/* $Id: Twofish.java,v 1.4 2000/02/12 03:14:31 gelderen Exp $ * * Copyright (C) 1997-2000 The Cryptix Foundation Limited. * All rights reserved. * * Use, modification, copying and distribution of this software is subject * the terms and conditions of the Cryptix General Licence. You should have * received a copy of the Cryptix General Licence along with this library; * if not, you can download a copy from http://www.cryptix.org/ . */ package cryptix.jce.provider.cipher; import java.security.InvalidKeyException; import java.security.Key; /** * Twofish is an AES candidate algorithm. It is a balanced 128-bit Feistel * cipher, consisting of 16 rounds. In each round, a 64-bit S-box value is * computed from 64 bits of the block, and this value is xored into the other * half of the block. The two half-blocks are then exchanged, and the next * round begins. Before the first round, all input bits are xored with key- * dependent "whitening" subkeys, and after the final round the output bits * are xored with other key-dependent whitening subkeys; these subkeys are * not used anywhere else in the algorithm.
* * Twofish was submitted by Bruce Schneier, Doug Whiting, John Kelsey, Chris * Hall and David Wagner.
* * Reference:
* * @version $Revision: 1.4 $ * @author Raif S. Naffah * @author Jeroen C. van Gelderen (gelderen@cryptix.org) */ public final class Twofish extends BlockCipher { // Constants //........................................................................... private static final int BLOCK_SIZE = 16, // bytes in a data-block ROUNDS = 16; private static final int TOTAL_SUBKEYS = 4 + 4 + 2*ROUNDS; private static final int SK_BUMP = 0x01010101, SK_ROTL = 9; /** Fixed 8x8 permutation S-boxes */ private static final byte[][] P = new byte[][] { { // p0 (byte) 0xA9, (byte) 0x67, (byte) 0xB3, (byte) 0xE8, (byte) 0x04, (byte) 0xFD, (byte) 0xA3, (byte) 0x76, (byte) 0x9A, (byte) 0x92, (byte) 0x80, (byte) 0x78, (byte) 0xE4, (byte) 0xDD, (byte) 0xD1, (byte) 0x38, (byte) 0x0D, (byte) 0xC6, (byte) 0x35, (byte) 0x98, (byte) 0x18, (byte) 0xF7, (byte) 0xEC, (byte) 0x6C, (byte) 0x43, (byte) 0x75, (byte) 0x37, (byte) 0x26, (byte) 0xFA, (byte) 0x13, (byte) 0x94, (byte) 0x48, (byte) 0xF2, (byte) 0xD0, (byte) 0x8B, (byte) 0x30, (byte) 0x84, (byte) 0x54, (byte) 0xDF, (byte) 0x23, (byte) 0x19, (byte) 0x5B, (byte) 0x3D, (byte) 0x59, (byte) 0xF3, (byte) 0xAE, (byte) 0xA2, (byte) 0x82, (byte) 0x63, (byte) 0x01, (byte) 0x83, (byte) 0x2E, (byte) 0xD9, (byte) 0x51, (byte) 0x9B, (byte) 0x7C, (byte) 0xA6, (byte) 0xEB, (byte) 0xA5, (byte) 0xBE, (byte) 0x16, (byte) 0x0C, (byte) 0xE3, (byte) 0x61, (byte) 0xC0, (byte) 0x8C, (byte) 0x3A, (byte) 0xF5, (byte) 0x73, (byte) 0x2C, (byte) 0x25, (byte) 0x0B, (byte) 0xBB, (byte) 0x4E, (byte) 0x89, (byte) 0x6B, (byte) 0x53, (byte) 0x6A, (byte) 0xB4, (byte) 0xF1, (byte) 0xE1, (byte) 0xE6, (byte) 0xBD, (byte) 0x45, (byte) 0xE2, (byte) 0xF4, (byte) 0xB6, (byte) 0x66, (byte) 0xCC, (byte) 0x95, (byte) 0x03, (byte) 0x56, (byte) 0xD4, (byte) 0x1C, (byte) 0x1E, (byte) 0xD7, (byte) 0xFB, (byte) 0xC3, (byte) 0x8E, (byte) 0xB5, (byte) 0xE9, (byte) 0xCF, (byte) 0xBF, (byte) 0xBA, (byte) 0xEA, (byte) 0x77, (byte) 0x39, (byte) 0xAF, (byte) 0x33, (byte) 0xC9, (byte) 0x62, (byte) 0x71, (byte) 0x81, (byte) 0x79, (byte) 0x09, (byte) 0xAD, (byte) 0x24, (byte) 0xCD, (byte) 0xF9, (byte) 0xD8, (byte) 0xE5, (byte) 0xC5, (byte) 0xB9, (byte) 0x4D, (byte) 0x44, (byte) 0x08, (byte) 0x86, (byte) 0xE7, (byte) 0xA1, (byte) 0x1D, (byte) 0xAA, (byte) 0xED, (byte) 0x06, (byte) 0x70, (byte) 0xB2, (byte) 0xD2, (byte) 0x41, (byte) 0x7B, (byte) 0xA0, (byte) 0x11, (byte) 0x31, (byte) 0xC2, (byte) 0x27, (byte) 0x90, (byte) 0x20, (byte) 0xF6, (byte) 0x60, (byte) 0xFF, (byte) 0x96, (byte) 0x5C, (byte) 0xB1, (byte) 0xAB, (byte) 0x9E, (byte) 0x9C, (byte) 0x52, (byte) 0x1B, (byte) 0x5F, (byte) 0x93, (byte) 0x0A, (byte) 0xEF, (byte) 0x91, (byte) 0x85, (byte) 0x49, (byte) 0xEE, (byte) 0x2D, (byte) 0x4F, (byte) 0x8F, (byte) 0x3B, (byte) 0x47, (byte) 0x87, (byte) 0x6D, (byte) 0x46, (byte) 0xD6, (byte) 0x3E, (byte) 0x69, (byte) 0x64, (byte) 0x2A, (byte) 0xCE, (byte) 0xCB, (byte) 0x2F, (byte) 0xFC, (byte) 0x97, (byte) 0x05, (byte) 0x7A, (byte) 0xAC, (byte) 0x7F, (byte) 0xD5, (byte) 0x1A, (byte) 0x4B, (byte) 0x0E, (byte) 0xA7, (byte) 0x5A, (byte) 0x28, (byte) 0x14, (byte) 0x3F, (byte) 0x29, (byte) 0x88, (byte) 0x3C, (byte) 0x4C, (byte) 0x02, (byte) 0xB8, (byte) 0xDA, (byte) 0xB0, (byte) 0x17, (byte) 0x55, (byte) 0x1F, (byte) 0x8A, (byte) 0x7D, (byte) 0x57, (byte) 0xC7, (byte) 0x8D, (byte) 0x74, (byte) 0xB7, (byte) 0xC4, (byte) 0x9F, (byte) 0x72, (byte) 0x7E, (byte) 0x15, (byte) 0x22, (byte) 0x12, (byte) 0x58, (byte) 0x07, (byte) 0x99, (byte) 0x34, (byte) 0x6E, (byte) 0x50, (byte) 0xDE, (byte) 0x68, (byte) 0x65, (byte) 0xBC, (byte) 0xDB, (byte) 0xF8, (byte) 0xC8, (byte) 0xA8, (byte) 0x2B, (byte) 0x40, (byte) 0xDC, (byte) 0xFE, (byte) 0x32, (byte) 0xA4, (byte) 0xCA, (byte) 0x10, (byte) 0x21, (byte) 0xF0, (byte) 0xD3, (byte) 0x5D, (byte) 0x0F, (byte) 0x00, (byte) 0x6F, (byte) 0x9D, (byte) 0x36, (byte) 0x42, (byte) 0x4A, (byte) 0x5E, (byte) 0xC1, (byte) 0xE0 }, { // p1 (byte) 0x75, (byte) 0xF3, (byte) 0xC6, (byte) 0xF4, (byte) 0xDB, (byte) 0x7B, (byte) 0xFB, (byte) 0xC8, (byte) 0x4A, (byte) 0xD3, (byte) 0xE6, (byte) 0x6B, (byte) 0x45, (byte) 0x7D, (byte) 0xE8, (byte) 0x4B, (byte) 0xD6, (byte) 0x32, (byte) 0xD8, (byte) 0xFD, (byte) 0x37, (byte) 0x71, (byte) 0xF1, (byte) 0xE1, (byte) 0x30, (byte) 0x0F, (byte) 0xF8, (byte) 0x1B, (byte) 0x87, (byte) 0xFA, (byte) 0x06, (byte) 0x3F, (byte) 0x5E, (byte) 0xBA, (byte) 0xAE, (byte) 0x5B, (byte) 0x8A, (byte) 0x00, (byte) 0xBC, (byte) 0x9D, (byte) 0x6D, (byte) 0xC1, (byte) 0xB1, (byte) 0x0E, (byte) 0x80, (byte) 0x5D, (byte) 0xD2, (byte) 0xD5, (byte) 0xA0, (byte) 0x84, (byte) 0x07, (byte) 0x14, (byte) 0xB5, (byte) 0x90, (byte) 0x2C, (byte) 0xA3, (byte) 0xB2, (byte) 0x73, (byte) 0x4C, (byte) 0x54, (byte) 0x92, (byte) 0x74, (byte) 0x36, (byte) 0x51, (byte) 0x38, (byte) 0xB0, (byte) 0xBD, (byte) 0x5A, (byte) 0xFC, (byte) 0x60, (byte) 0x62, (byte) 0x96, (byte) 0x6C, (byte) 0x42, (byte) 0xF7, (byte) 0x10, (byte) 0x7C, (byte) 0x28, (byte) 0x27, (byte) 0x8C, (byte) 0x13, (byte) 0x95, (byte) 0x9C, (byte) 0xC7, (byte) 0x24, (byte) 0x46, (byte) 0x3B, (byte) 0x70, (byte) 0xCA, (byte) 0xE3, (byte) 0x85, (byte) 0xCB, (byte) 0x11, (byte) 0xD0, (byte) 0x93, (byte) 0xB8, (byte) 0xA6, (byte) 0x83, (byte) 0x20, (byte) 0xFF, (byte) 0x9F, (byte) 0x77, (byte) 0xC3, (byte) 0xCC, (byte) 0x03, (byte) 0x6F, (byte) 0x08, (byte) 0xBF, (byte) 0x40, (byte) 0xE7, (byte) 0x2B, (byte) 0xE2, (byte) 0x79, (byte) 0x0C, (byte) 0xAA, (byte) 0x82, (byte) 0x41, (byte) 0x3A, (byte) 0xEA, (byte) 0xB9, (byte) 0xE4, (byte) 0x9A, (byte) 0xA4, (byte) 0x97, (byte) 0x7E, (byte) 0xDA, (byte) 0x7A, (byte) 0x17, (byte) 0x66, (byte) 0x94, (byte) 0xA1, (byte) 0x1D, (byte) 0x3D, (byte) 0xF0, (byte) 0xDE, (byte) 0xB3, (byte) 0x0B, (byte) 0x72, (byte) 0xA7, (byte) 0x1C, (byte) 0xEF, (byte) 0xD1, (byte) 0x53, (byte) 0x3E, (byte) 0x8F, (byte) 0x33, (byte) 0x26, (byte) 0x5F, (byte) 0xEC, (byte) 0x76, (byte) 0x2A, (byte) 0x49, (byte) 0x81, (byte) 0x88, (byte) 0xEE, (byte) 0x21, (byte) 0xC4, (byte) 0x1A, (byte) 0xEB, (byte) 0xD9, (byte) 0xC5, (byte) 0x39, (byte) 0x99, (byte) 0xCD, (byte) 0xAD, (byte) 0x31, (byte) 0x8B, (byte) 0x01, (byte) 0x18, (byte) 0x23, (byte) 0xDD, (byte) 0x1F, (byte) 0x4E, (byte) 0x2D, (byte) 0xF9, (byte) 0x48, (byte) 0x4F, (byte) 0xF2, (byte) 0x65, (byte) 0x8E, (byte) 0x78, (byte) 0x5C, (byte) 0x58, (byte) 0x19, (byte) 0x8D, (byte) 0xE5, (byte) 0x98, (byte) 0x57, (byte) 0x67, (byte) 0x7F, (byte) 0x05, (byte) 0x64, (byte) 0xAF, (byte) 0x63, (byte) 0xB6, (byte) 0xFE, (byte) 0xF5, (byte) 0xB7, (byte) 0x3C, (byte) 0xA5, (byte) 0xCE, (byte) 0xE9, (byte) 0x68, (byte) 0x44, (byte) 0xE0, (byte) 0x4D, (byte) 0x43, (byte) 0x69, (byte) 0x29, (byte) 0x2E, (byte) 0xAC, (byte) 0x15, (byte) 0x59, (byte) 0xA8, (byte) 0x0A, (byte) 0x9E, (byte) 0x6E, (byte) 0x47, (byte) 0xDF, (byte) 0x34, (byte) 0x35, (byte) 0x6A, (byte) 0xCF, (byte) 0xDC, (byte) 0x22, (byte) 0xC9, (byte) 0xC0, (byte) 0x9B, (byte) 0x89, (byte) 0xD4, (byte) 0xED, (byte) 0xAB, (byte) 0x12, (byte) 0xA2, (byte) 0x0D, (byte) 0x52, (byte) 0xBB, (byte) 0x02, (byte) 0x2F, (byte) 0xA9, (byte) 0xD7, (byte) 0x61, (byte) 0x1E, (byte) 0xB4, (byte) 0x50, (byte) 0x04, (byte) 0xF6, (byte) 0xC2, (byte) 0x16, (byte) 0x25, (byte) 0x86, (byte) 0x56, (byte) 0x55, (byte) 0x09, (byte) 0xBE, (byte) 0x91 } }; /** * Define the fixed p0/p1 permutations used in keyed S-box lookup. * By changing the following constant definitions, the S-boxes will * automatically get changed in the Twofish engine. */ private static final int P_00 = 1, P_01 = 0, P_02 = 0, P_03 = P_01 ^ 1, P_04 = 1, P_10 = 0, P_11 = 0, P_12 = 1, P_13 = P_11 ^ 1, P_14 = 0, P_20 = 1, P_21 = 1, P_22 = 0, P_23 = P_21 ^ 1, P_24 = 0, P_30 = 0, P_31 = 1, P_32 = 1, P_33 = P_31 ^ 1, P_34 = 1; /** Primitive polynomial for GF(256) */ private static final int GF256_FDBK = 0x169, GF256_FDBK_2 = 0x169 / 2, GF256_FDBK_4 = 0x169 / 4; /** MDS matrix */ private static final int[][] MDS = new int[4][256]; // blank final private static final int RS_GF_FDBK = 0x14D; // field generator // Static code - to intialise the MDS matrix //........................................................................... static { // precompute the MDS matrix int[] m1 = new int[2]; int[] mX = new int[2]; int[] mY = new int[2]; int i, j; for (i = 0; i < 256; i++) { j = P[0][i] & 0xFF; // compute all the matrix elements m1[0] = j; mX[0] = Mx_X( j ) & 0xFF; mY[0] = Mx_Y( j ) & 0xFF; j = P[1][i] & 0xFF; m1[1] = j; mX[1] = Mx_X( j ) & 0xFF; mY[1] = Mx_Y( j ) & 0xFF; MDS[0][i] = m1[P_00] << 0 | // fill matrix w/ above elements mX[P_00] << 8 | mY[P_00] << 16 | mY[P_00] << 24; MDS[1][i] = mY[P_10] << 0 | mY[P_10] << 8 | mX[P_10] << 16 | m1[P_10] << 24; MDS[2][i] = mX[P_20] << 0 | mY[P_20] << 8 | m1[P_20] << 16 | mY[P_20] << 24; MDS[3][i] = mX[P_30] << 0 | m1[P_30] << 8 | mY[P_30] << 16 | mX[P_30] << 24; } } private static final int LFSR1( int x ) { return (x >> 1) ^ ((x & 0x01) != 0 ? GF256_FDBK_2 : 0); } private static final int LFSR2( int x ) { return (x >> 2) ^ ((x & 0x02) != 0 ? GF256_FDBK_2 : 0) ^ ((x & 0x01) != 0 ? GF256_FDBK_4 : 0); } private static final int Mx_1( int x ) { return x; } private static final int Mx_X( int x ) { return x ^ LFSR2(x); } private static final int Mx_Y( int x ) { return x ^ LFSR1(x) ^ LFSR2(x); } // Instance variables //........................................................................... /** Encrypt (false) or decrypt mode (true) */ private boolean decrypt; /** Key dependent S-box */ private final int[] sBox = new int[4 * 256]; /** Subkeys */ private final int[] subKeys = new int[TOTAL_SUBKEYS]; // Constructor //........................................................................... public Twofish() { super(BLOCK_SIZE); } // BlockCipher abstract method implementation //........................................................................... protected void coreInit(Key key, boolean decrypt) throws InvalidKeyException { if( key==null ) throw new InvalidKeyException("key: key is null"); if( !key.getFormat().equalsIgnoreCase("RAW") ) throw new InvalidKeyException("key: wrong format, RAW needed"); byte[] userkey = key.getEncoded(); if(userkey == null) throw new InvalidKeyException("RAW bytes missing"); int len = userkey.length ; if( len != 16 && len != 24 && len!=32 ) throw new InvalidKeyException("Invalid user key length"); this.decrypt = decrypt; makeSubKeys(userkey); } protected void coreCrypt(byte[] in, int inOffset, byte[] out, int outOffset) { blockCrypt(in, inOffset, out, outOffset); } // Private methods //........................................................................... /** * Expand a user-supplied key material into a session key. * * @param key The 64/128/192/256-bit user-key to use. * @return This cipher's round keys. * @exception InvalidKeyException If the key is invalid. */ private final void makeSubKeys(byte[] k) throws InvalidKeyException { int length = k.length; int k64Cnt = length / 8; int[] k32e = new int[4]; // even 32-bit entities int[] k32o = new int[4]; // odd 32-bit entities int[] sBoxKey = new int[4]; // split user key material into even and odd 32-bit entities and // compute S-box keys using (12, 8) Reed-Solomon code over GF(256) int i, j, offset = 0; for (i = 0, j = k64Cnt-1; i < 4 && offset < length; i++, j--) { k32e[i] = (k[offset++] & 0xFF) | (k[offset++] & 0xFF) << 8 | (k[offset++] & 0xFF) << 16 | (k[offset++] & 0xFF) << 24; k32o[i] = (k[offset++] & 0xFF) | (k[offset++] & 0xFF) << 8 | (k[offset++] & 0xFF) << 16 | (k[offset++] & 0xFF) << 24; sBoxKey[j] = RS_MDS_Encode( k32e[i], k32o[i] ); // reverse order } // compute the round decryption subkeys for PHT. these same subkeys // will be used in encryption but will be applied in reverse order. int A, B, q=0; i=0; while(i < TOTAL_SUBKEYS) { A = F32( k64Cnt, q, k32e ); // A uses even key entities q += SK_BUMP; B = F32( k64Cnt, q, k32o ); // B uses odd key entities q += SK_BUMP; B = B << 8 | B >>> 24; A += B; subKeys[i++] = A; // combine with a PHT A += B; subKeys[i++] = A << SK_ROTL | A >>> (32-SK_ROTL); } // fully expand the table for speed int k0 = sBoxKey[0]; int k1 = sBoxKey[1]; int k2 = sBoxKey[2]; int k3 = sBoxKey[3]; int b0, b1, b2, b3; for (i = 0; i < 256; i++) { b0 = b1 = b2 = b3 = i; switch (k64Cnt & 3) { case 1: sBox[ 2*i ] = MDS[0][(P[P_01][b0] & 0xFF) ^ b0(k0)]; sBox[ 2*i+1] = MDS[1][(P[P_11][b1] & 0xFF) ^ b1(k0)]; sBox[0x200+2*i ] = MDS[2][(P[P_21][b2] & 0xFF) ^ b2(k0)]; sBox[0x200+2*i+1] = MDS[3][(P[P_31][b3] & 0xFF) ^ b3(k0)]; break; case 0: // same as 4 b0 = (P[P_04][b0] & 0xFF) ^ b0(k3); b1 = (P[P_14][b1] & 0xFF) ^ b1(k3); b2 = (P[P_24][b2] & 0xFF) ^ b2(k3); b3 = (P[P_34][b3] & 0xFF) ^ b3(k3); case 3: b0 = (P[P_03][b0] & 0xFF) ^ b0(k2); b1 = (P[P_13][b1] & 0xFF) ^ b1(k2); b2 = (P[P_23][b2] & 0xFF) ^ b2(k2); b3 = (P[P_33][b3] & 0xFF) ^ b3(k2); case 2: // 128-bit keys sBox[ 2*i ] = MDS[0][ (P[P_01][(P[P_02][b0] & 0xFF) ^ b0(k1)] & 0xFF) ^ b0(k0)]; sBox[ 2*i+1] = MDS[1][ (P[P_11][(P[P_12][b1] & 0xFF) ^ b1(k1)] & 0xFF) ^ b1(k0)]; sBox[0x200+2*i ] = MDS[2][ (P[P_21][(P[P_22][b2] & 0xFF) ^ b2(k1)] & 0xFF) ^ b2(k0)]; sBox[0x200+2*i+1] = MDS[3][ (P[P_31][(P[P_32][b3] & 0xFF) ^ b3(k1)] & 0xFF) ^ b3(k0)]; } } // swap input and output whitening keys when decrypting if(decrypt) for(i=0; i<4; i++) { int t = subKeys[i]; subKeys[i] = subKeys[i+4]; subKeys[i+4] = t; } } /** * Encrypt exactly one block of plaintext. Blocks may overlap. * * @param in The plaintext. * @param inOffset Index of in from which to start considering data. * @param sessionKey The session key to use for encryption. * @return The ciphertext generated from a plaintext using the session key. */ private final void blockCrypt(byte[] in, int inOffset, byte[] out, int outOffset) { int[] sBox = this.sBox; int[] sKey = this.subKeys; int x0 = (in[inOffset++] & 0xFF) | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 24; int x1 = (in[inOffset++] & 0xFF) | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 24; int x2 = (in[inOffset++] & 0xFF) | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset++] & 0xFF) << 24; int x3 = (in[inOffset++] & 0xFF) | (in[inOffset++] & 0xFF) << 8 | (in[inOffset++] & 0xFF) << 16 | (in[inOffset ] & 0xFF) << 24; x0 ^= sKey[0]; x1 ^= sKey[1]; x2 ^= sKey[2]; x3 ^= sKey[3]; int k, t0, t1; if(decrypt) { k = 39; for (int R = 0; R < ROUNDS; R += 2) { t0 = Fe32( sBox, x0, 0 ); t1 = Fe32( sBox, x1, 3 ); x3 ^= t0 + 2*t1 + sKey[k--]; x3 = x3 >>> 1 | x3 << 31; x2 = x2 << 1 | x2 >>> 31; x2 ^= t0 + t1 + sKey[k--]; t0 = Fe32( sBox, x2, 0 ); t1 = Fe32( sBox, x3, 3 ); x1 ^= t0 + 2*t1 + sKey[k--]; x1 = x1 >>> 1 | x1 << 31; x0 = x0 << 1 | x0 >>> 31; x0 ^= t0 + t1 + sKey[k--]; } } else { k = 8; for (int R = 0; R < ROUNDS; R += 2) { t0 = Fe32( sBox, x0, 0 ); t1 = Fe32( sBox, x1, 3 ); x2 ^= t0 + t1 + sKey[k++]; x2 = x2 >>> 1 | x2 << 31; x3 = x3 << 1 | x3 >>> 31; x3 ^= t0 + 2*t1 + sKey[k++]; t0 = Fe32( sBox, x2, 0 ); t1 = Fe32( sBox, x3, 3 ); x0 ^= t0 + t1 + sKey[k++]; x0 = x0 >>> 1 | x0 << 31; x1 = x1 << 1 | x1 >>> 31; x1 ^= t0 + 2*t1 + sKey[k++]; } } x2 ^= sKey[4]; x3 ^= sKey[5]; x0 ^= sKey[6]; x1 ^= sKey[7]; out[outOffset++] = (byte)(x2 ); out[outOffset++] = (byte)(x2 >>> 8); out[outOffset++] = (byte)(x2 >>> 16); out[outOffset++] = (byte)(x2 >>> 24); out[outOffset++] = (byte)(x3 ); out[outOffset++] = (byte)(x3 >>> 8); out[outOffset++] = (byte)(x3 >>> 16); out[outOffset++] = (byte)(x3 >>> 24); out[outOffset++] = (byte)(x0 ); out[outOffset++] = (byte)(x0 >>> 8); out[outOffset++] = (byte)(x0 >>> 16); out[outOffset++] = (byte)(x0 >>> 24); out[outOffset++] = (byte)(x1 ); out[outOffset++] = (byte)(x1 >>> 8); out[outOffset++] = (byte)(x1 >>> 16); out[outOffset ] = (byte)(x1 >>> 24); } // own methods //........................................................................... private static final int b0( int x ) { return x & 0xFF; } private static final int b1( int x ) { return (x >>> 8) & 0xFF; } private static final int b2( int x ) { return (x >>> 16) & 0xFF; } private static final int b3( int x ) { return (x >>> 24) & 0xFF; } /** * Use (12, 8) Reed-Solomon code over GF(256) to produce a key S-box * 32-bit entity from two key material 32-bit entities. * * @param k0 1st 32-bit entity. * @param k1 2nd 32-bit entity. * @return Remainder polynomial generated using RS code */ private static final int RS_MDS_Encode( int k0, int k1) { int r = k1; for (int i = 0; i < 4; i++) // shift 1 byte at a time r = RS_rem( r ); r ^= k0; for (int i = 0; i < 4; i++) r = RS_rem( r ); return r; } /* * Reed-Solomon code parameters: (12, 8) reversible code:
*
* g(x) = x**4 + (a + 1/a) x**3 + a x**2 + (a + 1/a) x + 1 ** where a = primitive root of field generator 0x14D */ private static final int RS_rem( int x ) { int b = (x >>> 24) & 0xFF; int g2 = ((b << 1) ^ ( (b & 0x80)!=0 ? RS_GF_FDBK : 0 )) & 0xFF; int g3 = (b >>> 1) ^ ( (b & 0x01)!=0 ? (RS_GF_FDBK >>> 1) : 0 ) ^ g2; int result = (x << 8) ^ (g3 << 24) ^ (g2 << 16) ^ (g3 << 8) ^ b; return result; } private static final int F32( int k64Cnt, int x, int[] k32 ) { int b0 = b0(x); int b1 = b1(x); int b2 = b2(x); int b3 = b3(x); int k0 = k32[0]; int k1 = k32[1]; int k2 = k32[2]; int k3 = k32[3]; int result = 0; switch (k64Cnt & 3) { case 1: result = MDS[0][(P[P_01][b0] & 0xFF) ^ b0(k0)] ^ MDS[1][(P[P_11][b1] & 0xFF) ^ b1(k0)] ^ MDS[2][(P[P_21][b2] & 0xFF) ^ b2(k0)] ^ MDS[3][(P[P_31][b3] & 0xFF) ^ b3(k0)]; break; case 0: // same as 4 b0 = (P[P_04][b0] & 0xFF) ^ b0(k3); b1 = (P[P_14][b1] & 0xFF) ^ b1(k3); b2 = (P[P_24][b2] & 0xFF) ^ b2(k3); b3 = (P[P_34][b3] & 0xFF) ^ b3(k3); case 3: b0 = (P[P_03][b0] & 0xFF) ^ b0(k2); b1 = (P[P_13][b1] & 0xFF) ^ b1(k2); b2 = (P[P_23][b2] & 0xFF) ^ b2(k2); b3 = (P[P_33][b3] & 0xFF) ^ b3(k2); case 2: // 128-bit keys (optimize for this case) result = MDS[0][(P[P_01][(P[P_02][b0] & 0xFF) ^ b0(k1)] & 0xFF) ^ b0(k0)] ^ MDS[1][(P[P_11][(P[P_12][b1] & 0xFF) ^ b1(k1)] & 0xFF) ^ b1(k0)] ^ MDS[2][(P[P_21][(P[P_22][b2] & 0xFF) ^ b2(k1)] & 0xFF) ^ b2(k0)] ^ MDS[3][(P[P_31][(P[P_32][b3] & 0xFF) ^ b3(k1)] & 0xFF) ^ b3(k0)]; break; } return result; } private static final int Fe32( int[] sBox, int x, int R ) { return sBox[ 2*_b(x, R ) ] ^ sBox[ 2*_b(x, R+1) + 1] ^ sBox[0x200 + 2*_b(x, R+2) ] ^ sBox[0x200 + 2*_b(x, R+3) + 1]; } private static final int _b( int x, int N ) { int result = 0; switch (N%4) { case 0: result = b0(x); break; case 1: result = b1(x); break; case 2: result = b2(x); break; case 3: result = b3(x); break; } return result; } }