (because we average two coordinates).*/ thresh=qr_isqrt(qr_point_distance2(p0,p1)<<2*QR_FINDER_SUBPREC+1); ninliers=0; for(j=0;jbest_ninliers){ for(j=0;jn>>1)max_iters=(67*n-63*ninliers-1)/(n<<1); } } /*Now collect all the inliers at the beginning of the list.*/ for(i=j=0;jninliers[_e]=best_ninliers; } /*Perform a least-squares line fit to an edge of a finder pattern using the inliers found by RANSAC.*/ static int qr_line_fit_finder_edge(qr_line _l, const qr_finder *_f,int _e,int _res){ qr_finder_edge_pt *edge_pts; qr_point *pts; int npts; int i; npts=_f->ninliers[_e]; if(npts<2)return -1; /*We could write a custom version of qr_line_fit_points that accesses edge_pts directly, but this saves on code size and doesn't measurably slow things down.*/ pts=(qr_point *)malloc(npts*sizeof(*pts)); edge_pts=_f->edge_pts[_e]; for(i=0;ic->pos[0],_f->c->pos[1]); free(pts); return 0; } /*Perform a least-squares line fit to a pair of common finder edges using the inliers found by RANSAC. Unlike a normal edge fit, we guarantee that this one succeeds by creating at least one point on each edge using the estimated module size if it has no inliers.*/ static void qr_line_fit_finder_pair(qr_line _l,const qr_aff *_aff, const qr_finder *_f0,const qr_finder *_f1,int _e){ qr_point *pts; int npts; qr_finder_edge_pt *edge_pts; qr_point q; int n0; int n1; int i; n0=_f0->ninliers[_e]; n1=_f1->ninliers[_e]; /*We could write a custom version of qr_line_fit_points that accesses edge_pts directly, but this saves on code size and doesn't measurably slow things down.*/ npts=QR_MAXI(n0,1)+QR_MAXI(n1,1); pts=(qr_point *)malloc(npts*sizeof(*pts)); if(n0>0){ edge_pts=_f0->edge_pts[_e]; for(i=0;io[0]; q[1]=_f0->o[1]; q[_e>>1]+=_f0->size[_e>>1]*(2*(_e&1)-1); qr_aff_project(pts[0],_aff,q[0],q[1]); n0++; } if(n1>0){ edge_pts=_f1->edge_pts[_e]; for(i=0;io[0]; q[1]=_f1->o[1]; q[_e>>1]+=_f1->size[_e>>1]*(2*(_e&1)-1); qr_aff_project(pts[n0],_aff,q[0],q[1]); n1++; } qr_line_fit_points(_l,pts,npts,_aff->res); /*Make sure at least one finder center lies in the positive halfspace.*/ qr_line_orient(_l,_f0->c->pos[0],_f0->c->pos[1]); free(pts); } static int qr_finder_quick_crossing_check(const unsigned char *_img, int _width,int _height,int _x0,int _y0,int _x1,int _y1,int _v){ /*The points must be inside the image, and have a !_v:_v:!_v pattern. We don't scan the whole line initially, but quickly reject if the endpoints aren't !_v, or the midpoint isn't _v. If either end point is out of the image, or we don't encounter a _v pixel, we return a negative value, indicating the region should be considered empty. Otherwise, we return a positive value to indicate it is non-empty.*/ if(_x0<0||_x0>=_width||_y0<0||_y0>=_height|| _x1<0||_x1>=_width||_y1<0||_y1>=_height){ return -1; } if((!_img[_y0*_width+_x0])!=_v||(!_img[_y1*_width+_x1])!=_v)return 1; if((!_img[(_y0+_y1>>1)*_width+(_x0+_x1>>1)])==_v)return -1; return 0; } /*Locate the midpoint of a _v segment along a !_v:_v:!_v line from (_x0,_y0) to (_x1,_y1). All coordinates, which are NOT in subpel resolution, must lie inside the image, and the endpoints are already assumed to have the value !_v. The returned value is in subpel resolution.*/ static int qr_finder_locate_crossing(const unsigned char *_img, int _width,int _height,int _x0,int _y0,int _x1,int _y1,int _v,qr_point _p){ qr_point x0; qr_point x1; qr_point dx; int step[2]; int steep; int err; int derr; /*Use Bresenham's algorithm to trace along the line and find the exact transitions from !_v to _v and back.*/ x0[0]=_x0; x0[1]=_y0; x1[0]=_x1; x1[1]=_y1; dx[0]=abs(_x1-_x0); dx[1]=abs(_y1-_y0); steep=dx[1]>dx[0]; err=0; derr=dx[1-steep]; step[0]=((_x0<_x1)<<1)-1; step[1]=((_y0<_y1)<<1)-1; /*Find the first crossing from !_v to _v.*/ for(;;){ /*If we make it all the way to the other side, there's no crossing.*/ if(x0[steep]==x1[steep])return -1; x0[steep]+=step[steep]; err+=derr; if(err<<1>dx[steep]){ x0[1-steep]+=step[1-steep]; err-=dx[steep]; } if((!_img[x0[1]*_width+x0[0]])!=_v)break; } /*Find the last crossing from _v to !_v.*/ err=0; for(;;){ if(x0[steep]==x1[steep])break; x1[steep]-=step[steep]; err+=derr; if(err<<1>dx[steep]){ x1[1-steep]-=step[1-steep]; err-=dx[steep]; } if((!_img[x1[1]*_width+x1[0]])!=_v)break; } /*Return the midpoint of the _v segment.*/ _p[0]=(x0[0]+x1[0]+1<>1; _p[1]=(x0[1]+x1[1]+1<>1; return 0; } static int qr_aff_line_step(const qr_aff *_aff,qr_line _l, int _v,int _du,int *_dv){ int shift; int round; int dv; int n; int d; n=_aff->fwd[0][_v]*_l[0]+_aff->fwd[1][_v]*_l[1]; d=_aff->fwd[0][1-_v]*_l[0]+_aff->fwd[1][1-_v]*_l[1]; if(d<0){ n=-n; d=-d; } shift=QR_MAXI(0,qr_ilog(_du)+qr_ilog(abs(n))+3-QR_INT_BITS); round=(1<>1; n=n+round>>shift; d=d+round>>shift; /*The line should not be outside 45 degrees of horizontal/vertical. TODO: We impose this restriction to help ensure the loop below terminates, but it should not technically be required. It also, however, ensures we avoid division by zero.*/ if(abs(n)>=d)return -1; n=-_du*n; dv=QR_DIVROUND(n,d); if(abs(dv)>=_du)return -1; *_dv=dv; return 0; } /*Computes the Hamming distance between two bit patterns (the number of bits that differ). May stop counting after _maxdiff differences.*/ static int qr_hamming_dist(unsigned _y1,unsigned _y2,int _maxdiff){ unsigned y; int ret; y=_y1^_y2; for(ret=0;ret<_maxdiff&&y;ret++)y&=y-1; return ret; } /*Retrieve a bit (guaranteed to be 0 or 1) from the image, given coordinates in subpel resolution which have not been bounds checked.*/ static int qr_img_get_bit(const unsigned char *_img,int _width,int _height, int _x,int _y){ _x>>=QR_FINDER_SUBPREC; _y>>=QR_FINDER_SUBPREC; return _img[QR_CLAMPI(0,_y,_height-1)*_width+QR_CLAMPI(0,_x,_width-1)]!=0; } #if defined(QR_DEBUG) #include "image.h" static void qr_finder_dump_aff_undistorted(qr_finder *_ul,qr_finder *_ur, qr_finder *_dl,qr_aff *_aff,const unsigned char *_img,int _width,int _height){ unsigned char *gimg; FILE *fout; int lpsz; int pixel_size; int dim; int min; int max; int u; int y; int i; int j; lpsz=qr_ilog(_ur->size[0]+_ur->size[1]+_dl->size[0]+_dl->size[1])-6; pixel_size=1<res-lpsz)+128; gimg=(unsigned char *)malloc(dim*dim*sizeof(*gimg)); for(i=0;i>QR_FINDER_SUBPREC,_height-1)*_width+ QR_CLAMPI(0,p[0]>>QR_FINDER_SUBPREC,_width-1)]; } { min=(_ur->o[0]-7*_ur->size[0]>>lpsz)+64; if(min<0)min=0; max=(_ur->o[0]+7*_ur->size[0]>>lpsz)+64; if(max>dim)max=dim; for(y=-7;y<=7;y++){ i=(_ur->o[1]+y*_ur->size[1]>>lpsz)+64; if(i<0||i>=dim)continue; for(j=min;jo[1]-7*_ur->size[1]>>lpsz)+64; if(min<0)min=0; max=(_ur->o[1]+7*_ur->size[1]>>lpsz)+64; if(max>dim)max=dim; for(u=-7;u<=7;u++){ j=(_ur->o[0]+u*_ur->size[0]>>lpsz)+64; if(j<0||j>=dim)continue; for(i=min;io[0]-7*_dl->size[0]>>lpsz)+64; if(min<0)min=0; max=(_dl->o[0]+7*_dl->size[0]>>lpsz)+64; if(max>dim)max=dim; for(y=-7;y<=7;y++){ i=(_dl->o[1]+y*_dl->size[1]>>lpsz)+64; if(i<0||i>=dim)continue; for(j=min;jo[1]-7*_dl->size[1]>>lpsz)+64; if(min<0)min=0; max=(_dl->o[1]+7*_dl->size[1]>>lpsz)+64; if(max>dim)max=dim; for(u=-7;u<=7;u++){ j=(_dl->o[0]+u*_dl->size[0]>>lpsz)+64; if(j<0||j>=dim)continue; for(i=min;isize[0]+_ur->size[1]+_dl->size[0]+_dl->size[1])-6; pixel_size=1<res-lpsz)+256; gimg=(unsigned char *)malloc(dim*dim*sizeof(*gimg)); for(i=0;i>QR_FINDER_SUBPREC,_height-1)*_width+ QR_CLAMPI(0,p[0]>>QR_FINDER_SUBPREC,_width-1)]; } { min=(_ur->o[0]-7*_ur->size[0]>>lpsz)+128; if(min<0)min=0; max=(_ur->o[0]+7*_ur->size[0]>>lpsz)+128; if(max>dim)max=dim; for(v=-7;v<=7;v++){ i=(_ur->o[1]+v*_ur->size[1]>>lpsz)+128; if(i<0||i>=dim)continue; for(j=min;jo[1]-7*_ur->size[1]>>lpsz)+128; if(min<0)min=0; max=(_ur->o[1]+7*_ur->size[1]>>lpsz)+128; if(max>dim)max=dim; for(u=-7;u<=7;u++){ j=(_ur->o[0]+u*_ur->size[0]>>lpsz)+128; if(j<0||j>=dim)continue; for(i=min;io[0]-7*_dl->size[0]>>lpsz)+128; if(min<0)min=0; max=(_dl->o[0]+7*_dl->size[0]>>lpsz)+128; if(max>dim)max=dim; for(v=-7;v<=7;v++){ i=(_dl->o[1]+v*_dl->size[1]>>lpsz)+128; if(i<0||i>=dim)continue; for(j=min;jo[1]-7*_dl->size[1]>>lpsz)+128; if(min<0)min=0; max=(_dl->o[1]+7*_dl->size[1]>>lpsz)+128; if(max>dim)max=dim; for(u=-7;u<=7;u++){ j=(_dl->o[0]+u*_dl->size[0]>>lpsz)+128; if(j<0||j>=dim)continue; for(i=min;i>1; /*Compute the final coefficients of the forward transform.*/ a00=QR_FIXMUL(dx10,a20+a22,round,shift); a01=QR_FIXMUL(dx20,a21+a22,round,shift); a10=QR_FIXMUL(dy10,a20+a22,round,shift); a11=QR_FIXMUL(dy20,a21+a22,round,shift); /*And compose the two transforms. Since we inverted the coefficients above, we divide by them here instead of multiplying. This lets us take advantage of the full dynamic range. Note a zero divisor is really "infinity", and thus the quotient should also be zero.*/ _cell->fwd[0][0]=(i00?QR_DIVROUND(a00,i00):0)+(i10?QR_DIVROUND(a01,i10):0); _cell->fwd[0][1]=(i01?QR_DIVROUND(a00,i01):0)+(i11?QR_DIVROUND(a01,i11):0); _cell->fwd[1][0]=(i00?QR_DIVROUND(a10,i00):0)+(i10?QR_DIVROUND(a11,i10):0); _cell->fwd[1][1]=(i01?QR_DIVROUND(a10,i01):0)+(i11?QR_DIVROUND(a11,i11):0); _cell->fwd[2][0]=(i00?QR_DIVROUND(a20,i00):0)+(i10?QR_DIVROUND(a21,i10):0) +(i20?QR_DIVROUND(a22,i20):0)+round>>shift; _cell->fwd[2][1]=(i01?QR_DIVROUND(a20,i01):0)+(i11?QR_DIVROUND(a21,i11):0) +(i21?QR_DIVROUND(a22,i21):0)+round>>shift; _cell->fwd[2][2]=a22+round>>shift; /*Mathematically, a02 and a12 are exactly zero. However, that concentrates all of the rounding error in the (_u3,_v3) corner; we compute offsets which distribute it over the whole range.*/ x=_cell->fwd[0][0]*du10+_cell->fwd[0][1]*dv10; y=_cell->fwd[1][0]*du10+_cell->fwd[1][1]*dv10; w=_cell->fwd[2][0]*du10+_cell->fwd[2][1]*dv10+_cell->fwd[2][2]; a02=dx10*w-x; a12=dy10*w-y; x=_cell->fwd[0][0]*du20+_cell->fwd[0][1]*dv20; y=_cell->fwd[1][0]*du20+_cell->fwd[1][1]*dv20; w=_cell->fwd[2][0]*du20+_cell->fwd[2][1]*dv20+_cell->fwd[2][2]; a02+=dx20*w-x; a12+=dy20*w-y; x=_cell->fwd[0][0]*du30+_cell->fwd[0][1]*dv30; y=_cell->fwd[1][0]*du30+_cell->fwd[1][1]*dv30; w=_cell->fwd[2][0]*du30+_cell->fwd[2][1]*dv30+_cell->fwd[2][2]; a02+=dx30*w-x; a12+=dy30*w-y; _cell->fwd[0][2]=a02+2>>2; _cell->fwd[1][2]=a12+2>>2; _cell->x0=_x0; _cell->y0=_y0; _cell->u0=_u0; _cell->v0=_v0; } /*Finish a partial projection, converting from homogeneous coordinates to the normal 2-D representation. In loops, we can avoid many multiplies by computing the homogeneous _x, _y, and _w incrementally, but we cannot avoid the divisions, done here.*/ static void qr_hom_cell_fproject(qr_point _p,const qr_hom_cell *_cell, int _x,int _y,int _w){ if(_w==0){ _p[0]=_x<0?INT_MIN:INT_MAX; _p[1]=_y<0?INT_MIN:INT_MAX; } else{ if(_w<0){ _x=-_x; _y=-_y; _w=-_w; } _p[0]=QR_DIVROUND(_x,_w)+_cell->x0; _p[1]=QR_DIVROUND(_y,_w)+_cell->y0; } } static void qr_hom_cell_project(qr_point _p,const qr_hom_cell *_cell, int _u,int _v,int _res){ _u-=_cell->u0<<_res; _v-=_cell->v0<<_res; qr_hom_cell_fproject(_p,_cell, _cell->fwd[0][0]*_u+_cell->fwd[0][1]*_v+(_cell->fwd[0][2]<<_res), _cell->fwd[1][0]*_u+_cell->fwd[1][1]*_v+(_cell->fwd[1][2]<<_res), _cell->fwd[2][0]*_u+_cell->fwd[2][1]*_v+(_cell->fwd[2][2]<<_res)); } /*Retrieves the bits corresponding to the alignment pattern template centered at the given location in the original image (at subpel precision).*/ static unsigned qr_alignment_pattern_fetch(qr_point _p[5][5],int _x0,int _y0, const unsigned char *_img,int _width,int _height){ unsigned v; int i; int j; int k; int dx; int dy; dx=_x0-_p[2][2][0]; dy=_y0-_p[2][2][1]; v=0; for(k=i=0;i<5;i++)for(j=0;j<5;j++,k++){ v|=qr_img_get_bit(_img,_width,_height,_p[i][j][0]+dx,_p[i][j][1]+dy)<u0; v=(_v-2)-_cell->v0; x0=_cell->fwd[0][0]*u+_cell->fwd[0][1]*v+_cell->fwd[0][2]; y0=_cell->fwd[1][0]*u+_cell->fwd[1][1]*v+_cell->fwd[1][2]; w0=_cell->fwd[2][0]*u+_cell->fwd[2][1]*v+_cell->fwd[2][2]; dxdu=_cell->fwd[0][0]; dydu=_cell->fwd[1][0]; dwdu=_cell->fwd[2][0]; dxdv=_cell->fwd[0][1]; dydv=_cell->fwd[1][1]; dwdv=_cell->fwd[2][1]; for(i=0;i<5;i++){ x=x0; y=y0; w=w0; for(j=0;j<5;j++){ qr_hom_cell_fproject(p[i][j],_cell,x,y,w); x+=dxdu; y+=dydu; w+=dwdu; } x0+=dxdv; y0+=dydv; w0+=dwdv; } bestx=p[2][2][0]; besty=p[2][2][1]; best_match=qr_alignment_pattern_fetch(p,bestx,besty,_img,_width,_height); best_dist=qr_hamming_dist(best_match,0x1F8D63F,25); if(best_dist>0){ u=_u-_cell->u0; v=_v-_cell->v0; x=_cell->fwd[0][0]*u+_cell->fwd[0][1]*v+_cell->fwd[0][2]<fwd[1][0]*u+_cell->fwd[1][1]*v+_cell->fwd[1][2]<fwd[2][0]*u+_cell->fwd[2][1]*v+_cell->fwd[2][2]<=side_len; x+=_cell->fwd[0][dir]; y+=_cell->fwd[1][dir]; w+=_cell->fwd[2][dir]; } else{ dir=j>=3*side_len; x-=_cell->fwd[0][dir]; y-=_cell->fwd[1][dir]; w-=_cell->fwd[2][dir]; } if(!best_dist)break; } if(!best_dist)break; } } /*If the best result we got was sufficiently bad, reject the match. If we're wrong and we include it, we can grossly distort the nearby region, whereas using the initial starting point should at least be consistent with the geometry we already have.*/ if(best_dist>6){ _p[0]=p[2][2][0]; _p[1]=p[2][2][1]; return -1; } /*Now try to get a more accurate location of the pattern center.*/ dx=bestx-p[2][2][0]; dy=besty-p[2][2][1]; memset(nc,0,sizeof(nc)); memset(c,0,sizeof(c)); /*We consider 8 lines across the finder pattern in turn. If we actually found a symmetric pattern along that line, search for its exact center in the image. There are plenty more lines we could use if these don't work, but if we've found anything remotely close to an alignment pattern, we should be able to use most of these.*/ for(i=0;i<8;i++){ static const unsigned MASK_TESTS[8][2]={ {0x1040041,0x1000001},{0x0041040,0x0001000}, {0x0110110,0x0100010},{0x0011100,0x0001000}, {0x0420084,0x0400004},{0x0021080,0x0001000}, {0x0006C00,0x0004400},{0x0003800,0x0001000}, }; static const unsigned char MASK_COORDS[8][2]={ {0,0},{1,1},{4,0},{3,1},{2,0},{2,1},{0,2},{1,2} }; if((best_match&MASK_TESTS[i][0])==MASK_TESTS[i][1]){ int x0; int y0; int x1; int y1; x0=p[MASK_COORDS[i][1]][MASK_COORDS[i][0]][0]+dx>>QR_FINDER_SUBPREC; if(x0<0||x0>=_width)continue; y0=p[MASK_COORDS[i][1]][MASK_COORDS[i][0]][1]+dy>>QR_FINDER_SUBPREC; if(y0<0||y0>=_height)continue; x1=p[4-MASK_COORDS[i][1]][4-MASK_COORDS[i][0]][0]+dx>>QR_FINDER_SUBPREC; if(x1<0||x1>=_width)continue; y1=p[4-MASK_COORDS[i][1]][4-MASK_COORDS[i][0]][1]+dy>>QR_FINDER_SUBPREC; if(y1<0||y1>=_height)continue; if(!qr_finder_locate_crossing(_img,_width,_height,x0,y0,x1,y1,i&1,pc)){ int w; int cx; int cy; cx=pc[0]-bestx; cy=pc[1]-besty; if(i&1){ /*Weight crossings around the center dot more highly, as they are generally more reliable.*/ w=3; cx+=cx<<1; cy+=cy<<1; } else w=1; nc[i>>1]+=w; c[i>>1][0]+=cx; c[i>>1][1]+=cy; } } } /*Sum offsets from lines in orthogonal directions.*/ for(i=0;i<2;i++){ int a; int b; a=nc[i<<1]; b=nc[i<<1|1]; if(a&&b){ int w; w=QR_MAXI(a,b); c[i<<1][0]=QR_DIVROUND(w*(b*c[i<<1][0]+a*c[i<<1|1][0]),a*b); c[i<<1][1]=QR_DIVROUND(w*(b*c[i<<1][1]+a*c[i<<1|1][1]),a*b); nc[i<<1]=w<<1; } else{ c[i<<1][0]+=c[i<<1|1][0]; c[i<<1][1]+=c[i<<1|1][1]; nc[i<<1]+=b; } } /*Average offsets from pairs of orthogonal lines.*/ c[0][0]+=c[2][0]; c[0][1]+=c[2][1]; nc[0]+=nc[2]; /*If we actually found any such lines, apply the adjustment.*/ if(nc[0]){ dx=QR_DIVROUND(c[0][0],nc[0]); dy=QR_DIVROUND(c[0][1],nc[0]); /*But only if it doesn't make things too much worse.*/ match=qr_alignment_pattern_fetch(p,bestx+dx,besty+dy,_img,_width,_height); dist=qr_hamming_dist(match,0x1F8D63F,best_dist+1); if(dist<=best_dist+1){ bestx+=dx; besty+=dy; } } _p[0]=bestx; _p[1]=besty; return 0; } static int qr_hom_fit(qr_hom *_hom,qr_finder *_ul,qr_finder *_ur, qr_finder *_dl,qr_point _p[4],const qr_aff *_aff,isaac_ctx *_isaac, const unsigned char *_img,int _width,int _height){ qr_point *b; int nb; int cb; qr_point *r; int nr; int cr; qr_line l[4]; qr_point q; qr_point p; int ox; int oy; int ru; int rv; int dru; int drv; int bu; int bv; int dbu; int dbv; int rx; int ry; int drxi; int dryi; int drxj; int dryj; int rdone; int nrempty; int rlastfit; int bx; int by; int dbxi; int dbyi; int dbxj; int dbyj; int bdone; int nbempty; int blastfit; int shift; int round; int version4; int brx; int bry; int i; /*We attempt to correct large-scale perspective distortion by fitting lines to the edge of the code area. We could also look for an alignment pattern now, but that wouldn't work for version 1 codes, which have no alignment pattern. Even if the code is supposed to have one, there's go guarantee we'd find it intact.*/ /*Fitting lines is easy for the edges on which we have two finder patterns. After the fit, UL is guaranteed to be on the proper side, but if either of the other two finder patterns aren't, something is wrong.*/ qr_finder_ransac(_ul,_aff,_isaac,0); qr_finder_ransac(_dl,_aff,_isaac,0); qr_line_fit_finder_pair(l[0],_aff,_ul,_dl,0); if(qr_line_eval(l[0],_dl->c->pos[0],_dl->c->pos[1])<0|| qr_line_eval(l[0],_ur->c->pos[0],_ur->c->pos[1])<0){ return -1; } qr_finder_ransac(_ul,_aff,_isaac,2); qr_finder_ransac(_ur,_aff,_isaac,2); qr_line_fit_finder_pair(l[2],_aff,_ul,_ur,2); if(qr_line_eval(l[2],_dl->c->pos[0],_dl->c->pos[1])<0|| qr_line_eval(l[2],_ur->c->pos[0],_ur->c->pos[1])<0){ return -1; } /*The edges which only have one finder pattern are more difficult. We start by fitting a line to the edge of the one finder pattern we do have. This can fail due to an insufficient number of sample points, and even if it succeeds can be fairly inaccurate, because all of the points are clustered in one corner of the QR code. If it fails, we just use an axis-aligned line in the affine coordinate system. Then we walk along the edge of the entire code, looking for light:dark:light patterns perpendicular to the edge. Wherever we find one, we take the center of the dark portion as an additional sample point. At the end, we re-fit the line using all such sample points found.*/ drv=_ur->size[1]>>1; qr_finder_ransac(_ur,_aff,_isaac,1); if(qr_line_fit_finder_edge(l[1],_ur,1,_aff->res)>=0){ if(qr_line_eval(l[1],_ul->c->pos[0],_ul->c->pos[1])<0|| qr_line_eval(l[1],_dl->c->pos[0],_dl->c->pos[1])<0){ return -1; } /*Figure out the change in ru for a given change in rv when stepping along the fitted line.*/ if(qr_aff_line_step(_aff,l[1],1,drv,&dru)<0)return -1; } else dru=0; ru=_ur->o[0]+3*_ur->size[0]-2*dru; rv=_ur->o[1]-2*drv; dbu=_dl->size[0]>>1; qr_finder_ransac(_dl,_aff,_isaac,3); if(qr_line_fit_finder_edge(l[3],_dl,3,_aff->res)>=0){ if(qr_line_eval(l[3],_ul->c->pos[0],_ul->c->pos[1])<0|| qr_line_eval(l[3],_ur->c->pos[0],_ur->c->pos[1])<0){ return -1; } /*Figure out the change in bv for a given change in bu when stepping along the fitted line.*/ if(qr_aff_line_step(_aff,l[3],0,dbu,&dbv)<0)return -1; } else dbv=0; bu=_dl->o[0]-2*dbu; bv=_dl->o[1]+3*_dl->size[1]-2*dbv; /*Set up the initial point lists.*/ nr=rlastfit=_ur->ninliers[1]; cr=nr+(_dl->o[1]-rv+drv-1)/drv; r=(qr_point *)malloc(cr*sizeof(*r)); for(i=0;i<_ur->ninliers[1];i++){ memcpy(r[i],_ur->edge_pts[1][i].pos,sizeof(r[i])); } nb=blastfit=_dl->ninliers[3]; cb=nb+(_ur->o[0]-bu+dbu-1)/dbu; b=(qr_point *)malloc(cb*sizeof(*b)); for(i=0;i<_dl->ninliers[3];i++){ memcpy(b[i],_dl->edge_pts[3][i].pos,sizeof(b[i])); } /*Set up the step parameters for the affine projection.*/ ox=(_aff->x0<<_aff->res)+(1<<_aff->res-1); oy=(_aff->y0<<_aff->res)+(1<<_aff->res-1); rx=_aff->fwd[0][0]*ru+_aff->fwd[0][1]*rv+ox; ry=_aff->fwd[1][0]*ru+_aff->fwd[1][1]*rv+oy; drxi=_aff->fwd[0][0]*dru+_aff->fwd[0][1]*drv; dryi=_aff->fwd[1][0]*dru+_aff->fwd[1][1]*drv; drxj=_aff->fwd[0][0]*_ur->size[0]; dryj=_aff->fwd[1][0]*_ur->size[0]; bx=_aff->fwd[0][0]*bu+_aff->fwd[0][1]*bv+ox; by=_aff->fwd[1][0]*bu+_aff->fwd[1][1]*bv+oy; dbxi=_aff->fwd[0][0]*dbu+_aff->fwd[0][1]*dbv; dbyi=_aff->fwd[1][0]*dbu+_aff->fwd[1][1]*dbv; dbxj=_aff->fwd[0][1]*_dl->size[1]; dbyj=_aff->fwd[1][1]*_dl->size[1]; /*Now step along the lines, looking for new sample points.*/ nrempty=nbempty=0; for(;;){ int ret; int x0; int y0; int x1; int y1; /*If we take too many steps without encountering a non-zero pixel, assume we have wandered off the edge and stop looking before we hit the other side of the quiet region. Otherwise, stop when the lines cross (if they do so inside the affine region) or come close to crossing (outside the affine region). TODO: We don't have any way of detecting when we've wandered into the code interior; we could stop if the outside sample ever shows up dark, but this could happen because of noise in the quiet region, too.*/ rdone=rv>=QR_MINI(bv,_dl->o[1]+bv>>1)||nrempty>14; bdone=bu>=QR_MINI(ru,_ur->o[0]+ru>>1)||nbempty>14; if(!rdone&&(bdone||rv>_aff->res+QR_FINDER_SUBPREC; y0=ry+dryj>>_aff->res+QR_FINDER_SUBPREC; x1=rx-drxj>>_aff->res+QR_FINDER_SUBPREC; y1=ry-dryj>>_aff->res+QR_FINDER_SUBPREC; if(nr>=cr){ cr=cr<<1|1; r=(qr_point *)realloc(r,cr*sizeof(*r)); } ret=qr_finder_quick_crossing_check(_img,_width,_height,x0,y0,x1,y1,1); if(!ret){ ret=qr_finder_locate_crossing(_img,_width,_height,x0,y0,x1,y1,1,r[nr]); } if(ret>=0){ if(!ret){ qr_aff_unproject(q,_aff,r[nr][0],r[nr][1]); /*Move the current point halfway towards the crossing. We don't move the whole way to give us some robustness to noise.*/ ru=ru+q[0]>>1; /*But ensure that rv monotonically increases.*/ if(q[1]+drv>rv)rv=rv+q[1]>>1; rx=_aff->fwd[0][0]*ru+_aff->fwd[0][1]*rv+ox; ry=_aff->fwd[1][0]*ru+_aff->fwd[1][1]*rv+oy; nr++; /*Re-fit the line to update the step direction periodically.*/ if(nr>QR_MAXI(1,rlastfit+(rlastfit>>2))){ qr_line_fit_points(l[1],r,nr,_aff->res); if(qr_aff_line_step(_aff,l[1],1,drv,&dru)>=0){ drxi=_aff->fwd[0][0]*dru+_aff->fwd[0][1]*drv; dryi=_aff->fwd[1][0]*dru+_aff->fwd[1][1]*drv; } rlastfit=nr; } } nrempty=0; } else nrempty++; ru+=dru; /*Our final defense: if we overflow, stop.*/ if(rv+drv>rv)rv+=drv; else nrempty=INT_MAX; rx+=drxi; ry+=dryi; } else if(!bdone){ x0=bx+dbxj>>_aff->res+QR_FINDER_SUBPREC; y0=by+dbyj>>_aff->res+QR_FINDER_SUBPREC; x1=bx-dbxj>>_aff->res+QR_FINDER_SUBPREC; y1=by-dbyj>>_aff->res+QR_FINDER_SUBPREC; if(nb>=cb){ cb=cb<<1|1; b=(qr_point *)realloc(b,cb*sizeof(*b)); } ret=qr_finder_quick_crossing_check(_img,_width,_height,x0,y0,x1,y1,1); if(!ret){ ret=qr_finder_locate_crossing(_img,_width,_height,x0,y0,x1,y1,1,b[nb]); } if(ret>=0){ if(!ret){ qr_aff_unproject(q,_aff,b[nb][0],b[nb][1]); /*Move the current point halfway towards the crossing. We don't move the whole way to give us some robustness to noise.*/ /*But ensure that bu monotonically increases.*/ if(q[0]+dbu>bu)bu=bu+q[0]>>1; bv=bv+q[1]>>1; bx=_aff->fwd[0][0]*bu+_aff->fwd[0][1]*bv+ox; by=_aff->fwd[1][0]*bu+_aff->fwd[1][1]*bv+oy; nb++; /*Re-fit the line to update the step direction periodically.*/ if(nb>QR_MAXI(1,blastfit+(blastfit>>2))){ qr_line_fit_points(l[3],b,nb,_aff->res); if(qr_aff_line_step(_aff,l[3],0,dbu,&dbv)>=0){ dbxi=_aff->fwd[0][0]*dbu+_aff->fwd[0][1]*dbv; dbyi=_aff->fwd[1][0]*dbu+_aff->fwd[1][1]*dbv; } blastfit=nb; } } nbempty=0; } else nbempty++; /*Our final defense: if we overflow, stop.*/ if(bu+dbu>bu)bu+=dbu; else nbempty=INT_MAX; bv+=dbv; bx+=dbxi; by+=dbyi; } else break; } /*Fit the new lines. If we _still_ don't have enough sample points, then just use an axis-aligned line from the affine coordinate system (e.g., one parallel to the opposite edge in the image).*/ if(nr>1)qr_line_fit_points(l[1],r,nr,_aff->res); else{ qr_aff_project(p,_aff,_ur->o[0]+3*_ur->size[0],_ur->o[1]); shift=QR_MAXI(0, qr_ilog(QR_MAXI(abs(_aff->fwd[0][1]),abs(_aff->fwd[1][1]))) -(_aff->res+1>>1)); round=(1<>1; l[1][0]=_aff->fwd[1][1]+round>>shift; l[1][1]=-_aff->fwd[0][1]+round>>shift; l[1][2]=-(l[1][0]*p[0]+l[1][1]*p[1]); } free(r); if(nb>1)qr_line_fit_points(l[3],b,nb,_aff->res); else{ qr_aff_project(p,_aff,_dl->o[0],_dl->o[1]+3*_dl->size[1]); shift=QR_MAXI(0, qr_ilog(QR_MAXI(abs(_aff->fwd[0][1]),abs(_aff->fwd[1][1]))) -(_aff->res+1>>1)); round=(1<>1; l[3][0]=_aff->fwd[1][0]+round>>shift; l[3][1]=-_aff->fwd[0][0]+round>>shift; l[3][2]=-(l[1][0]*p[0]+l[1][1]*p[1]); } free(b); for(i=0;i<4;i++){ if(qr_line_isect(_p[i],l[i&1],l[2+(i>>1)])<0)return -1; /*It's plausible for points to be somewhat outside the image, but too far and too much of the pattern will be gone for it to be decodable.*/ if(_p[i][0]<-_width<=_width<=_height<eversion[0]+_ul->eversion[1]+_ur->eversion[0]+_dl->eversion[1]; if(version4>4){ qr_hom_cell cell; qr_point p3; int dim; dim=17+version4; qr_hom_cell_init(&cell,0,0,dim-1,0,0,dim-1,dim-1,dim-1, _p[0][0],_p[0][1],_p[1][0],_p[1][1], _p[2][0],_p[2][1],_p[3][0],_p[3][1]); if(qr_alignment_pattern_search(p3,&cell,dim-7,dim-7,4, _img,_width,_height)>=0){ long long w; long long mask; int c21; int dx21; int dy21; /*There's no real need to update the bounding box corner, and in fact we actively perform worse if we do. Clearly it was good enough for us to find this alignment pattern, so it should be good enough to use for grid initialization. The point of doing the search was to get more accurate version estimates and a better chance of decoding the version and format info. This is particularly important for small versions that have no encoded version info, since any mismatch in version renders the code undecodable.*/ /*We do, however, need four points in a square to initialize our homography, so project the point from the alignment center to the corner of the code area.*/ c21=_p[2][0]*_p[1][1]-_p[2][1]*_p[1][0]; dx21=_p[2][0]-_p[1][0]; dy21=_p[2][1]-_p[1][1]; w=QR_EXTMUL(dim-7,c21, QR_EXTMUL(dim-13,_p[0][0]*dy21-_p[0][1]*dx21, QR_EXTMUL(6,p3[0]*dy21-p3[1]*dx21,0))); /*The projection failed: invalid geometry.*/ if(w==0)return -1; mask=QR_SIGNMASK(w); w=w+mask^mask; brx=(int)QR_DIVROUND(QR_EXTMUL((dim-7)*_p[0][0],p3[0]*dy21, QR_EXTMUL((dim-13)*p3[0],c21-_p[0][1]*dx21, QR_EXTMUL(6*_p[0][0],c21-p3[1]*dx21,0)))+mask^mask,w); bry=(int)QR_DIVROUND(QR_EXTMUL((dim-7)*_p[0][1],-p3[1]*dx21, QR_EXTMUL((dim-13)*p3[1],c21+_p[0][0]*dy21, QR_EXTMUL(6*_p[0][1],c21+p3[0]*dy21,0)))+mask^mask,w); } } /*Now we have four points that map to a square: initialize the projection.*/ qr_hom_init(_hom,_p[0][0],_p[0][1],_p[1][0],_p[1][1], _p[2][0],_p[2][1],brx,bry,QR_HOM_BITS); return 0; } /*The BCH(18,6,3) codes are only used for version information, which must lie between 7 and 40 (inclusive).*/ static const unsigned BCH18_6_CODES[34]={ 0x07C94, 0x085BC,0x09A99,0x0A4D3,0x0BBF6,0x0C762,0x0D847,0x0E60D,0x0F928, 0x10B78,0x1145D,0x12A17,0x13532,0x149A6,0x15683,0x168C9,0x177EC, 0x18EC4,0x191E1,0x1AFAB,0x1B08E,0x1CC1A,0x1D33F,0x1ED75,0x1F250, 0x209D5,0x216F0,0x228BA,0x2379F,0x24B0B,0x2542E,0x26A64,0x27541, 0x28C69 }; /*Corrects a BCH(18,6,3) code word. _y: Contains the code word to be checked on input, and the corrected value on output. Return: The number of errors. If more than 3 errors are detected, returns a negative value and performs no correction.*/ static int bch18_6_correct(unsigned *_y){ unsigned x; unsigned y; int nerrs; y=*_y; /*Check the easy case first: see if the data bits were uncorrupted.*/ x=y>>12; if(x>=7&&x<=40){ nerrs=qr_hamming_dist(y,BCH18_6_CODES[x-7],4); if(nerrs<4){ *_y=BCH18_6_CODES[x-7]; return nerrs; } } /*Exhaustive search is faster than field operations in GF(19).*/ for(x=0;x<34;x++)if(x+7!=y>>12){ nerrs=qr_hamming_dist(y,BCH18_6_CODES[x],4); if(nerrs<4){ *_y=BCH18_6_CODES[x]; return nerrs; } } return -1; } #if 0 static unsigned bch18_6_encode(unsigned _x){ return (-(_x&1)&0x01F25)^(-(_x>>1&1)&0x0216F)^(-(_x>>2&1)&0x042DE)^ (-(_x>>3&1)&0x085BC)^(-(_x>>4&1)&0x10B78)^(-(_x>>5&1)&0x209D5); } #endif /*Reads the version bits near a finder module and decodes the version number.*/ static int qr_finder_version_decode(qr_finder *_f,const qr_hom *_hom, const unsigned char *_img,int _width,int _height,int _dir){ qr_point q; unsigned v; int x0; int y0; int w0; int dxi; int dyi; int dwi; int dxj; int dyj; int dwj; int ret; int i; int j; int k; v=0; q[_dir]=_f->o[_dir]-7*_f->size[_dir]; q[1-_dir]=_f->o[1-_dir]-3*_f->size[1-_dir]; x0=_hom->fwd[0][0]*q[0]+_hom->fwd[0][1]*q[1]; y0=_hom->fwd[1][0]*q[0]+_hom->fwd[1][1]*q[1]; w0=_hom->fwd[2][0]*q[0]+_hom->fwd[2][1]*q[1]+_hom->fwd22; dxi=_hom->fwd[0][1-_dir]*_f->size[1-_dir]; dyi=_hom->fwd[1][1-_dir]*_f->size[1-_dir]; dwi=_hom->fwd[2][1-_dir]*_f->size[1-_dir]; dxj=_hom->fwd[0][_dir]*_f->size[_dir]; dyj=_hom->fwd[1][_dir]*_f->size[_dir]; dwj=_hom->fwd[2][_dir]*_f->size[_dir]; for(k=i=0;i<6;i++){ int x; int y; int w; x=x0; y=y0; w=w0; for(j=0;j<3;j++,k++){ qr_point p; qr_hom_fproject(p,_hom,x,y,w); v|=qr_img_get_bit(_img,_width,_height,p[0],p[1])<o[_dir]+_f->size[_dir]*(-5-i); for(j=0;j<6;j++,k++){ qr_point q; p[1-_dir]=_f->o[1-_dir]+_f->size[1-_dir]*(2-j); qr_hom_project(q,_hom,p[0],p[1]); v|=qr_img_get_bit(_img,_width,_height,q[0],q[1])<=0?(int)(v>>12):ret; } /*Reads the format info bits near the finder modules and decodes them.*/ static int qr_finder_fmt_info_decode(qr_finder *_ul,qr_finder *_ur, qr_finder *_dl,const qr_hom *_hom, const unsigned char *_img,int _width,int _height){ qr_point p; unsigned lo[2]; unsigned hi[2]; int u; int v; int x; int y; int w; int dx; int dy; int dw; int fmt_info[4]; int count[4]; int nerrs[4]; int nfmt_info; int besti; int imax; int di; int i; int k; /*Read the bits around the UL corner.*/ lo[0]=0; u=_ul->o[0]+5*_ul->size[0]; v=_ul->o[1]-3*_ul->size[1]; x=_hom->fwd[0][0]*u+_hom->fwd[0][1]*v; y=_hom->fwd[1][0]*u+_hom->fwd[1][1]*v; w=_hom->fwd[2][0]*u+_hom->fwd[2][1]*v+_hom->fwd22; dx=_hom->fwd[0][1]*_ul->size[1]; dy=_hom->fwd[1][1]*_ul->size[1]; dw=_hom->fwd[2][1]*_ul->size[1]; for(k=i=0;;i++){ /*Skip the timing pattern row.*/ if(i!=6){ qr_hom_fproject(p,_hom,x,y,w); lo[0]|=qr_img_get_bit(_img,_width,_height,p[0],p[1])<=8)break; } x+=dx; y+=dy; w+=dw; } hi[0]=0; dx=-_hom->fwd[0][0]*_ul->size[0]; dy=-_hom->fwd[1][0]*_ul->size[0]; dw=-_hom->fwd[2][0]*_ul->size[0]; while(i-->0){ x+=dx; y+=dy; w+=dw; /*Skip the timing pattern column.*/ if(i!=6){ qr_hom_fproject(p,_hom,x,y,w); hi[0]|=qr_img_get_bit(_img,_width,_height,p[0],p[1])<o[0]+3*_ur->size[0]; v=_ur->o[1]+5*_ur->size[1]; x=_hom->fwd[0][0]*u+_hom->fwd[0][1]*v; y=_hom->fwd[1][0]*u+_hom->fwd[1][1]*v; w=_hom->fwd[2][0]*u+_hom->fwd[2][1]*v+_hom->fwd22; dx=-_hom->fwd[0][0]*_ur->size[0]; dy=-_hom->fwd[1][0]*_ur->size[0]; dw=-_hom->fwd[2][0]*_ur->size[0]; for(k=0;k<8;k++){ qr_hom_fproject(p,_hom,x,y,w); lo[1]|=qr_img_get_bit(_img,_width,_height,p[0],p[1])<o[0]+5*_dl->size[0]; v=_dl->o[1]-3*_dl->size[1]; x=_hom->fwd[0][0]*u+_hom->fwd[0][1]*v; y=_hom->fwd[1][0]*u+_hom->fwd[1][1]*v; w=_hom->fwd[2][0]*u+_hom->fwd[2][1]*v+_hom->fwd22; dx=_hom->fwd[0][1]*_dl->size[1]; dy=_hom->fwd[1][1]*_dl->size[1]; dw=_hom->fwd[2][1]*_dl->size[1]; for(k=8;k<15;k++){ qr_hom_fproject(p,_hom,x,y,w); hi[1]|=qr_img_get_bit(_img,_width,_height,p[0],p[1])<>1])^0x5412; ret=bch15_5_correct(&v); v>>=10; if(ret<0)ret=4; for(j=0;;j++){ if(j>=nfmt_info){ fmt_info[j]=v; count[j]=1; nerrs[j]=ret; nfmt_info++; break; } if(fmt_info[j]==(int)v){ count[j]++; if(ret3&&nerrs[i]<=3|| count[i]>count[besti]||count[i]==count[besti]&&nerrs[i]>QR_INT_LOGBITS; /*Note that we store bits column-wise, since that's how they're read out of the grid.*/ for(j=_u;j<_u+_w;j++)for(i=_v;i<_v+_h;i++){ _grid->fpmask[j*stride+(i>>QR_INT_LOGBITS)]|=1<<(i&QR_INT_BITS-1); } } /*Determine if a given grid location is inside the function pattern.*/ static int qr_sampling_grid_is_in_fp(const qr_sampling_grid *_grid,int _dim, int _u,int _v){ return _grid->fpmask[_u*(_dim+QR_INT_BITS-1>>QR_INT_LOGBITS) +(_v>>QR_INT_LOGBITS)]>>(_v&QR_INT_BITS-1)&1; } /*The spacing between alignment patterns after the second for versions >= 7. We could compact this more, but the code to access it would eliminate the gains.*/ static const unsigned char QR_ALIGNMENT_SPACING[34]={ 16,18,20,22,24,26,28, 20,22,24,24,26,28,28, 22,24,24,26,26,28,28, 24,24,26,26,26,28,28, 24,26,26,26,28,28 }; static inline void qr_svg_points(const char *cls, qr_point *p, int n) { int i; svg_path_start(cls, 1, 0, 0); for(i = 0; i < n; i++, p++) svg_path_moveto(SVG_ABS, p[0][0], p[0][1]); svg_path_end(); } /*Initialize the sampling grid for each region of the code. _version: The (decoded) version number. _ul_pos: The location of the UL finder pattern. _ur_pos: The location of the UR finder pattern. _dl_pos: The location of the DL finder pattern. _p: On input, contains estimated positions of the four corner modules. On output, contains a bounding quadrilateral for the code. _img: The binary input image. _width: The width of the input image. _height: The height of the input image. Return: 0 on success, or a negative value on error.*/ static void qr_sampling_grid_init(qr_sampling_grid *_grid,int _version, const qr_point _ul_pos,const qr_point _ur_pos,const qr_point _dl_pos, qr_point _p[4],const unsigned char *_img,int _width,int _height){ qr_hom_cell base_cell; int align_pos[7]; int dim; int nalign; int i; dim=17+(_version<<2); nalign=(_version/7)+2; /*Create a base cell to bootstrap the alignment pattern search.*/ qr_hom_cell_init(&base_cell,0,0,dim-1,0,0,dim-1,dim-1,dim-1, _p[0][0],_p[0][1],_p[1][0],_p[1][1],_p[2][0],_p[2][1],_p[3][0],_p[3][1]); /*Allocate the array of cells.*/ _grid->ncells=nalign-1; _grid->cells[0]=(qr_hom_cell *)malloc( (nalign-1)*(nalign-1)*sizeof(*_grid->cells[0])); for(i=1;i<_grid->ncells;i++)_grid->cells[i]=_grid->cells[i-1]+_grid->ncells; /*Initialize the function pattern mask.*/ _grid->fpmask=(unsigned *)calloc(dim, (dim+QR_INT_BITS-1>>QR_INT_LOGBITS)*sizeof(*_grid->fpmask)); /*Mask out the finder patterns (and separators and format info bits).*/ qr_sampling_grid_fp_mask_rect(_grid,dim,0,0,9,9); qr_sampling_grid_fp_mask_rect(_grid,dim,0,dim-8,9,8); qr_sampling_grid_fp_mask_rect(_grid,dim,dim-8,0,8,9); /*Mask out the version number bits.*/ if(_version>6){ qr_sampling_grid_fp_mask_rect(_grid,dim,0,dim-11,6,3); qr_sampling_grid_fp_mask_rect(_grid,dim,dim-11,0,3,6); } /*Mask out the timing patterns.*/ qr_sampling_grid_fp_mask_rect(_grid,dim,9,6,dim-17,1); qr_sampling_grid_fp_mask_rect(_grid,dim,6,9,1,dim-17); /*If we have no alignment patterns (e.g., this is a version 1 code), just use the base cell and hope it's good enough.*/ if(_version<2)memcpy(_grid->cells[0],&base_cell,sizeof(base_cell)); else{ qr_point *q; qr_point *p; int j; int k; q=(qr_point *)malloc(nalign*nalign*sizeof(*q)); p=(qr_point *)malloc(nalign*nalign*sizeof(*p)); /*Initialize the alignment pattern position list.*/ align_pos[0]=6; align_pos[nalign-1]=dim-7; if(_version>6){ int d; d=QR_ALIGNMENT_SPACING[_version-7]; for(i=nalign-1;i-->1;)align_pos[i]=align_pos[i+1]-d; } /*Three of the corners use a finder pattern instead of a separate alignment pattern.*/ q[0][0]=3; q[0][1]=3; p[0][0]=_ul_pos[0]; p[0][1]=_ul_pos[1]; q[nalign-1][0]=dim-4; q[nalign-1][1]=3; p[nalign-1][0]=_ur_pos[0]; p[nalign-1][1]=_ur_pos[1]; q[(nalign-1)*nalign][0]=3; q[(nalign-1)*nalign][1]=dim-4; p[(nalign-1)*nalign][0]=_dl_pos[0]; p[(nalign-1)*nalign][1]=_dl_pos[1]; /*Scan for alignment patterns using a diagonal sweep.*/ for(k=1;k<2*nalign-1;k++){ int jmin; int jmax; jmax=QR_MINI(k,nalign-1)-(k==nalign-1); jmin=QR_MAXI(0,k-(nalign-1))+(k==nalign-1); for(j=jmin;j<=jmax;j++){ qr_hom_cell *cell; int u; int v; int k; i=jmax-(j-jmin); k=i*nalign+j; u=align_pos[j]; v=align_pos[i]; q[k][0]=u; q[k][1]=v; /*Mask out the alignment pattern.*/ qr_sampling_grid_fp_mask_rect(_grid,dim,u-2,v-2,5,5); /*Pick a cell to use to govern the alignment pattern search.*/ if(i>1&&j>1){ qr_point p0; qr_point p1; qr_point p2; /*Each predictor is basically a straight-line extrapolation from two neighboring alignment patterns (except possibly near the opposing finder patterns).*/ qr_hom_cell_project(p0,_grid->cells[i-2]+j-1,u,v,0); qr_hom_cell_project(p1,_grid->cells[i-2]+j-2,u,v,0); qr_hom_cell_project(p2,_grid->cells[i-1]+j-2,u,v,0); /*Take the median of the predictions as the search center.*/ QR_SORT2I(p0[0],p1[0]); QR_SORT2I(p0[1],p1[1]); QR_SORT2I(p1[0],p2[0]); QR_SORT2I(p1[1],p2[1]); QR_SORT2I(p0[0],p1[0]); QR_SORT2I(p0[1],p1[1]); /*We need a cell that has the target point at a known (u,v) location. Since our cells don't have inverses, just construct one from our neighboring points.*/ cell=_grid->cells[i-1]+j-1; qr_hom_cell_init(cell, q[k-nalign-1][0],q[k-nalign-1][1],q[k-nalign][0],q[k-nalign][1], q[k-1][0],q[k-1][1],q[k][0],q[k][1], p[k-nalign-1][0],p[k-nalign-1][1],p[k-nalign][0],p[k-nalign][1], p[k-1][0],p[k-1][1],p1[0],p1[1]); } else if(i>1&&j>0)cell=_grid->cells[i-2]+j-1; else if(i>0&&j>1)cell=_grid->cells[i-1]+j-2; else cell=&base_cell; /*Use a very small search radius. A large displacement here usually means a false positive (e.g., when the real alignment pattern is damaged or missing), which can severely distort the projection.*/ qr_alignment_pattern_search(p[k],cell,u,v,2,_img,_width,_height); if(i>0&&j>0){ qr_hom_cell_init(_grid->cells[i-1]+j-1, q[k-nalign-1][0],q[k-nalign-1][1],q[k-nalign][0],q[k-nalign][1], q[k-1][0],q[k-1][1],q[k][0],q[k][1], p[k-nalign-1][0],p[k-nalign-1][1],p[k-nalign][0],p[k-nalign][1], p[k-1][0],p[k-1][1],p[k][0],p[k][1]); } } } qr_svg_points("align", p, nalign * nalign); free(q); free(p); } /*Set the limits over which each cell is used.*/ memcpy(_grid->cell_limits,align_pos+1, (_grid->ncells-1)*sizeof(*_grid->cell_limits)); _grid->cell_limits[_grid->ncells-1]=dim; /*Produce a bounding square for the code (to mark finder centers with). Because of non-linear distortion, this might not actually bound the code, but it should be good enough. I don't think it's worth computing a convex hull or anything silly like that.*/ qr_hom_cell_project(_p[0],_grid->cells[0]+0,-1,-1,1); qr_hom_cell_project(_p[1],_grid->cells[0]+_grid->ncells-1,(dim<<1)-1,-1,1); qr_hom_cell_project(_p[2],_grid->cells[_grid->ncells-1]+0,-1,(dim<<1)-1,1); qr_hom_cell_project(_p[3],_grid->cells[_grid->ncells-1]+_grid->ncells-1, (dim<<1)-1,(dim<<1)-1,1); /*Clamp the points somewhere near the image (this is really just in case a corner is near the plane at infinity).*/ for(i=0;i<4;i++){ _p[i][0]=QR_CLAMPI(-_width<fpmask); free(_grid->cells[0]); } #if defined(QR_DEBUG) static void qr_sampling_grid_dump(qr_sampling_grid *_grid,int _version, const unsigned char *_img,int _width,int _height){ unsigned char *gimg; FILE *fout; int dim; int u; int v; int x; int y; int w; int i; int j; int r; int s; dim=17+(_version<<2)+8<=(4<=(4<>QR_ALIGN_SUBPREC)-4; v=(i>>QR_ALIGN_SUBPREC)-4; for(r=0;r<_grid->ncells-1;r++)if(u<_grid->cell_limits[r])break; for(s=0;s<_grid->ncells-1;s++)if(v<_grid->cell_limits[s])break; cell=_grid->cells[s]+r; u=j-(cell->u0+4<v0+4<fwd[0][0]*u+cell->fwd[0][1]*v+(cell->fwd[0][2]<fwd[1][0]*u+cell->fwd[1][1]*v+(cell->fwd[1][2]<fwd[2][0]*u+cell->fwd[2][1]*v+(cell->fwd[2][2]<>QR_FINDER_SUBPREC,_height-1)*_width+ QR_CLAMPI(0,p[0]>>QR_FINDER_SUBPREC,_width-1)]; } } for(v=0;v<17+(_version<<2);v++)for(u=0;u<17+(_version<<2);u++){ if(qr_sampling_grid_is_in_fp(_grid,17+(_version<<2),u,v)){ j=u+4<>QR_INT_LOGBITS; /*Note that we store bits column-wise, since that's how they're read out of the grid.*/ switch(_pattern){ /*10101010 i+j+1&1 01010101 10101010 01010101*/ case 0:{ int m; m=0x55; for(j=0;j<_dim;j++){ memset(_mask+j*stride,m,stride*sizeof(*_mask)); m^=0xFF; } }break; /*11111111 i+1&1 00000000 11111111 00000000*/ case 1:memset(_mask,0x55,_dim*stride*sizeof(*_mask));break; /*10010010 (j+1)%3&1 10010010 10010010 10010010*/ case 2:{ unsigned m; m=0xFF; for(j=0;j<_dim;j++){ memset(_mask+j*stride,m&0xFF,stride*sizeof(*_mask)); m=m<<8|m>>16; } }break; /*10010010 (i+j+1)%3&1 00100100 01001001 10010010*/ case 3:{ unsigned mi; unsigned mj; mj=0; for(i=0;i<(QR_INT_BITS+2)/3;i++)mj|=1<<3*i; for(j=0;j<_dim;j++){ mi=mj; for(i=0;i>QR_INT_BITS%3|mi<<3-QR_INT_BITS%3; } mj=mj>>1|mj<<2; } }break; /*11100011 (i>>1)+(j/3)+1&1 11100011 00011100 00011100*/ case 4:{ unsigned m; m=7; for(j=0;j<_dim;j++){ memset(_mask+j*stride,(0xCC^-(m&1))&0xFF,stride*sizeof(*_mask)); m=m>>1|m<<5; } }break; /*11111111 !((i*j)%6) 10000010 10010010 10101010*/ case 5:{ for(j=0;j<_dim;j++){ unsigned m; m=0; for(i=0;i<6;i++)m|=!((i*j)%6)<>QR_INT_BITS%6|m<<6-QR_INT_BITS%6; } } }break; /*11111111 (i*j)%3+i*j+1&1 11100011 11011011 10101010*/ case 6:{ for(j=0;j<_dim;j++){ unsigned m; m=0; for(i=0;i<6;i++)m|=((i*j)%3+i*j+1&1)<>QR_INT_BITS%6|m<<6-QR_INT_BITS%6; } } }break; /*10101010 (i*j)%3+i+j+1&1 00011100 10001110 01010101*/ default:{ for(j=0;j<_dim;j++){ unsigned m; m=0; for(i=0;i<6;i++)m|=((i*j)%3+i+j+1&1)<>QR_INT_BITS%6|m<<6-QR_INT_BITS%6; } } }break; } } static void qr_sampling_grid_sample(const qr_sampling_grid *_grid, unsigned *_data_bits,int _dim,int _fmt_info, const unsigned char *_img,int _width,int _height){ int stride; int u0; int u1; int j; /*We initialize the buffer with the data mask and XOR bits into it as we read them out of the image instead of unmasking in a separate step.*/ qr_data_mask_fill(_data_bits,_dim,_fmt_info&7); stride=_dim+QR_INT_BITS-1>>QR_INT_LOGBITS; u0=0; svg_path_start("sampling-grid", 1, 0, 0); /*We read data cell-by-cell to avoid having to constantly change which projection we're using as we read each bit. This (and the position-dependent data mask) is the reason we buffer the bits we read instead of converting them directly to codewords here. Note that bits are stored column-wise, since that's how we'll scan them.*/ for(j=0;j<_grid->ncells;j++){ int i; int v0; int v1; u1=_grid->cell_limits[j]; v0=0; for(i=0;i<_grid->ncells;i++){ qr_hom_cell *cell; int x0; int y0; int w0; int u; int du; int dv; v1=_grid->cell_limits[i]; cell=_grid->cells[i]+j; du=u0-cell->u0; dv=v0-cell->v0; x0=cell->fwd[0][0]*du+cell->fwd[0][1]*dv+cell->fwd[0][2]; y0=cell->fwd[1][0]*du+cell->fwd[1][1]*dv+cell->fwd[1][2]; w0=cell->fwd[2][0]*du+cell->fwd[2][1]*dv+cell->fwd[2][2]; for(u=u0;u>QR_INT_LOGBITS)]^= qr_img_get_bit(_img,_width,_height,p[0],p[1])<<(v&QR_INT_BITS-1); svg_path_moveto(SVG_ABS, p[0], p[1]); } x+=cell->fwd[0][1]; y+=cell->fwd[1][1]; w+=cell->fwd[2][1]; } x0+=cell->fwd[0][0]; y0+=cell->fwd[1][0]; w0+=cell->fwd[2][0]; } v0=v1; } u0=u1; } svg_path_end(); } /*Arranges the sample bits read by qr_sampling_grid_sample() into bytes and groups those bytes into Reed-Solomon blocks. The individual block pointers are destroyed by this routine.*/ static void qr_samples_unpack(unsigned char **_blocks,int _nblocks, int _nshort_data,int _nshort_blocks,const unsigned *_data_bits, const unsigned *_fp_mask,int _dim){ unsigned bits; int biti; int stride; int blocki; int blockj; int i; int j; stride=_dim+QR_INT_BITS-1>>QR_INT_LOGBITS; /*If _all_ the blocks are short, don't skip anything (see below).*/ if(_nshort_blocks>=_nblocks)_nshort_blocks=0; /*Scan columns in pairs from right to left.*/ bits=0; for(blocki=blockj=biti=0,j=_dim-1;j>0;j-=2){ unsigned data1; unsigned data2; unsigned fp_mask1; unsigned fp_mask2; int nbits; int l; /*Scan up a pair of columns.*/ nbits=(_dim-1&QR_INT_BITS-1)+1; l=j*stride; for(i=stride;i-->0;){ data1=_data_bits[l+i]; fp_mask1=_fp_mask[l+i]; data2=_data_bits[l+i-stride]; fp_mask2=_fp_mask[l+i-stride]; while(nbits-->0){ /*Pull a bit from the right column.*/ if(!(fp_mask1>>nbits&1)){ bits=bits<<1|data1>>nbits&1; biti++; } /*Pull a bit from the left column.*/ if(!(fp_mask2>>nbits&1)){ bits=bits<<1|data2>>nbits&1; biti++; } /*If we finished a byte, drop it in a block.*/ if(biti>=8){ biti-=8; *_blocks[blocki++]++=(unsigned char)(bits>>biti); /*For whatever reason, the long blocks are at the _end_ of the list, instead of the beginning. Even worse, the extra bytes they get come at the end of the data bytes, before the parity bytes. Hence the logic here: when we've filled up the data portion of the short blocks, skip directly to the long blocks for the next byte. It's also the reason we increment _blocks[blocki] on each store, instead of just indexing with blockj (after this iteration the number of bytes in each block differs).*/ if(blocki>=_nblocks)blocki=++blockj==_nshort_data?_nshort_blocks:0; } } nbits=QR_INT_BITS; } j-=2; /*Skip the column with the vertical timing pattern.*/ if(j==6)j--; /*Scan down a pair of columns.*/ l=j*stride; for(i=0;i0){ /*Pull a bit from the right column.*/ if(!(fp_mask1&1)){ bits=bits<<1|data1&1; biti++; } data1>>=1; fp_mask1>>=1; /*Pull a bit from the left column.*/ if(!(fp_mask2&1)){ bits=bits<<1|data2&1; biti++; } data2>>=1; fp_mask2>>=1; /*If we finished a byte, drop it in a block.*/ if(biti>=8){ biti-=8; *_blocks[blocki++]++=(unsigned char)(bits>>biti); /*See comments on the "up" loop for the reason behind this mess.*/ if(blocki>=_nblocks)blocki=++blockj==_nshort_data?_nshort_blocks:0; } } } } } /*Bit reading code blatantly stolen^W^Wadapted from libogg/libtheora (because I've already debugged it and I know it works). Portions (C) Xiph.Org Foundation 1994-2008, BSD-style license.*/ struct qr_pack_buf{ const unsigned char *buf; int endbyte; int endbit; int storage; }; static void qr_pack_buf_init(qr_pack_buf *_b, const unsigned char *_data,int _ndata){ _b->buf=_data; _b->storage=_ndata; _b->endbyte=_b->endbit=0; } /*Assumes 0<=_bits<=16.*/ static int qr_pack_buf_read(qr_pack_buf *_b,int _bits){ const unsigned char *p; unsigned ret; int m; int d; m=16-_bits; _bits+=_b->endbit; d=_b->storage-_b->endbyte; if(d<=2){ /*Not the main path.*/ if(d*8<_bits){ _b->endbyte+=_bits>>3; _b->endbit=_bits&7; return -1; } /*Special case to avoid reading p[0] below, which might be past the end of the buffer; also skips some useless accounting.*/ else if(!_bits)return 0; } p=_b->buf+_b->endbyte; ret=p[0]<<8+_b->endbit; if(_bits>8){ ret|=p[1]<<_b->endbit; if(_bits>16)ret|=p[2]>>8-_b->endbit; } _b->endbyte+=_bits>>3; _b->endbit=_bits&7; return (ret&0xFFFF)>>m; } static int qr_pack_buf_avail(const qr_pack_buf *_b){ return (_b->storage-_b->endbyte<<3)-_b->endbit; } /*The characters available in QR_MODE_ALNUM.*/ static const unsigned char QR_ALNUM_TABLE[45]={ '0','1','2','3','4','5','6','7','8','9', 'A','B','C','D','E','F','G','H','I','J', 'K','L','M','N','O','P','Q','R','S','T', 'U','V','W','X','Y','Z',' ','$','%','*', '+','-','.','/',':' }; static int qr_code_data_parse(qr_code_data *_qrdata,int _version, const unsigned char *_data,int _ndata){ qr_pack_buf qpb; unsigned self_parity; int centries; int len_bits_idx; /*Entries are stored directly in the struct during parsing. Caller cleans up any allocated data on failure.*/ _qrdata->entries=NULL; _qrdata->nentries=0; _qrdata->sa_size=0; self_parity=0; centries=0; /*The versions are divided into 3 ranges that each use a different number of bits for length fields.*/ len_bits_idx=(_version>9)+(_version>26); qr_pack_buf_init(&qpb,_data,_ndata); /*While we have enough bits to read a mode...*/ while(qr_pack_buf_avail(&qpb)>=4){ qr_code_data_entry *entry; int mode; mode=qr_pack_buf_read(&qpb,4); /*Mode 0 is a terminator.*/ if(!mode)break; if(_qrdata->nentries>=centries){ centries=centries<<1|1; _qrdata->entries=(qr_code_data_entry *)realloc(_qrdata->entries, centries*sizeof(*_qrdata->entries)); } entry=_qrdata->entries+_qrdata->nentries++; entry->mode=mode; /*Set the buffer to NULL, because if parsing fails, we might try to free it on clean-up.*/ entry->payload.data.buf=NULL; switch(mode){ /*The number of bits used to encode the character count for each version range and each data mode.*/ static const unsigned char LEN_BITS[3][4]={ {10, 9, 8, 8}, {12,11,16,10}, {14,13,16,12} }; case QR_MODE_NUM:{ unsigned char *buf; unsigned bits; unsigned c; int len; int count; int rem; len=qr_pack_buf_read(&qpb,LEN_BITS[len_bits_idx][0]); if(len<0)return -1; /*Check to see if there are enough bits left now, so we don't have to in the decode loop.*/ count=len/3; rem=len%3; if(qr_pack_buf_avail(&qpb)<10*count+7*(rem>>1&1)+4*(rem&1))return -1; entry->payload.data.buf=buf=(unsigned char *)malloc(len*sizeof(*buf)); entry->payload.data.len=len; /*Read groups of 3 digits encoded in 10 bits.*/ while(count-->0){ bits=qr_pack_buf_read(&qpb,10); if(bits>=1000)return -1; c='0'+bits/100; self_parity^=c; *buf++=(unsigned char)c; bits%=100; c='0'+bits/10; self_parity^=c; *buf++=(unsigned char)c; c='0'+bits%10; self_parity^=c; *buf++=(unsigned char)c; } /*Read the last two digits encoded in 7 bits.*/ if(rem>1){ bits=qr_pack_buf_read(&qpb,7); if(bits>=100)return -1; c='0'+bits/10; self_parity^=c; *buf++=(unsigned char)c; c='0'+bits%10; self_parity^=c; *buf++=(unsigned char)c; } /*Or the last one digit encoded in 4 bits.*/ else if(rem){ bits=qr_pack_buf_read(&qpb,4); if(bits>=10)return -1; c='0'+bits; self_parity^=c; *buf++=(unsigned char)c; } }break; case QR_MODE_ALNUM:{ unsigned char *buf; unsigned bits; unsigned c; int len; int count; int rem; len=qr_pack_buf_read(&qpb,LEN_BITS[len_bits_idx][1]); if(len<0)return -1; /*Check to see if there are enough bits left now, so we don't have to in the decode loop.*/ count=len>>1; rem=len&1; if(qr_pack_buf_avail(&qpb)<11*count+6*rem)return -1; entry->payload.data.buf=buf=(unsigned char *)malloc(len*sizeof(*buf)); entry->payload.data.len=len; /*Read groups of two characters encoded in 11 bits.*/ while(count-->0){ bits=qr_pack_buf_read(&qpb,11); if(bits>=2025)return -1; c=QR_ALNUM_TABLE[bits/45]; self_parity^=c; *buf++=(unsigned char)c; c=QR_ALNUM_TABLE[bits%45]; self_parity^=c; *buf++=(unsigned char)c; len-=2; } /*Read the last character encoded in 6 bits.*/ if(rem){ bits=qr_pack_buf_read(&qpb,6); if(bits>=45)return -1; c=QR_ALNUM_TABLE[bits]; self_parity^=c; *buf++=(unsigned char)c; } }break; /*Structured-append header.*/ case QR_MODE_STRUCT:{ int bits; bits=qr_pack_buf_read(&qpb,16); if(bits<0)return -1; /*We save a copy of the data in _qrdata for easy reference when grouping structured-append codes. If for some reason the code has multiple S-A headers, first one wins, since it is supposed to come before everything else (TODO: should we return an error instead?).*/ if(_qrdata->sa_size==0){ _qrdata->sa_index=entry->payload.sa.sa_index= (unsigned char)(bits>>12&0xF); _qrdata->sa_size=entry->payload.sa.sa_size= (unsigned char)((bits>>8&0xF)+1); _qrdata->sa_parity=entry->payload.sa.sa_parity= (unsigned char)(bits&0xFF); } }break; case QR_MODE_BYTE:{ unsigned char *buf; unsigned c; int len; len=qr_pack_buf_read(&qpb,LEN_BITS[len_bits_idx][2]); if(len<0)return -1; /*Check to see if there are enough bits left now, so we don't have to in the decode loop.*/ if(qr_pack_buf_avail(&qpb)payload.data.buf=buf=(unsigned char *)malloc(len*sizeof(*buf)); entry->payload.data.len=len; while(len-->0){ c=qr_pack_buf_read(&qpb,8); self_parity^=c; *buf++=(unsigned char)c; } }break; /*FNC1 first position marker.*/ case QR_MODE_FNC1_1ST:break; /*Extended Channel Interpretation data.*/ case QR_MODE_ECI:{ unsigned val; int bits; /*ECI uses a variable-width encoding similar to UTF-8*/ bits=qr_pack_buf_read(&qpb,8); if(bits<0)return -1; /*One byte:*/ if(!(bits&0x80))val=bits; /*Two bytes:*/ else if(!(bits&0x40)){ val=bits&0x3F<<8; bits=qr_pack_buf_read(&qpb,8); if(bits<0)return -1; val|=bits; } /*Three bytes:*/ else if(!(bits&0x20)){ val=bits&0x1F<<16; bits=qr_pack_buf_read(&qpb,16); if(bits<0)return -1; val|=bits; /*Valid ECI values are 0...999999.*/ if(val>=1000000)return -1; } /*Invalid lead byte.*/ else return -1; entry->payload.eci=val; }break; case QR_MODE_KANJI:{ unsigned char *buf; unsigned bits; int len; len=qr_pack_buf_read(&qpb,LEN_BITS[len_bits_idx][3]); if(len<0)return -1; /*Check to see if there are enough bits left now, so we don't have to in the decode loop.*/ if(qr_pack_buf_avail(&qpb)<13*len)return -1; entry->payload.data.buf=buf=(unsigned char *)malloc(2*len*sizeof(*buf)); entry->payload.data.len=2*len; /*Decode 2-byte SJIS characters encoded in 13 bits.*/ while(len-->0){ bits=qr_pack_buf_read(&qpb,13); bits=(bits/0xC0<<8|bits%0xC0)+0x8140; if(bits>=0xA000)bits+=0x4000; /*TODO: Are values 0xXX7F, 0xXXFD...0xXXFF always invalid? Should we reject them here?*/ self_parity^=bits; *buf++=(unsigned char)(bits>>8); *buf++=(unsigned char)(bits&0xFF); } }break; /*FNC1 second position marker.*/ case QR_MODE_FNC1_2ND:{ int bits; /*FNC1 in the 2nd position encodes an Application Indicator in one byte, which is either a letter (A...Z or a...z) or a 2-digit number. The letters are encoded with their ASCII value plus 100, the numbers are encoded directly with their numeric value. Values 100...164, 191...196, and 223...255 are invalid, so we reject them here.*/ bits=qr_pack_buf_read(&qpb,8); if(!(bits>=0&&bits<100||bits>=165&&bits<191||bits>=197&&bits<223)){ return -1; } entry->payload.ai=bits; }break; /*Unknown mode number:*/ default:{ /*Unfortunately, because we have to understand the format of a mode to know how many bits it occupies, we can't skip unknown modes. Therefore we have to fail.*/ return -1; }break; } } /*Store the parity of the data from this code, for S-A. The final parity is the 8-bit XOR of all the decoded bytes of literal data. We don't combine the 2-byte kanji codes into one byte in the loops above, because we can just do it here instead.*/ _qrdata->self_parity=((self_parity>>8)^self_parity)&0xFF; /*Success.*/ _qrdata->entries=(qr_code_data_entry *)realloc(_qrdata->entries, _qrdata->nentries*sizeof(*_qrdata->entries)); return 0; } static void qr_code_data_clear(qr_code_data *_qrdata){ int i; for(i=0;i<_qrdata->nentries;i++){ if(QR_MODE_HAS_DATA(_qrdata->entries[i].mode)){ free(_qrdata->entries[i].payload.data.buf); } } free(_qrdata->entries); } void qr_code_data_list_init(qr_code_data_list *_qrlist){ _qrlist->qrdata=NULL; _qrlist->nqrdata=_qrlist->cqrdata=0; } void qr_code_data_list_clear(qr_code_data_list *_qrlist){ int i; for(i=0;i<_qrlist->nqrdata;i++)qr_code_data_clear(_qrlist->qrdata+i); free(_qrlist->qrdata); qr_code_data_list_init(_qrlist); } static void qr_code_data_list_add(qr_code_data_list *_qrlist, qr_code_data *_qrdata){ if(_qrlist->nqrdata>=_qrlist->cqrdata){ _qrlist->cqrdata=_qrlist->cqrdata<<1|1; _qrlist->qrdata=(qr_code_data *)realloc(_qrlist->qrdata, _qrlist->cqrdata*sizeof(*_qrlist->qrdata)); } memcpy(_qrlist->qrdata+_qrlist->nqrdata++,_qrdata,sizeof(*_qrdata)); } #if 0 static const unsigned short QR_NCODEWORDS[40]={ 26, 44, 70, 100, 134, 172, 196, 242, 292, 346, 404, 466, 532, 581, 655, 733, 815, 901, 991,1085, 1156,1258,1364,1474,1588,1706,1828,1921,2051,2185, 2323,2465,2611,2761,2876,3034,3196,3362,3532,3706 }; #endif /*The total number of codewords in a QR code.*/ static int qr_code_ncodewords(unsigned _version){ unsigned nalign; /*This is 24-27 instructions on ARM in thumb mode, or a 26-32 byte savings over just using a table (not counting the instructions that would be needed to do the table lookup).*/ if(_version==1)return 26; nalign=(_version/7)+2; return (_version<<4)*(_version+8) -(5*nalign)*(5*nalign-2)+36*(_version<7)+83>>3; } #if 0 /*The number of parity bytes per Reed-Solomon block for each version and error correction level.*/ static const unsigned char QR_RS_NPAR[40][4]={ { 7,10,13,17},{10,16,22,28},{15,26,18,22},{20,18,26,16}, {26,24,18,22},{18,16,24,28},{20,18,18,26},{24,22,22,26}, {30,22,20,24},{18,26,24,28},{20,30,28,24},{24,22,26,28}, {26,22,24,22},{30,24,20,24},{22,24,30,24},{24,28,24,30}, {28,28,28,28},{30,26,28,28},{28,26,26,26},{28,26,30,28}, {28,26,28,30},{28,28,30,24},{30,28,30,30},{30,28,30,30}, {26,28,30,30},{28,28,28,30},{30,28,30,30},{30,28,30,30}, {30,28,30,30},{30,28,30,30},{30,28,30,30},{30,28,30,30}, {30,28,30,30},{30,28,30,30},{30,28,30,30},{30,28,30,30}, {30,28,30,30},{30,28,30,30},{30,28,30,30},{30,28,30,30} }; #endif /*Bulk data for the number of parity bytes per Reed-Solomon block.*/ static const unsigned char QR_RS_NPAR_VALS[71]={ /*[ 0]*/ 7,10,13,17, /*[ 4]*/10,16,22, 28,26,26, 26,22, 24,22,22, 26,24,18,22, /*[19]*/15,26,18, 22,24, 30,24,20,24, /*[28]*/18,16,24, 28, 28, 28,28,30,24, /*[37]*/20,18, 18,26, 24,28,24, 30,26,28, 28, 26,28,30, 30,22,20,24, /*[55]*/20,18,26,16, /*[59]*/20,30,28, 24,22,26, 28,26, 30,28,30,30 }; /*An offset into QR_RS_NPAR_DATA for each version that gives the number of parity bytes per Reed-Solomon block for each error correction level.*/ static const unsigned char QR_RS_NPAR_OFFS[40]={ 0, 4,19,55,15,28,37,12,51,39, 59,62,10,24,22,41,31,44, 7,65, 47,33,67,67,48,32,67,67,67,67, 67,67,67,67,67,67,67,67,67,67 }; /*The number of Reed-Solomon blocks for each version and error correction level.*/ static const unsigned char QR_RS_NBLOCKS[40][4]={ { 1, 1, 1, 1},{ 1, 1, 1, 1},{ 1, 1, 2, 2},{ 1, 2, 2, 4}, { 1, 2, 4, 4},{ 2, 4, 4, 4},{ 2, 4, 6, 5},{ 2, 4, 6, 6}, { 2, 5, 8, 8},{ 4, 5, 8, 8},{ 4, 5, 8,11},{ 4, 8,10,11}, { 4, 9,12,16},{ 4, 9,16,16},{ 6,10,12,18},{ 6,10,17,16}, { 6,11,16,19},{ 6,13,18,21},{ 7,14,21,25},{ 8,16,20,25}, { 8,17,23,25},{ 9,17,23,34},{ 9,18,25,30},{10,20,27,32}, {12,21,29,35},{12,23,34,37},{12,25,34,40},{13,26,35,42}, {14,28,38,45},{15,29,40,48},{16,31,43,51},{17,33,45,54}, {18,35,48,57},{19,37,51,60},{19,38,53,63},{20,40,56,66}, {21,43,59,70},{22,45,62,74},{24,47,65,77},{25,49,68,81} }; /*Attempts to fully decode a QR code. _qrdata: Returns the parsed code data. _gf: Used for Reed-Solomon error correction. _ul_pos: The location of the UL finder pattern. _ur_pos: The location of the UR finder pattern. _dl_pos: The location of the DL finder pattern. _version: The (decoded) version number. _fmt_info: The decoded format info. _img: The binary input image. _width: The width of the input image. _height: The height of the input image. Return: 0 on success, or a negative value on error.*/ static int qr_code_decode(qr_code_data *_qrdata,const rs_gf256 *_gf, const qr_point _ul_pos,const qr_point _ur_pos,const qr_point _dl_pos, int _version,int _fmt_info, const unsigned char *_img,int _width,int _height){ qr_sampling_grid grid; unsigned *data_bits; unsigned char **blocks; unsigned char *block_data; int nblocks; int nshort_blocks; int ncodewords; int block_sz; int ecc_level; int ndata; int npar; int dim; int ret; int i; /*Read the bits out of the image.*/ qr_sampling_grid_init(&grid,_version,_ul_pos,_ur_pos,_dl_pos,_qrdata->bbox, _img,_width,_height); #if defined(QR_DEBUG) qr_sampling_grid_dump(&grid,_version,_img,_width,_height); #endif dim=17+(_version<<2); data_bits=(unsigned *)malloc( dim*(dim+QR_INT_BITS-1>>QR_INT_LOGBITS)*sizeof(*data_bits)); qr_sampling_grid_sample(&grid,data_bits,dim,_fmt_info,_img,_width,_height); /*Group those bits into Reed-Solomon codewords.*/ ecc_level=(_fmt_info>>3)^1; nblocks=QR_RS_NBLOCKS[_version-1][ecc_level]; npar=*(QR_RS_NPAR_VALS+QR_RS_NPAR_OFFS[_version-1]+ecc_level); ncodewords=qr_code_ncodewords(_version); block_sz=ncodewords/nblocks; nshort_blocks=nblocks-(ncodewords%nblocks); blocks=(unsigned char **)malloc(nblocks*sizeof(*blocks)); block_data=(unsigned char *)malloc(ncodewords*sizeof(*block_data)); blocks[0]=block_data; for(i=1;inshort_blocks); qr_samples_unpack(blocks,nblocks,block_sz-npar,nshort_blocks, data_bits,grid.fpmask,dim); qr_sampling_grid_clear(&grid); free(blocks); free(data_bits); /*Perform the error correction.*/ ndata=0; ncodewords=0; ret=0; for(i=0;i=nshort_blocks); ret=rs_correct(_gf,QR_M0,block_data+ncodewords,block_szi,npar,NULL,0); zprintf(1, "Number of errors corrected: %i%s\n", ret, ret < 0 ? " (data irrecoverable)": ""); /*For version 1 symbols and version 2-L and 3-L symbols, we aren't allowed to use all the parity bytes for correction. They are instead used to improve detection. Version 1-L reserves 3 parity bytes for detection. Versions 1-M and 2-L reserve 2 parity bytes for detection. Versions 1-Q, 1-H, and 3-L reserve 1 parity byte for detection. We can ignore the version 3-L restriction because it has an odd number of parity bytes, and we don't support erasure detection.*/ if(ret<0||_version==1&&ret>ecc_level+1<<1|| _version==2&&ecc_level==0&&ret>4){ ret=-1; break; } ndatai=block_szi-npar; memmove(block_data+ndata,block_data+ncodewords,ndatai*sizeof(*block_data)); ncodewords+=block_szi; ndata+=ndatai; } /*Parse the corrected bitstream.*/ if(ret>=0){ ret=qr_code_data_parse(_qrdata,_version,block_data,ndata); /*We could return any partially decoded data, but then we'd have to have API support for that; a mode ignoring ECC errors might also be useful.*/ if(ret<0)qr_code_data_clear(_qrdata); _qrdata->version=_version; _qrdata->ecc_level=ecc_level; } free(block_data); return ret; } /*Searches for an arrangement of these three finder centers that yields a valid configuration. _c: On input, the three finder centers to consider in any order. Return: The detected version number, or a negative value on error.*/ static int qr_reader_try_configuration(qr_reader *_reader, qr_code_data *_qrdata,const unsigned char *_img,int _width,int _height, qr_finder_center *_c[3]){ int ci[7]; unsigned maxd; int ccw; int i0; int i; /*Sort the points in counter-clockwise order.*/ ccw=qr_point_ccw(_c[0]->pos,_c[1]->pos,_c[2]->pos); /*Colinear points can't be the corners of a quadrilateral.*/ if(!ccw)return -1; /*Include a few extra copies of the cyclical list to avoid mods.*/ ci[6]=ci[3]=ci[0]=0; ci[4]=ci[1]=1+(ccw<0); ci[5]=ci[2]=2-(ccw<0); /*Assume the points farthest from each other are the opposite corners, and find the top-left point.*/ maxd=qr_point_distance2(_c[1]->pos,_c[2]->pos); i0=0; for(i=1;i<3;i++){ unsigned d; d=qr_point_distance2(_c[ci[i+1]]->pos,_c[ci[i+2]]->pos); if(d>maxd){ i0=i; maxd=d; } } /*However, try all three possible orderings, just to be sure (a severely skewed projection could move opposite corners closer than adjacent).*/ for(i=i0;ipos,ur.c->pos,dl.c->pos,res); qr_aff_unproject(ur.o,&aff,ur.c->pos[0],ur.c->pos[1]); qr_finder_edge_pts_aff_classify(&ur,&aff); if(qr_finder_estimate_module_size_and_version(&ur,1<pos[0],dl.c->pos[1]); qr_finder_edge_pts_aff_classify(&dl,&aff); if(qr_finder_estimate_module_size_and_version(&dl,1<QR_LARGE_VERSION_SLACK)continue; qr_aff_unproject(ul.o,&aff,ul.c->pos[0],ul.c->pos[1]); qr_finder_edge_pts_aff_classify(&ul,&aff); if(qr_finder_estimate_module_size_and_version(&ul,1<QR_LARGE_VERSION_SLACK|| abs(ul.eversion[0]-dl.eversion[0])>QR_LARGE_VERSION_SLACK){ continue; } #if defined(QR_DEBUG) qr_finder_dump_aff_undistorted(&ul,&ur,&dl,&aff,_img,_width,_height); #endif /*If we made it this far, upgrade the affine homography to a full homography.*/ if(qr_hom_fit(&hom,&ul,&ur,&dl,bbox,&aff, &_reader->isaac,_img,_width,_height)<0){ continue; } memcpy(_qrdata->bbox,bbox,sizeof(bbox)); qr_hom_unproject(ul.o,&hom,ul.c->pos[0],ul.c->pos[1]); qr_hom_unproject(ur.o,&hom,ur.c->pos[0],ur.c->pos[1]); qr_hom_unproject(dl.o,&hom,dl.c->pos[0],dl.c->pos[1]); qr_finder_edge_pts_hom_classify(&ur,&hom); if(qr_finder_estimate_module_size_and_version(&ur, ur.o[0]-ul.o[0],ur.o[0]-ul.o[0])<0){ continue; } qr_finder_edge_pts_hom_classify(&dl,&hom); if(qr_finder_estimate_module_size_and_version(&dl, dl.o[1]-ul.o[1],dl.o[1]-ul.o[1])<0){ continue; } #if defined(QR_DEBUG) qr_finder_dump_hom_undistorted(&ul,&ur,&dl,&hom,_img,_width,_height); #endif /*If we have a small version (less than 7), there's no encoded version information. If the estimated version on the two corners matches and is sufficiently small, we assume this is the case.*/ if(ur.eversion[1]==dl.eversion[0]&&ur.eversion[1]<7){ /*We used to do a whole bunch of extra geometric checks for small versions, because with just an affine correction, it was fairly easy to estimate two consistent module sizes given a random configuration. However, now that we're estimating a full homography, these appear to be unnecessary.*/ #if 0 static const signed char LINE_TESTS[12][6]={ /*DL left, UL > 0, UR > 0*/ {2,0,0, 1,1, 1}, /*DL right, UL > 0, UR < 0*/ {2,1,0, 1,1,-1}, /*UR top, UL > 0, DL > 0*/ {1,2,0, 1,2, 1}, /*UR bottom, UL > 0, DL < 0*/ {1,3,0, 1,2,-1}, /*UR left, DL < 0, UL < 0*/ {1,0,2,-1,0,-1}, /*UR right, DL > 0, UL > 0*/ {1,1,2, 1,0, 1}, /*DL top, UR < 0, UL < 0*/ {2,2,1,-1,0,-1}, /*DL bottom, UR > 0, UL > 0*/ {2,3,1, 1,0, 1}, /*UL left, DL > 0, UR > 0*/ {0,0,2, 1,1, 1}, /*UL right, DL > 0, UR < 0*/ {0,1,2, 1,1,-1}, /*UL top, UR > 0, DL > 0*/ {0,2,1, 1,2, 1}, /*UL bottom, UR > 0, DL < 0*/ {0,3,1, 1,2,-1} }; qr_finder *f[3]; int j; /*Start by decoding the format information. This is cheap, but unlikely to reject invalid configurations. 56.25% of all bitstrings are valid, and we mix and match several pieces until we find a valid combination, so our real chances of finding a valid codeword in random bits are even higher.*/ fmt_info=qr_finder_fmt_info_decode(&ul,&ur,&dl,&aff,_img,_width,_height); if(fmt_info<0)continue; /*Now we fit lines to the edges of each finder pattern and check to make sure the centers of the other finder patterns lie on the proper side.*/ f[0]=&ul; f[1]=&ur; f[2]=&dl; for(j=0;j<12;j++){ const signed char *t; qr_line l0; int *p; t=LINE_TESTS[j]; qr_finder_ransac(f[t[0]],&aff,&_reader->isaac,t[1]); /*We may not have enough points to fit a line accurately here. If not, we just skip the test.*/ if(qr_line_fit_finder_edge(l0,f[t[0]],t[1],res)<0)continue; p=f[t[2]]->c->pos; if(qr_line_eval(l0,p[0],p[1])*t[3]<0)break; p=f[t[4]]->c->pos; if(qr_line_eval(l0,p[0],p[1])*t[5]<0)break; } if(j<12)continue; /*All tests passed.*/ #endif ur_version=ur.eversion[1]; } else{ /*If the estimated versions are significantly different, reject the configuration.*/ if(abs(ur.eversion[1]-dl.eversion[0])>QR_LARGE_VERSION_SLACK)continue; /*Otherwise we try to read the actual version data from the image. If the real version is not sufficiently close to our estimated version, then we assume there was an unrecoverable decoding error (so many bit errors we were within 3 errors of another valid code), and throw that value away. If no decoded version could be sufficiently close, we don't even try.*/ if(ur.eversion[1]>=7-QR_LARGE_VERSION_SLACK){ ur_version=qr_finder_version_decode(&ur,&hom,_img,_width,_height,0); if(abs(ur_version-ur.eversion[1])>QR_LARGE_VERSION_SLACK)ur_version=-1; } else ur_version=-1; if(dl.eversion[0]>=7-QR_LARGE_VERSION_SLACK){ dl_version=qr_finder_version_decode(&dl,&hom,_img,_width,_height,1); if(abs(dl_version-dl.eversion[0])>QR_LARGE_VERSION_SLACK)dl_version=-1; } else dl_version=-1; /*If we got at least one valid version, or we got two and they match, then we found a valid configuration.*/ if(ur_version>=0){ if(dl_version>=0&&dl_version!=ur_version)continue; } else if(dl_version<0)continue; else ur_version=dl_version; } qr_finder_edge_pts_hom_classify(&ul,&hom); if(qr_finder_estimate_module_size_and_version(&ul, ur.o[0]-dl.o[0],dl.o[1]-ul.o[1])<0|| abs(ul.eversion[1]-ur.eversion[1])>QR_SMALL_VERSION_SLACK|| abs(ul.eversion[0]-dl.eversion[0])>QR_SMALL_VERSION_SLACK){ continue; } fmt_info=qr_finder_fmt_info_decode(&ul,&ur,&dl,&hom,_img,_width,_height); if(fmt_info<0|| qr_code_decode(_qrdata,&_reader->gf,ul.c->pos,ur.c->pos,dl.c->pos, ur_version,fmt_info,_img,_width,_height)<0){ /*The code may be flipped. Try again, swapping the UR and DL centers. We should get a valid version either way, so it's relatively cheap to check this, as we've already filtered out a lot of invalid configurations.*/ QR_SWAP2I(hom.inv[0][0],hom.inv[1][0]); QR_SWAP2I(hom.inv[0][1],hom.inv[1][1]); QR_SWAP2I(hom.fwd[0][0],hom.fwd[0][1]); QR_SWAP2I(hom.fwd[1][0],hom.fwd[1][1]); QR_SWAP2I(hom.fwd[2][0],hom.fwd[2][1]); QR_SWAP2I(ul.o[0],ul.o[1]); QR_SWAP2I(ul.size[0],ul.size[1]); QR_SWAP2I(ur.o[0],ur.o[1]); QR_SWAP2I(ur.size[0],ur.size[1]); QR_SWAP2I(dl.o[0],dl.o[1]); QR_SWAP2I(dl.size[0],dl.size[1]); #if defined(QR_DEBUG) qr_finder_dump_hom_undistorted(&ul,&dl,&ur,&hom,_img,_width,_height); #endif fmt_info=qr_finder_fmt_info_decode(&ul,&dl,&ur,&hom,_img,_width,_height); if(fmt_info<0)continue; QR_SWAP2I(bbox[1][0],bbox[2][0]); QR_SWAP2I(bbox[1][1],bbox[2][1]); memcpy(_qrdata->bbox,bbox,sizeof(bbox)); if(qr_code_decode(_qrdata,&_reader->gf,ul.c->pos,dl.c->pos,ur.c->pos, ur_version,fmt_info,_img,_width,_height)<0){ continue; } } return ur_version; } return -1; } void qr_reader_match_centers(qr_reader *_reader,qr_code_data_list *_qrlist, qr_finder_center *_centers,int _ncenters, const unsigned char *_img,int _width,int _height){ /*The number of centers should be small, so an O(n^3) exhaustive search of which ones go together should be reasonable.*/ unsigned char *mark; int nfailures_max; int nfailures; int i; int j; int k; mark=(unsigned char *)calloc(_ncenters,sizeof(*mark)); nfailures_max=QR_MAXI(8192,_width*_height>>9); nfailures=0; for(i=0;i<_ncenters;i++){ /*TODO: We might be able to accelerate this step significantly by considering the remaining finder centers in a more intelligent order, based on the first finder center we just chose.*/ for(j=i+1;!mark[i]&&j<_ncenters;j++){ for(k=j+1;!mark[j]&&k<_ncenters;k++)if(!mark[k]){ qr_finder_center *c[3]; qr_code_data qrdata; int version; c[0]=_centers+i; c[1]=_centers+j; c[2]=_centers+k; version=qr_reader_try_configuration(_reader,&qrdata, _img,_width,_height,c); if(version>=0){ int ninside; int l; /*Add the data to the list.*/ qr_code_data_list_add(_qrlist,&qrdata); /*Convert the bounding box we're returning to the user to normal image coordinates.*/ for(l=0;l<4;l++){ _qrlist->qrdata[_qrlist->nqrdata-1].bbox[l][0]>>=QR_FINDER_SUBPREC; _qrlist->qrdata[_qrlist->nqrdata-1].bbox[l][1]>>=QR_FINDER_SUBPREC; } /*Mark these centers as used.*/ mark[i]=mark[j]=mark[k]=1; /*Find any other finder centers located inside this code.*/ for(l=ninside=0;l<_ncenters;l++)if(!mark[l]){ if(qr_point_ccw(qrdata.bbox[0],qrdata.bbox[1],_centers[l].pos)>=0&& qr_point_ccw(qrdata.bbox[1],qrdata.bbox[3],_centers[l].pos)>=0&& qr_point_ccw(qrdata.bbox[3],qrdata.bbox[2],_centers[l].pos)>=0&& qr_point_ccw(qrdata.bbox[2],qrdata.bbox[0],_centers[l].pos)>=0){ mark[l]=2; ninside++; } } if(ninside>=3){ /*We might have a "Double QR": a code inside a code. Copy the relevant centers to a new array and do a search confined to that subset.*/ qr_finder_center *inside; inside=(qr_finder_center *)malloc(ninside*sizeof(*inside)); for(l=ninside=0;l<_ncenters;l++){ if(mark[l]==2)*&inside[ninside++]=*&_centers[l]; } qr_reader_match_centers(_reader,_qrlist,inside,ninside, _img,_width,_height); free(inside); } /*Mark _all_ such centers used: codes cannot partially overlap.*/ for(l=0;l<_ncenters;l++)if(mark[l]==2)mark[l]=1; nfailures=0; } else if(++nfailures>nfailures_max){ /*Give up. We're unlikely to find a valid code in all this clutter, and we could spent quite a lot of time trying.*/ i=j=k=_ncenters; } } } } free(mark); } int _zbar_qr_found_line (qr_reader *reader, int dir, const qr_finder_line *line) { /* minimally intrusive brute force version */ qr_finder_lines *lines = &reader->finder_lines[dir]; if(lines->nlines >= lines->clines) { lines->clines *= 2; lines->lines = realloc(lines->lines, ++lines->clines * sizeof(*lines->lines)); } memcpy(lines->lines + lines->nlines++, line, sizeof(*line)); return(0); } static inline void qr_svg_centers (const qr_finder_center *centers, int ncenters) { int i, j; svg_path_start("centers", 1, 0, 0); for(i = 0; i < ncenters; i++) svg_path_moveto(SVG_ABS, centers[i].pos[0], centers[i].pos[1]); svg_path_end(); svg_path_start("edge-pts", 1, 0, 0); for(i = 0; i < ncenters; i++) { const qr_finder_center *cen = centers + i; for(j = 0; j < cen->nedge_pts; j++) svg_path_moveto(SVG_ABS, cen->edge_pts[j].pos[0], cen->edge_pts[j].pos[1]); } svg_path_end(); } int _zbar_qr_decode (qr_reader *reader, zbar_image_scanner_t *iscn, zbar_image_t *img) { int nqrdata = 0, ncenters; qr_finder_edge_pt *edge_pts = NULL; qr_finder_center *centers = NULL; if(reader->finder_lines[0].nlines < 9 || reader->finder_lines[1].nlines < 9) return(0); svg_group_start("finder", 0, 1. / (1 << QR_FINDER_SUBPREC), 0, 0, 0); ncenters = qr_finder_centers_locate(¢ers, &edge_pts, reader, 0, 0); zprintf(14, "%dx%d finders, %d centers:\n", reader->finder_lines[0].nlines, reader->finder_lines[1].nlines, ncenters); qr_svg_centers(centers, ncenters); if(ncenters >= 3) { void *bin = qr_binarize(img->data, img->width, img->height); qr_code_data_list qrlist; qr_code_data_list_init(&qrlist); qr_reader_match_centers(reader, &qrlist, centers, ncenters, bin, img->width, img->height); if(qrlist.nqrdata > 0) nqrdata = qr_code_data_list_extract_text(&qrlist, iscn, img); qr_code_data_list_clear(&qrlist); free(bin); } svg_group_end(); if(centers) free(centers); if(edge_pts) free(edge_pts); return(nqrdata); }