/* * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.hpp" #include "asm/macroAssembler.inline.hpp" #include "ci/ciUtilities.hpp" #include "gc/shared/barrierSet.hpp" #include "gc/shared/barrierSetAssembler.hpp" #include "interpreter/interpreter.hpp" #include "nativeInst_x86.hpp" #include "oops/instanceOop.hpp" #include "oops/method.hpp" #include "oops/objArrayKlass.hpp" #include "oops/oop.inline.hpp" #include "prims/methodHandles.hpp" #include "runtime/frame.inline.hpp" #include "runtime/handles.inline.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubCodeGenerator.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/thread.inline.hpp" #ifdef COMPILER2 #include "opto/runtime.hpp" #endif #if INCLUDE_ZGC #include "gc/z/zThreadLocalData.hpp" #endif // Declaration and definition of StubGenerator (no .hpp file). // For a more detailed description of the stub routine structure // see the comment in stubRoutines.hpp #define __ _masm-> #define TIMES_OOP (UseCompressedOops ? Address::times_4 : Address::times_8) #define a__ ((Assembler*)_masm)-> #ifdef PRODUCT #define BLOCK_COMMENT(str) /* nothing */ #else #define BLOCK_COMMENT(str) __ block_comment(str) #endif #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") const int MXCSR_MASK = 0xFFC0; // Mask out any pending exceptions // Stub Code definitions class StubGenerator: public StubCodeGenerator { private: #ifdef PRODUCT #define inc_counter_np(counter) ((void)0) #else void inc_counter_np_(int& counter) { // This can destroy rscratch1 if counter is far from the code cache __ incrementl(ExternalAddress((address)&counter)); } #define inc_counter_np(counter) \ BLOCK_COMMENT("inc_counter " #counter); \ inc_counter_np_(counter); #endif // Call stubs are used to call Java from C // // Linux Arguments: // c_rarg0: call wrapper address address // c_rarg1: result address // c_rarg2: result type BasicType // c_rarg3: method Method* // c_rarg4: (interpreter) entry point address // c_rarg5: parameters intptr_t* // 16(rbp): parameter size (in words) int // 24(rbp): thread Thread* // // [ return_from_Java ] <--- rsp // [ argument word n ] // ... // -12 [ argument word 1 ] // -11 [ saved r15 ] <--- rsp_after_call // -10 [ saved r14 ] // -9 [ saved r13 ] // -8 [ saved r12 ] // -7 [ saved rbx ] // -6 [ call wrapper ] // -5 [ result ] // -4 [ result type ] // -3 [ method ] // -2 [ entry point ] // -1 [ parameters ] // 0 [ saved rbp ] <--- rbp // 1 [ return address ] // 2 [ parameter size ] // 3 [ thread ] // // Windows Arguments: // c_rarg0: call wrapper address address // c_rarg1: result address // c_rarg2: result type BasicType // c_rarg3: method Method* // 48(rbp): (interpreter) entry point address // 56(rbp): parameters intptr_t* // 64(rbp): parameter size (in words) int // 72(rbp): thread Thread* // // [ return_from_Java ] <--- rsp // [ argument word n ] // ... // -60 [ argument word 1 ] // -59 [ saved xmm31 ] <--- rsp after_call // [ saved xmm16-xmm30 ] (EVEX enabled, else the space is blank) // -27 [ saved xmm15 ] // [ saved xmm7-xmm14 ] // -9 [ saved xmm6 ] (each xmm register takes 2 slots) // -7 [ saved r15 ] // -6 [ saved r14 ] // -5 [ saved r13 ] // -4 [ saved r12 ] // -3 [ saved rdi ] // -2 [ saved rsi ] // -1 [ saved rbx ] // 0 [ saved rbp ] <--- rbp // 1 [ return address ] // 2 [ call wrapper ] // 3 [ result ] // 4 [ result type ] // 5 [ method ] // 6 [ entry point ] // 7 [ parameters ] // 8 [ parameter size ] // 9 [ thread ] // // Windows reserves the callers stack space for arguments 1-4. // We spill c_rarg0-c_rarg3 to this space. // Call stub stack layout word offsets from rbp enum call_stub_layout { #ifdef _WIN64 xmm_save_first = 6, // save from xmm6 xmm_save_last = 31, // to xmm31 xmm_save_base = -9, rsp_after_call_off = xmm_save_base - 2 * (xmm_save_last - xmm_save_first), // -27 r15_off = -7, r14_off = -6, r13_off = -5, r12_off = -4, rdi_off = -3, rsi_off = -2, rbx_off = -1, rbp_off = 0, retaddr_off = 1, call_wrapper_off = 2, result_off = 3, result_type_off = 4, method_off = 5, entry_point_off = 6, parameters_off = 7, parameter_size_off = 8, thread_off = 9 #else rsp_after_call_off = -12, mxcsr_off = rsp_after_call_off, r15_off = -11, r14_off = -10, r13_off = -9, r12_off = -8, rbx_off = -7, call_wrapper_off = -6, result_off = -5, result_type_off = -4, method_off = -3, entry_point_off = -2, parameters_off = -1, rbp_off = 0, retaddr_off = 1, parameter_size_off = 2, thread_off = 3 #endif }; #ifdef _WIN64 Address xmm_save(int reg) { assert(reg >= xmm_save_first && reg <= xmm_save_last, "XMM register number out of range"); return Address(rbp, (xmm_save_base - (reg - xmm_save_first) * 2) * wordSize); } #endif address generate_call_stub(address& return_address) { assert((int)frame::entry_frame_after_call_words == -(int)rsp_after_call_off + 1 && (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off, "adjust this code"); StubCodeMark mark(this, "StubRoutines", "call_stub"); address start = __ pc(); // same as in generate_catch_exception()! const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); const Address call_wrapper (rbp, call_wrapper_off * wordSize); const Address result (rbp, result_off * wordSize); const Address result_type (rbp, result_type_off * wordSize); const Address method (rbp, method_off * wordSize); const Address entry_point (rbp, entry_point_off * wordSize); const Address parameters (rbp, parameters_off * wordSize); const Address parameter_size(rbp, parameter_size_off * wordSize); // same as in generate_catch_exception()! const Address thread (rbp, thread_off * wordSize); const Address r15_save(rbp, r15_off * wordSize); const Address r14_save(rbp, r14_off * wordSize); const Address r13_save(rbp, r13_off * wordSize); const Address r12_save(rbp, r12_off * wordSize); const Address rbx_save(rbp, rbx_off * wordSize); // stub code __ enter(); __ subptr(rsp, -rsp_after_call_off * wordSize); // save register parameters #ifndef _WIN64 __ movptr(parameters, c_rarg5); // parameters __ movptr(entry_point, c_rarg4); // entry_point #endif __ movptr(method, c_rarg3); // method __ movl(result_type, c_rarg2); // result type __ movptr(result, c_rarg1); // result __ movptr(call_wrapper, c_rarg0); // call wrapper // save regs belonging to calling function __ movptr(rbx_save, rbx); __ movptr(r12_save, r12); __ movptr(r13_save, r13); __ movptr(r14_save, r14); __ movptr(r15_save, r15); #ifdef _WIN64 int last_reg = 15; if (UseAVX > 2) { last_reg = 31; } if (VM_Version::supports_evex()) { for (int i = xmm_save_first; i <= last_reg; i++) { __ vextractf32x4(xmm_save(i), as_XMMRegister(i), 0); } } else { for (int i = xmm_save_first; i <= last_reg; i++) { __ movdqu(xmm_save(i), as_XMMRegister(i)); } } const Address rdi_save(rbp, rdi_off * wordSize); const Address rsi_save(rbp, rsi_off * wordSize); __ movptr(rsi_save, rsi); __ movptr(rdi_save, rdi); #else const Address mxcsr_save(rbp, mxcsr_off * wordSize); { Label skip_ldmx; __ stmxcsr(mxcsr_save); __ movl(rax, mxcsr_save); __ andl(rax, MXCSR_MASK); // Only check control and mask bits ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std()); __ cmp32(rax, mxcsr_std); __ jcc(Assembler::equal, skip_ldmx); __ ldmxcsr(mxcsr_std); __ bind(skip_ldmx); } #endif // Load up thread register __ movptr(r15_thread, thread); __ reinit_heapbase(); #ifdef ASSERT // make sure we have no pending exceptions { Label L; __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); __ jcc(Assembler::equal, L); __ stop("StubRoutines::call_stub: entered with pending exception"); __ bind(L); } #endif // pass parameters if any BLOCK_COMMENT("pass parameters if any"); Label parameters_done; __ movl(c_rarg3, parameter_size); __ testl(c_rarg3, c_rarg3); __ jcc(Assembler::zero, parameters_done); Label loop; __ movptr(c_rarg2, parameters); // parameter pointer __ movl(c_rarg1, c_rarg3); // parameter counter is in c_rarg1 __ BIND(loop); __ movptr(rax, Address(c_rarg2, 0));// get parameter __ addptr(c_rarg2, wordSize); // advance to next parameter __ decrementl(c_rarg1); // decrement counter __ push(rax); // pass parameter __ jcc(Assembler::notZero, loop); // call Java function __ BIND(parameters_done); __ movptr(rbx, method); // get Method* __ movptr(c_rarg1, entry_point); // get entry_point __ mov(r13, rsp); // set sender sp BLOCK_COMMENT("call Java function"); __ call(c_rarg1); BLOCK_COMMENT("call_stub_return_address:"); return_address = __ pc(); // store result depending on type (everything that is not // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT) __ movptr(c_rarg0, result); Label is_long, is_float, is_double, exit; __ movl(c_rarg1, result_type); __ cmpl(c_rarg1, T_OBJECT); __ jcc(Assembler::equal, is_long); __ cmpl(c_rarg1, T_LONG); __ jcc(Assembler::equal, is_long); __ cmpl(c_rarg1, T_FLOAT); __ jcc(Assembler::equal, is_float); __ cmpl(c_rarg1, T_DOUBLE); __ jcc(Assembler::equal, is_double); // handle T_INT case __ movl(Address(c_rarg0, 0), rax); __ BIND(exit); // pop parameters __ lea(rsp, rsp_after_call); #ifdef ASSERT // verify that threads correspond { Label L1, L2, L3; __ cmpptr(r15_thread, thread); __ jcc(Assembler::equal, L1); __ stop("StubRoutines::call_stub: r15_thread is corrupted"); __ bind(L1); __ get_thread(rbx); __ cmpptr(r15_thread, thread); __ jcc(Assembler::equal, L2); __ stop("StubRoutines::call_stub: r15_thread is modified by call"); __ bind(L2); __ cmpptr(r15_thread, rbx); __ jcc(Assembler::equal, L3); __ stop("StubRoutines::call_stub: threads must correspond"); __ bind(L3); } #endif // restore regs belonging to calling function #ifdef _WIN64 // emit the restores for xmm regs if (VM_Version::supports_evex()) { for (int i = xmm_save_first; i <= last_reg; i++) { __ vinsertf32x4(as_XMMRegister(i), as_XMMRegister(i), xmm_save(i), 0); } } else { for (int i = xmm_save_first; i <= last_reg; i++) { __ movdqu(as_XMMRegister(i), xmm_save(i)); } } #endif __ movptr(r15, r15_save); __ movptr(r14, r14_save); __ movptr(r13, r13_save); __ movptr(r12, r12_save); __ movptr(rbx, rbx_save); #ifdef _WIN64 __ movptr(rdi, rdi_save); __ movptr(rsi, rsi_save); #else __ ldmxcsr(mxcsr_save); #endif // restore rsp __ addptr(rsp, -rsp_after_call_off * wordSize); // return __ vzeroupper(); __ pop(rbp); __ ret(0); // handle return types different from T_INT __ BIND(is_long); __ movq(Address(c_rarg0, 0), rax); __ jmp(exit); __ BIND(is_float); __ movflt(Address(c_rarg0, 0), xmm0); __ jmp(exit); __ BIND(is_double); __ movdbl(Address(c_rarg0, 0), xmm0); __ jmp(exit); return start; } // Return point for a Java call if there's an exception thrown in // Java code. The exception is caught and transformed into a // pending exception stored in JavaThread that can be tested from // within the VM. // // Note: Usually the parameters are removed by the callee. In case // of an exception crossing an activation frame boundary, that is // not the case if the callee is compiled code => need to setup the // rsp. // // rax: exception oop address generate_catch_exception() { StubCodeMark mark(this, "StubRoutines", "catch_exception"); address start = __ pc(); // same as in generate_call_stub(): const Address rsp_after_call(rbp, rsp_after_call_off * wordSize); const Address thread (rbp, thread_off * wordSize); #ifdef ASSERT // verify that threads correspond { Label L1, L2, L3; __ cmpptr(r15_thread, thread); __ jcc(Assembler::equal, L1); __ stop("StubRoutines::catch_exception: r15_thread is corrupted"); __ bind(L1); __ get_thread(rbx); __ cmpptr(r15_thread, thread); __ jcc(Assembler::equal, L2); __ stop("StubRoutines::catch_exception: r15_thread is modified by call"); __ bind(L2); __ cmpptr(r15_thread, rbx); __ jcc(Assembler::equal, L3); __ stop("StubRoutines::catch_exception: threads must correspond"); __ bind(L3); } #endif // set pending exception __ verify_oop(rax); __ movptr(Address(r15_thread, Thread::pending_exception_offset()), rax); __ lea(rscratch1, ExternalAddress((address)__FILE__)); __ movptr(Address(r15_thread, Thread::exception_file_offset()), rscratch1); __ movl(Address(r15_thread, Thread::exception_line_offset()), (int) __LINE__); // complete return to VM assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before"); __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address)); return start; } // Continuation point for runtime calls returning with a pending // exception. The pending exception check happened in the runtime // or native call stub. The pending exception in Thread is // converted into a Java-level exception. // // Contract with Java-level exception handlers: // rax: exception // rdx: throwing pc // // NOTE: At entry of this stub, exception-pc must be on stack !! address generate_forward_exception() { StubCodeMark mark(this, "StubRoutines", "forward exception"); address start = __ pc(); // Upon entry, the sp points to the return address returning into // Java (interpreted or compiled) code; i.e., the return address // becomes the throwing pc. // // Arguments pushed before the runtime call are still on the stack // but the exception handler will reset the stack pointer -> // ignore them. A potential result in registers can be ignored as // well. #ifdef ASSERT // make sure this code is only executed if there is a pending exception { Label L; __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL); __ jcc(Assembler::notEqual, L); __ stop("StubRoutines::forward exception: no pending exception (1)"); __ bind(L); } #endif // compute exception handler into rbx __ movptr(c_rarg0, Address(rsp, 0)); BLOCK_COMMENT("call exception_handler_for_return_address"); __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), r15_thread, c_rarg0); __ mov(rbx, rax); // setup rax & rdx, remove return address & clear pending exception __ pop(rdx); __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset())); __ movptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD); #ifdef ASSERT // make sure exception is set { Label L; __ testptr(rax, rax); __ jcc(Assembler::notEqual, L); __ stop("StubRoutines::forward exception: no pending exception (2)"); __ bind(L); } #endif // continue at exception handler (return address removed) // rax: exception // rbx: exception handler // rdx: throwing pc __ verify_oop(rax); __ jmp(rbx); return start; } // Support for jint atomic::xchg(jint exchange_value, volatile jint* dest) // // Arguments : // c_rarg0: exchange_value // c_rarg0: dest // // Result: // *dest <- ex, return (orig *dest) address generate_atomic_xchg() { StubCodeMark mark(this, "StubRoutines", "atomic_xchg"); address start = __ pc(); __ movl(rax, c_rarg0); // Copy to eax we need a return value anyhow __ xchgl(rax, Address(c_rarg1, 0)); // automatic LOCK __ ret(0); return start; } // Support for intptr_t atomic::xchg_long(jlong exchange_value, volatile jlong* dest) // // Arguments : // c_rarg0: exchange_value // c_rarg1: dest // // Result: // *dest <- ex, return (orig *dest) address generate_atomic_xchg_long() { StubCodeMark mark(this, "StubRoutines", "atomic_xchg_long"); address start = __ pc(); __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow __ xchgptr(rax, Address(c_rarg1, 0)); // automatic LOCK __ ret(0); return start; } // Support for jint atomic::atomic_cmpxchg(jint exchange_value, volatile jint* dest, // jint compare_value) // // Arguments : // c_rarg0: exchange_value // c_rarg1: dest // c_rarg2: compare_value // // Result: // if ( compare_value == *dest ) { // *dest = exchange_value // return compare_value; // else // return *dest; address generate_atomic_cmpxchg() { StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg"); address start = __ pc(); __ movl(rax, c_rarg2); if ( os::is_MP() ) __ lock(); __ cmpxchgl(c_rarg0, Address(c_rarg1, 0)); __ ret(0); return start; } // Support for int8_t atomic::atomic_cmpxchg(int8_t exchange_value, volatile int8_t* dest, // int8_t compare_value) // // Arguments : // c_rarg0: exchange_value // c_rarg1: dest // c_rarg2: compare_value // // Result: // if ( compare_value == *dest ) { // *dest = exchange_value // return compare_value; // else // return *dest; address generate_atomic_cmpxchg_byte() { StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_byte"); address start = __ pc(); __ movsbq(rax, c_rarg2); if ( os::is_MP() ) __ lock(); __ cmpxchgb(c_rarg0, Address(c_rarg1, 0)); __ ret(0); return start; } // Support for int64_t atomic::atomic_cmpxchg(int64_t exchange_value, // volatile int64_t* dest, // int64_t compare_value) // Arguments : // c_rarg0: exchange_value // c_rarg1: dest // c_rarg2: compare_value // // Result: // if ( compare_value == *dest ) { // *dest = exchange_value // return compare_value; // else // return *dest; address generate_atomic_cmpxchg_long() { StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long"); address start = __ pc(); __ movq(rax, c_rarg2); if ( os::is_MP() ) __ lock(); __ cmpxchgq(c_rarg0, Address(c_rarg1, 0)); __ ret(0); return start; } // Support for jint atomic::add(jint add_value, volatile jint* dest) // // Arguments : // c_rarg0: add_value // c_rarg1: dest // // Result: // *dest += add_value // return *dest; address generate_atomic_add() { StubCodeMark mark(this, "StubRoutines", "atomic_add"); address start = __ pc(); __ movl(rax, c_rarg0); if ( os::is_MP() ) __ lock(); __ xaddl(Address(c_rarg1, 0), c_rarg0); __ addl(rax, c_rarg0); __ ret(0); return start; } // Support for intptr_t atomic::add_ptr(intptr_t add_value, volatile intptr_t* dest) // // Arguments : // c_rarg0: add_value // c_rarg1: dest // // Result: // *dest += add_value // return *dest; address generate_atomic_add_long() { StubCodeMark mark(this, "StubRoutines", "atomic_add_long"); address start = __ pc(); __ movptr(rax, c_rarg0); // Copy to eax we need a return value anyhow if ( os::is_MP() ) __ lock(); __ xaddptr(Address(c_rarg1, 0), c_rarg0); __ addptr(rax, c_rarg0); __ ret(0); return start; } // Support for intptr_t OrderAccess::fence() // // Arguments : // // Result: address generate_orderaccess_fence() { StubCodeMark mark(this, "StubRoutines", "orderaccess_fence"); address start = __ pc(); __ membar(Assembler::StoreLoad); __ ret(0); return start; } // Support for intptr_t get_previous_fp() // // This routine is used to find the previous frame pointer for the // caller (current_frame_guess). This is used as part of debugging // ps() is seemingly lost trying to find frames. // This code assumes that caller current_frame_guess) has a frame. address generate_get_previous_fp() { StubCodeMark mark(this, "StubRoutines", "get_previous_fp"); const Address old_fp(rbp, 0); const Address older_fp(rax, 0); address start = __ pc(); __ enter(); __ movptr(rax, old_fp); // callers fp __ movptr(rax, older_fp); // the frame for ps() __ pop(rbp); __ ret(0); return start; } // Support for intptr_t get_previous_sp() // // This routine is used to find the previous stack pointer for the // caller. address generate_get_previous_sp() { StubCodeMark mark(this, "StubRoutines", "get_previous_sp"); address start = __ pc(); __ movptr(rax, rsp); __ addptr(rax, 8); // return address is at the top of the stack. __ ret(0); return start; } //---------------------------------------------------------------------------------------------------- // Support for void verify_mxcsr() // // This routine is used with -Xcheck:jni to verify that native // JNI code does not return to Java code without restoring the // MXCSR register to our expected state. address generate_verify_mxcsr() { StubCodeMark mark(this, "StubRoutines", "verify_mxcsr"); address start = __ pc(); const Address mxcsr_save(rsp, 0); if (CheckJNICalls) { Label ok_ret; ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std()); __ push(rax); __ subptr(rsp, wordSize); // allocate a temp location __ stmxcsr(mxcsr_save); __ movl(rax, mxcsr_save); __ andl(rax, MXCSR_MASK); // Only check control and mask bits __ cmp32(rax, mxcsr_std); __ jcc(Assembler::equal, ok_ret); __ warn("MXCSR changed by native JNI code, use -XX:+RestoreMXCSROnJNICall"); __ ldmxcsr(mxcsr_std); __ bind(ok_ret); __ addptr(rsp, wordSize); __ pop(rax); } __ ret(0); return start; } address generate_f2i_fixup() { StubCodeMark mark(this, "StubRoutines", "f2i_fixup"); Address inout(rsp, 5 * wordSize); // return address + 4 saves address start = __ pc(); Label L; __ push(rax); __ push(c_rarg3); __ push(c_rarg2); __ push(c_rarg1); __ movl(rax, 0x7f800000); __ xorl(c_rarg3, c_rarg3); __ movl(c_rarg2, inout); __ movl(c_rarg1, c_rarg2); __ andl(c_rarg1, 0x7fffffff); __ cmpl(rax, c_rarg1); // NaN? -> 0 __ jcc(Assembler::negative, L); __ testl(c_rarg2, c_rarg2); // signed ? min_jint : max_jint __ movl(c_rarg3, 0x80000000); __ movl(rax, 0x7fffffff); __ cmovl(Assembler::positive, c_rarg3, rax); __ bind(L); __ movptr(inout, c_rarg3); __ pop(c_rarg1); __ pop(c_rarg2); __ pop(c_rarg3); __ pop(rax); __ ret(0); return start; } address generate_f2l_fixup() { StubCodeMark mark(this, "StubRoutines", "f2l_fixup"); Address inout(rsp, 5 * wordSize); // return address + 4 saves address start = __ pc(); Label L; __ push(rax); __ push(c_rarg3); __ push(c_rarg2); __ push(c_rarg1); __ movl(rax, 0x7f800000); __ xorl(c_rarg3, c_rarg3); __ movl(c_rarg2, inout); __ movl(c_rarg1, c_rarg2); __ andl(c_rarg1, 0x7fffffff); __ cmpl(rax, c_rarg1); // NaN? -> 0 __ jcc(Assembler::negative, L); __ testl(c_rarg2, c_rarg2); // signed ? min_jlong : max_jlong __ mov64(c_rarg3, 0x8000000000000000); __ mov64(rax, 0x7fffffffffffffff); __ cmov(Assembler::positive, c_rarg3, rax); __ bind(L); __ movptr(inout, c_rarg3); __ pop(c_rarg1); __ pop(c_rarg2); __ pop(c_rarg3); __ pop(rax); __ ret(0); return start; } address generate_d2i_fixup() { StubCodeMark mark(this, "StubRoutines", "d2i_fixup"); Address inout(rsp, 6 * wordSize); // return address + 5 saves address start = __ pc(); Label L; __ push(rax); __ push(c_rarg3); __ push(c_rarg2); __ push(c_rarg1); __ push(c_rarg0); __ movl(rax, 0x7ff00000); __ movq(c_rarg2, inout); __ movl(c_rarg3, c_rarg2); __ mov(c_rarg1, c_rarg2); __ mov(c_rarg0, c_rarg2); __ negl(c_rarg3); __ shrptr(c_rarg1, 0x20); __ orl(c_rarg3, c_rarg2); __ andl(c_rarg1, 0x7fffffff); __ xorl(c_rarg2, c_rarg2); __ shrl(c_rarg3, 0x1f); __ orl(c_rarg1, c_rarg3); __ cmpl(rax, c_rarg1); __ jcc(Assembler::negative, L); // NaN -> 0 __ testptr(c_rarg0, c_rarg0); // signed ? min_jint : max_jint __ movl(c_rarg2, 0x80000000); __ movl(rax, 0x7fffffff); __ cmov(Assembler::positive, c_rarg2, rax); __ bind(L); __ movptr(inout, c_rarg2); __ pop(c_rarg0); __ pop(c_rarg1); __ pop(c_rarg2); __ pop(c_rarg3); __ pop(rax); __ ret(0); return start; } address generate_d2l_fixup() { StubCodeMark mark(this, "StubRoutines", "d2l_fixup"); Address inout(rsp, 6 * wordSize); // return address + 5 saves address start = __ pc(); Label L; __ push(rax); __ push(c_rarg3); __ push(c_rarg2); __ push(c_rarg1); __ push(c_rarg0); __ movl(rax, 0x7ff00000); __ movq(c_rarg2, inout); __ movl(c_rarg3, c_rarg2); __ mov(c_rarg1, c_rarg2); __ mov(c_rarg0, c_rarg2); __ negl(c_rarg3); __ shrptr(c_rarg1, 0x20); __ orl(c_rarg3, c_rarg2); __ andl(c_rarg1, 0x7fffffff); __ xorl(c_rarg2, c_rarg2); __ shrl(c_rarg3, 0x1f); __ orl(c_rarg1, c_rarg3); __ cmpl(rax, c_rarg1); __ jcc(Assembler::negative, L); // NaN -> 0 __ testq(c_rarg0, c_rarg0); // signed ? min_jlong : max_jlong __ mov64(c_rarg2, 0x8000000000000000); __ mov64(rax, 0x7fffffffffffffff); __ cmovq(Assembler::positive, c_rarg2, rax); __ bind(L); __ movq(inout, c_rarg2); __ pop(c_rarg0); __ pop(c_rarg1); __ pop(c_rarg2); __ pop(c_rarg3); __ pop(rax); __ ret(0); return start; } address generate_fp_mask(const char *stub_name, int64_t mask) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", stub_name); address start = __ pc(); __ emit_data64( mask, relocInfo::none ); __ emit_data64( mask, relocInfo::none ); return start; } address generate_vector_mask(const char *stub_name, int64_t mask) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", stub_name); address start = __ pc(); __ emit_data64(mask, relocInfo::none); __ emit_data64(mask, relocInfo::none); __ emit_data64(mask, relocInfo::none); __ emit_data64(mask, relocInfo::none); __ emit_data64(mask, relocInfo::none); __ emit_data64(mask, relocInfo::none); __ emit_data64(mask, relocInfo::none); __ emit_data64(mask, relocInfo::none); return start; } address generate_vector_byte_perm_mask(const char *stub_name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", stub_name); address start = __ pc(); __ emit_data64(0x0000000000000001, relocInfo::none); __ emit_data64(0x0000000000000003, relocInfo::none); __ emit_data64(0x0000000000000005, relocInfo::none); __ emit_data64(0x0000000000000007, relocInfo::none); __ emit_data64(0x0000000000000000, relocInfo::none); __ emit_data64(0x0000000000000002, relocInfo::none); __ emit_data64(0x0000000000000004, relocInfo::none); __ emit_data64(0x0000000000000006, relocInfo::none); return start; } // Non-destructive plausibility checks for oops // // Arguments: // all args on stack! // // Stack after saving c_rarg3: // [tos + 0]: saved c_rarg3 // [tos + 1]: saved c_rarg2 // [tos + 2]: saved r12 (several TemplateTable methods use it) // [tos + 3]: saved flags // [tos + 4]: return address // * [tos + 5]: error message (char*) // * [tos + 6]: object to verify (oop) // * [tos + 7]: saved rax - saved by caller and bashed // * [tos + 8]: saved r10 (rscratch1) - saved by caller // * = popped on exit address generate_verify_oop() { StubCodeMark mark(this, "StubRoutines", "verify_oop"); address start = __ pc(); Label exit, error; __ pushf(); __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr())); __ push(r12); // save c_rarg2 and c_rarg3 __ push(c_rarg2); __ push(c_rarg3); enum { // After previous pushes. oop_to_verify = 6 * wordSize, saved_rax = 7 * wordSize, saved_r10 = 8 * wordSize, // Before the call to MacroAssembler::debug(), see below. return_addr = 16 * wordSize, error_msg = 17 * wordSize }; // get object __ movptr(rax, Address(rsp, oop_to_verify)); // make sure object is 'reasonable' __ testptr(rax, rax); __ jcc(Assembler::zero, exit); // if obj is NULL it is OK #if INCLUDE_ZGC if (UseZGC) { // Check if metadata bits indicate a bad oop __ testptr(rax, Address(r15_thread, ZThreadLocalData::address_bad_mask_offset())); __ jcc(Assembler::notZero, error); } #endif // Check if the oop is in the right area of memory __ movptr(c_rarg2, rax); __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_mask()); __ andptr(c_rarg2, c_rarg3); __ movptr(c_rarg3, (intptr_t) Universe::verify_oop_bits()); __ cmpptr(c_rarg2, c_rarg3); __ jcc(Assembler::notZero, error); // set r12 to heapbase for load_klass() __ reinit_heapbase(); // make sure klass is 'reasonable', which is not zero. __ load_klass(rax, rax); // get klass __ testptr(rax, rax); __ jcc(Assembler::zero, error); // if klass is NULL it is broken // return if everything seems ok __ bind(exit); __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back __ pop(c_rarg3); // restore c_rarg3 __ pop(c_rarg2); // restore c_rarg2 __ pop(r12); // restore r12 __ popf(); // restore flags __ ret(4 * wordSize); // pop caller saved stuff // handle errors __ bind(error); __ movptr(rax, Address(rsp, saved_rax)); // get saved rax back __ movptr(rscratch1, Address(rsp, saved_r10)); // get saved r10 back __ pop(c_rarg3); // get saved c_rarg3 back __ pop(c_rarg2); // get saved c_rarg2 back __ pop(r12); // get saved r12 back __ popf(); // get saved flags off stack -- // will be ignored __ pusha(); // push registers // (rip is already // already pushed) // debug(char* msg, int64_t pc, int64_t regs[]) // We've popped the registers we'd saved (c_rarg3, c_rarg2 and flags), and // pushed all the registers, so now the stack looks like: // [tos + 0] 16 saved registers // [tos + 16] return address // * [tos + 17] error message (char*) // * [tos + 18] object to verify (oop) // * [tos + 19] saved rax - saved by caller and bashed // * [tos + 20] saved r10 (rscratch1) - saved by caller // * = popped on exit __ movptr(c_rarg0, Address(rsp, error_msg)); // pass address of error message __ movptr(c_rarg1, Address(rsp, return_addr)); // pass return address __ movq(c_rarg2, rsp); // pass address of regs on stack __ mov(r12, rsp); // remember rsp __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows __ andptr(rsp, -16); // align stack as required by ABI BLOCK_COMMENT("call MacroAssembler::debug"); __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); __ mov(rsp, r12); // restore rsp __ popa(); // pop registers (includes r12) __ ret(4 * wordSize); // pop caller saved stuff return start; } // // Verify that a register contains clean 32-bits positive value // (high 32-bits are 0) so it could be used in 64-bits shifts. // // Input: // Rint - 32-bits value // Rtmp - scratch // void assert_clean_int(Register Rint, Register Rtmp) { #ifdef ASSERT Label L; assert_different_registers(Rtmp, Rint); __ movslq(Rtmp, Rint); __ cmpq(Rtmp, Rint); __ jcc(Assembler::equal, L); __ stop("high 32-bits of int value are not 0"); __ bind(L); #endif } // Generate overlap test for array copy stubs // // Input: // c_rarg0 - from // c_rarg1 - to // c_rarg2 - element count // // Output: // rax - &from[element count - 1] // void array_overlap_test(address no_overlap_target, Address::ScaleFactor sf) { assert(no_overlap_target != NULL, "must be generated"); array_overlap_test(no_overlap_target, NULL, sf); } void array_overlap_test(Label& L_no_overlap, Address::ScaleFactor sf) { array_overlap_test(NULL, &L_no_overlap, sf); } void array_overlap_test(address no_overlap_target, Label* NOLp, Address::ScaleFactor sf) { const Register from = c_rarg0; const Register to = c_rarg1; const Register count = c_rarg2; const Register end_from = rax; __ cmpptr(to, from); __ lea(end_from, Address(from, count, sf, 0)); if (NOLp == NULL) { ExternalAddress no_overlap(no_overlap_target); __ jump_cc(Assembler::belowEqual, no_overlap); __ cmpptr(to, end_from); __ jump_cc(Assembler::aboveEqual, no_overlap); } else { __ jcc(Assembler::belowEqual, (*NOLp)); __ cmpptr(to, end_from); __ jcc(Assembler::aboveEqual, (*NOLp)); } } // Shuffle first three arg regs on Windows into Linux/Solaris locations. // // Outputs: // rdi - rcx // rsi - rdx // rdx - r8 // rcx - r9 // // Registers r9 and r10 are used to save rdi and rsi on Windows, which latter // are non-volatile. r9 and r10 should not be used by the caller. // void setup_arg_regs(int nargs = 3) { const Register saved_rdi = r9; const Register saved_rsi = r10; assert(nargs == 3 || nargs == 4, "else fix"); #ifdef _WIN64 assert(c_rarg0 == rcx && c_rarg1 == rdx && c_rarg2 == r8 && c_rarg3 == r9, "unexpected argument registers"); if (nargs >= 4) __ mov(rax, r9); // r9 is also saved_rdi __ movptr(saved_rdi, rdi); __ movptr(saved_rsi, rsi); __ mov(rdi, rcx); // c_rarg0 __ mov(rsi, rdx); // c_rarg1 __ mov(rdx, r8); // c_rarg2 if (nargs >= 4) __ mov(rcx, rax); // c_rarg3 (via rax) #else assert(c_rarg0 == rdi && c_rarg1 == rsi && c_rarg2 == rdx && c_rarg3 == rcx, "unexpected argument registers"); #endif } void restore_arg_regs() { const Register saved_rdi = r9; const Register saved_rsi = r10; #ifdef _WIN64 __ movptr(rdi, saved_rdi); __ movptr(rsi, saved_rsi); #endif } // Copy big chunks forward // // Inputs: // end_from - source arrays end address // end_to - destination array end address // qword_count - 64-bits element count, negative // to - scratch // L_copy_bytes - entry label // L_copy_8_bytes - exit label // void copy_bytes_forward(Register end_from, Register end_to, Register qword_count, Register to, Label& L_copy_bytes, Label& L_copy_8_bytes) { DEBUG_ONLY(__ stop("enter at entry label, not here")); Label L_loop; __ align(OptoLoopAlignment); if (UseUnalignedLoadStores) { Label L_end; // Copy 64-bytes per iteration if (UseAVX > 2) { Label L_loop_avx512, L_loop_avx2, L_32_byte_head, L_above_threshold, L_below_threshold; __ BIND(L_copy_bytes); __ cmpptr(qword_count, (-1 * AVX3Threshold / 8)); __ jccb(Assembler::less, L_above_threshold); __ jmpb(L_below_threshold); __ bind(L_loop_avx512); __ evmovdqul(xmm0, Address(end_from, qword_count, Address::times_8, -56), Assembler::AVX_512bit); __ evmovdqul(Address(end_to, qword_count, Address::times_8, -56), xmm0, Assembler::AVX_512bit); __ bind(L_above_threshold); __ addptr(qword_count, 8); __ jcc(Assembler::lessEqual, L_loop_avx512); __ jmpb(L_32_byte_head); __ bind(L_loop_avx2); __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56)); __ vmovdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0); __ vmovdqu(xmm1, Address(end_from, qword_count, Address::times_8, -24)); __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm1); __ bind(L_below_threshold); __ addptr(qword_count, 8); __ jcc(Assembler::lessEqual, L_loop_avx2); __ bind(L_32_byte_head); __ subptr(qword_count, 4); // sub(8) and add(4) __ jccb(Assembler::greater, L_end); } else { __ BIND(L_loop); if (UseAVX == 2) { __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56)); __ vmovdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0); __ vmovdqu(xmm1, Address(end_from, qword_count, Address::times_8, -24)); __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm1); } else { __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -56)); __ movdqu(Address(end_to, qword_count, Address::times_8, -56), xmm0); __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, -40)); __ movdqu(Address(end_to, qword_count, Address::times_8, -40), xmm1); __ movdqu(xmm2, Address(end_from, qword_count, Address::times_8, -24)); __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm2); __ movdqu(xmm3, Address(end_from, qword_count, Address::times_8, - 8)); __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm3); } __ BIND(L_copy_bytes); __ addptr(qword_count, 8); __ jcc(Assembler::lessEqual, L_loop); __ subptr(qword_count, 4); // sub(8) and add(4) __ jccb(Assembler::greater, L_end); } // Copy trailing 32 bytes if (UseAVX >= 2) { __ vmovdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24)); __ vmovdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0); } else { __ movdqu(xmm0, Address(end_from, qword_count, Address::times_8, -24)); __ movdqu(Address(end_to, qword_count, Address::times_8, -24), xmm0); __ movdqu(xmm1, Address(end_from, qword_count, Address::times_8, - 8)); __ movdqu(Address(end_to, qword_count, Address::times_8, - 8), xmm1); } __ addptr(qword_count, 4); __ BIND(L_end); if (UseAVX >= 2) { // clean upper bits of YMM registers __ vpxor(xmm0, xmm0); __ vpxor(xmm1, xmm1); } } else { // Copy 32-bytes per iteration __ BIND(L_loop); __ movq(to, Address(end_from, qword_count, Address::times_8, -24)); __ movq(Address(end_to, qword_count, Address::times_8, -24), to); __ movq(to, Address(end_from, qword_count, Address::times_8, -16)); __ movq(Address(end_to, qword_count, Address::times_8, -16), to); __ movq(to, Address(end_from, qword_count, Address::times_8, - 8)); __ movq(Address(end_to, qword_count, Address::times_8, - 8), to); __ movq(to, Address(end_from, qword_count, Address::times_8, - 0)); __ movq(Address(end_to, qword_count, Address::times_8, - 0), to); __ BIND(L_copy_bytes); __ addptr(qword_count, 4); __ jcc(Assembler::lessEqual, L_loop); } __ subptr(qword_count, 4); __ jcc(Assembler::less, L_copy_8_bytes); // Copy trailing qwords } // Copy big chunks backward // // Inputs: // from - source arrays address // dest - destination array address // qword_count - 64-bits element count // to - scratch // L_copy_bytes - entry label // L_copy_8_bytes - exit label // void copy_bytes_backward(Register from, Register dest, Register qword_count, Register to, Label& L_copy_bytes, Label& L_copy_8_bytes) { DEBUG_ONLY(__ stop("enter at entry label, not here")); Label L_loop; __ align(OptoLoopAlignment); if (UseUnalignedLoadStores) { Label L_end; // Copy 64-bytes per iteration if (UseAVX > 2) { Label L_loop_avx512, L_loop_avx2, L_32_byte_head, L_above_threshold, L_below_threshold; __ BIND(L_copy_bytes); __ cmpptr(qword_count, (AVX3Threshold / 8)); __ jccb(Assembler::greater, L_above_threshold); __ jmpb(L_below_threshold); __ BIND(L_loop_avx512); __ evmovdqul(xmm0, Address(from, qword_count, Address::times_8, 0), Assembler::AVX_512bit); __ evmovdqul(Address(dest, qword_count, Address::times_8, 0), xmm0, Assembler::AVX_512bit); __ bind(L_above_threshold); __ subptr(qword_count, 8); __ jcc(Assembler::greaterEqual, L_loop_avx512); __ jmpb(L_32_byte_head); __ bind(L_loop_avx2); __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 32)); __ vmovdqu(Address(dest, qword_count, Address::times_8, 32), xmm0); __ vmovdqu(xmm1, Address(from, qword_count, Address::times_8, 0)); __ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm1); __ bind(L_below_threshold); __ subptr(qword_count, 8); __ jcc(Assembler::greaterEqual, L_loop_avx2); __ bind(L_32_byte_head); __ addptr(qword_count, 4); // add(8) and sub(4) __ jccb(Assembler::less, L_end); } else { __ BIND(L_loop); if (UseAVX == 2) { __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 32)); __ vmovdqu(Address(dest, qword_count, Address::times_8, 32), xmm0); __ vmovdqu(xmm1, Address(from, qword_count, Address::times_8, 0)); __ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm1); } else { __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 48)); __ movdqu(Address(dest, qword_count, Address::times_8, 48), xmm0); __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 32)); __ movdqu(Address(dest, qword_count, Address::times_8, 32), xmm1); __ movdqu(xmm2, Address(from, qword_count, Address::times_8, 16)); __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm2); __ movdqu(xmm3, Address(from, qword_count, Address::times_8, 0)); __ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm3); } __ BIND(L_copy_bytes); __ subptr(qword_count, 8); __ jcc(Assembler::greaterEqual, L_loop); __ addptr(qword_count, 4); // add(8) and sub(4) __ jccb(Assembler::less, L_end); } // Copy trailing 32 bytes if (UseAVX >= 2) { __ vmovdqu(xmm0, Address(from, qword_count, Address::times_8, 0)); __ vmovdqu(Address(dest, qword_count, Address::times_8, 0), xmm0); } else { __ movdqu(xmm0, Address(from, qword_count, Address::times_8, 16)); __ movdqu(Address(dest, qword_count, Address::times_8, 16), xmm0); __ movdqu(xmm1, Address(from, qword_count, Address::times_8, 0)); __ movdqu(Address(dest, qword_count, Address::times_8, 0), xmm1); } __ subptr(qword_count, 4); __ BIND(L_end); if (UseAVX >= 2) { // clean upper bits of YMM registers __ vpxor(xmm0, xmm0); __ vpxor(xmm1, xmm1); } } else { // Copy 32-bytes per iteration __ BIND(L_loop); __ movq(to, Address(from, qword_count, Address::times_8, 24)); __ movq(Address(dest, qword_count, Address::times_8, 24), to); __ movq(to, Address(from, qword_count, Address::times_8, 16)); __ movq(Address(dest, qword_count, Address::times_8, 16), to); __ movq(to, Address(from, qword_count, Address::times_8, 8)); __ movq(Address(dest, qword_count, Address::times_8, 8), to); __ movq(to, Address(from, qword_count, Address::times_8, 0)); __ movq(Address(dest, qword_count, Address::times_8, 0), to); __ BIND(L_copy_bytes); __ subptr(qword_count, 4); __ jcc(Assembler::greaterEqual, L_loop); } __ addptr(qword_count, 4); __ jcc(Assembler::greater, L_copy_8_bytes); // Copy trailing qwords } // Arguments: // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary // ignored // name - stub name string // // Inputs: // c_rarg0 - source array address // c_rarg1 - destination array address // c_rarg2 - element count, treated as ssize_t, can be zero // // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries, // we let the hardware handle it. The one to eight bytes within words, // dwords or qwords that span cache line boundaries will still be loaded // and stored atomically. // // Side Effects: // disjoint_byte_copy_entry is set to the no-overlap entry point // used by generate_conjoint_byte_copy(). // address generate_disjoint_byte_copy(bool aligned, address* entry, const char *name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes; Label L_copy_byte, L_exit; const Register from = rdi; // source array address const Register to = rsi; // destination array address const Register count = rdx; // elements count const Register byte_count = rcx; const Register qword_count = count; const Register end_from = from; // source array end address const Register end_to = to; // destination array end address // End pointers are inclusive, and if count is not zero they point // to the last unit copied: end_to[0] := end_from[0] __ enter(); // required for proper stackwalking of RuntimeStub frame assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. if (entry != NULL) { *entry = __ pc(); // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) BLOCK_COMMENT("Entry:"); } setup_arg_regs(); // from => rdi, to => rsi, count => rdx // r9 and r10 may be used to save non-volatile registers // 'from', 'to' and 'count' are now valid __ movptr(byte_count, count); __ shrptr(count, 3); // count => qword_count // Copy from low to high addresses. Use 'to' as scratch. __ lea(end_from, Address(from, qword_count, Address::times_8, -8)); __ lea(end_to, Address(to, qword_count, Address::times_8, -8)); __ negptr(qword_count); // make the count negative __ jmp(L_copy_bytes); // Copy trailing qwords __ BIND(L_copy_8_bytes); __ movq(rax, Address(end_from, qword_count, Address::times_8, 8)); __ movq(Address(end_to, qword_count, Address::times_8, 8), rax); __ increment(qword_count); __ jcc(Assembler::notZero, L_copy_8_bytes); // Check for and copy trailing dword __ BIND(L_copy_4_bytes); __ testl(byte_count, 4); __ jccb(Assembler::zero, L_copy_2_bytes); __ movl(rax, Address(end_from, 8)); __ movl(Address(end_to, 8), rax); __ addptr(end_from, 4); __ addptr(end_to, 4); // Check for and copy trailing word __ BIND(L_copy_2_bytes); __ testl(byte_count, 2); __ jccb(Assembler::zero, L_copy_byte); __ movw(rax, Address(end_from, 8)); __ movw(Address(end_to, 8), rax); __ addptr(end_from, 2); __ addptr(end_to, 2); // Check for and copy trailing byte __ BIND(L_copy_byte); __ testl(byte_count, 1); __ jccb(Assembler::zero, L_exit); __ movb(rax, Address(end_from, 8)); __ movb(Address(end_to, 8), rax); __ BIND(L_exit); restore_arg_regs(); inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free __ xorptr(rax, rax); // return 0 __ vzeroupper(); __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); // Copy in multi-bytes chunks copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); __ jmp(L_copy_4_bytes); return start; } // Arguments: // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary // ignored // name - stub name string // // Inputs: // c_rarg0 - source array address // c_rarg1 - destination array address // c_rarg2 - element count, treated as ssize_t, can be zero // // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries, // we let the hardware handle it. The one to eight bytes within words, // dwords or qwords that span cache line boundaries will still be loaded // and stored atomically. // address generate_conjoint_byte_copy(bool aligned, address nooverlap_target, address* entry, const char *name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_copy_2_bytes; const Register from = rdi; // source array address const Register to = rsi; // destination array address const Register count = rdx; // elements count const Register byte_count = rcx; const Register qword_count = count; __ enter(); // required for proper stackwalking of RuntimeStub frame assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. if (entry != NULL) { *entry = __ pc(); // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) BLOCK_COMMENT("Entry:"); } array_overlap_test(nooverlap_target, Address::times_1); setup_arg_regs(); // from => rdi, to => rsi, count => rdx // r9 and r10 may be used to save non-volatile registers // 'from', 'to' and 'count' are now valid __ movptr(byte_count, count); __ shrptr(count, 3); // count => qword_count // Copy from high to low addresses. // Check for and copy trailing byte __ testl(byte_count, 1); __ jcc(Assembler::zero, L_copy_2_bytes); __ movb(rax, Address(from, byte_count, Address::times_1, -1)); __ movb(Address(to, byte_count, Address::times_1, -1), rax); __ decrement(byte_count); // Adjust for possible trailing word // Check for and copy trailing word __ BIND(L_copy_2_bytes); __ testl(byte_count, 2); __ jcc(Assembler::zero, L_copy_4_bytes); __ movw(rax, Address(from, byte_count, Address::times_1, -2)); __ movw(Address(to, byte_count, Address::times_1, -2), rax); // Check for and copy trailing dword __ BIND(L_copy_4_bytes); __ testl(byte_count, 4); __ jcc(Assembler::zero, L_copy_bytes); __ movl(rax, Address(from, qword_count, Address::times_8)); __ movl(Address(to, qword_count, Address::times_8), rax); __ jmp(L_copy_bytes); // Copy trailing qwords __ BIND(L_copy_8_bytes); __ movq(rax, Address(from, qword_count, Address::times_8, -8)); __ movq(Address(to, qword_count, Address::times_8, -8), rax); __ decrement(qword_count); __ jcc(Assembler::notZero, L_copy_8_bytes); restore_arg_regs(); inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free __ xorptr(rax, rax); // return 0 __ vzeroupper(); __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); // Copy in multi-bytes chunks copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); restore_arg_regs(); inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); // Update counter after rscratch1 is free __ xorptr(rax, rax); // return 0 __ vzeroupper(); __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } // Arguments: // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary // ignored // name - stub name string // // Inputs: // c_rarg0 - source array address // c_rarg1 - destination array address // c_rarg2 - element count, treated as ssize_t, can be zero // // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we // let the hardware handle it. The two or four words within dwords // or qwords that span cache line boundaries will still be loaded // and stored atomically. // // Side Effects: // disjoint_short_copy_entry is set to the no-overlap entry point // used by generate_conjoint_short_copy(). // address generate_disjoint_short_copy(bool aligned, address *entry, const char *name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes,L_copy_2_bytes,L_exit; const Register from = rdi; // source array address const Register to = rsi; // destination array address const Register count = rdx; // elements count const Register word_count = rcx; const Register qword_count = count; const Register end_from = from; // source array end address const Register end_to = to; // destination array end address // End pointers are inclusive, and if count is not zero they point // to the last unit copied: end_to[0] := end_from[0] __ enter(); // required for proper stackwalking of RuntimeStub frame assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. if (entry != NULL) { *entry = __ pc(); // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) BLOCK_COMMENT("Entry:"); } setup_arg_regs(); // from => rdi, to => rsi, count => rdx // r9 and r10 may be used to save non-volatile registers // 'from', 'to' and 'count' are now valid __ movptr(word_count, count); __ shrptr(count, 2); // count => qword_count // Copy from low to high addresses. Use 'to' as scratch. __ lea(end_from, Address(from, qword_count, Address::times_8, -8)); __ lea(end_to, Address(to, qword_count, Address::times_8, -8)); __ negptr(qword_count); __ jmp(L_copy_bytes); // Copy trailing qwords __ BIND(L_copy_8_bytes); __ movq(rax, Address(end_from, qword_count, Address::times_8, 8)); __ movq(Address(end_to, qword_count, Address::times_8, 8), rax); __ increment(qword_count); __ jcc(Assembler::notZero, L_copy_8_bytes); // Original 'dest' is trashed, so we can't use it as a // base register for a possible trailing word copy // Check for and copy trailing dword __ BIND(L_copy_4_bytes); __ testl(word_count, 2); __ jccb(Assembler::zero, L_copy_2_bytes); __ movl(rax, Address(end_from, 8)); __ movl(Address(end_to, 8), rax); __ addptr(end_from, 4); __ addptr(end_to, 4); // Check for and copy trailing word __ BIND(L_copy_2_bytes); __ testl(word_count, 1); __ jccb(Assembler::zero, L_exit); __ movw(rax, Address(end_from, 8)); __ movw(Address(end_to, 8), rax); __ BIND(L_exit); restore_arg_regs(); inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free __ xorptr(rax, rax); // return 0 __ vzeroupper(); __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); // Copy in multi-bytes chunks copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); __ jmp(L_copy_4_bytes); return start; } address generate_fill(BasicType t, bool aligned, const char *name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); BLOCK_COMMENT("Entry:"); const Register to = c_rarg0; // source array address const Register value = c_rarg1; // value const Register count = c_rarg2; // elements count __ enter(); // required for proper stackwalking of RuntimeStub frame __ generate_fill(t, aligned, to, value, count, rax, xmm0); __ vzeroupper(); __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } // Arguments: // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary // ignored // name - stub name string // // Inputs: // c_rarg0 - source array address // c_rarg1 - destination array address // c_rarg2 - element count, treated as ssize_t, can be zero // // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we // let the hardware handle it. The two or four words within dwords // or qwords that span cache line boundaries will still be loaded // and stored atomically. // address generate_conjoint_short_copy(bool aligned, address nooverlap_target, address *entry, const char *name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes; const Register from = rdi; // source array address const Register to = rsi; // destination array address const Register count = rdx; // elements count const Register word_count = rcx; const Register qword_count = count; __ enter(); // required for proper stackwalking of RuntimeStub frame assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. if (entry != NULL) { *entry = __ pc(); // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) BLOCK_COMMENT("Entry:"); } array_overlap_test(nooverlap_target, Address::times_2); setup_arg_regs(); // from => rdi, to => rsi, count => rdx // r9 and r10 may be used to save non-volatile registers // 'from', 'to' and 'count' are now valid __ movptr(word_count, count); __ shrptr(count, 2); // count => qword_count // Copy from high to low addresses. Use 'to' as scratch. // Check for and copy trailing word __ testl(word_count, 1); __ jccb(Assembler::zero, L_copy_4_bytes); __ movw(rax, Address(from, word_count, Address::times_2, -2)); __ movw(Address(to, word_count, Address::times_2, -2), rax); // Check for and copy trailing dword __ BIND(L_copy_4_bytes); __ testl(word_count, 2); __ jcc(Assembler::zero, L_copy_bytes); __ movl(rax, Address(from, qword_count, Address::times_8)); __ movl(Address(to, qword_count, Address::times_8), rax); __ jmp(L_copy_bytes); // Copy trailing qwords __ BIND(L_copy_8_bytes); __ movq(rax, Address(from, qword_count, Address::times_8, -8)); __ movq(Address(to, qword_count, Address::times_8, -8), rax); __ decrement(qword_count); __ jcc(Assembler::notZero, L_copy_8_bytes); restore_arg_regs(); inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free __ xorptr(rax, rax); // return 0 __ vzeroupper(); __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); // Copy in multi-bytes chunks copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); restore_arg_regs(); inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); // Update counter after rscratch1 is free __ xorptr(rax, rax); // return 0 __ vzeroupper(); __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } // Arguments: // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary // ignored // is_oop - true => oop array, so generate store check code // name - stub name string // // Inputs: // c_rarg0 - source array address // c_rarg1 - destination array address // c_rarg2 - element count, treated as ssize_t, can be zero // // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let // the hardware handle it. The two dwords within qwords that span // cache line boundaries will still be loaded and stored atomicly. // // Side Effects: // disjoint_int_copy_entry is set to the no-overlap entry point // used by generate_conjoint_int_oop_copy(). // address generate_disjoint_int_oop_copy(bool aligned, bool is_oop, address* entry, const char *name, bool dest_uninitialized = false) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); Label L_copy_bytes, L_copy_8_bytes, L_copy_4_bytes, L_exit; const Register from = rdi; // source array address const Register to = rsi; // destination array address const Register count = rdx; // elements count const Register dword_count = rcx; const Register qword_count = count; const Register end_from = from; // source array end address const Register end_to = to; // destination array end address // End pointers are inclusive, and if count is not zero they point // to the last unit copied: end_to[0] := end_from[0] __ enter(); // required for proper stackwalking of RuntimeStub frame assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. if (entry != NULL) { *entry = __ pc(); // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) BLOCK_COMMENT("Entry:"); } setup_arg_regs(); // from => rdi, to => rsi, count => rdx // r9 and r10 may be used to save non-volatile registers DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_DISJOINT; if (dest_uninitialized) { decorators |= IS_DEST_UNINITIALIZED; } if (aligned) { decorators |= ARRAYCOPY_ALIGNED; } BasicType type = is_oop ? T_OBJECT : T_INT; BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); bs->arraycopy_prologue(_masm, decorators, type, from, to, count); // 'from', 'to' and 'count' are now valid __ movptr(dword_count, count); __ shrptr(count, 1); // count => qword_count // Copy from low to high addresses. Use 'to' as scratch. __ lea(end_from, Address(from, qword_count, Address::times_8, -8)); __ lea(end_to, Address(to, qword_count, Address::times_8, -8)); __ negptr(qword_count); __ jmp(L_copy_bytes); // Copy trailing qwords __ BIND(L_copy_8_bytes); __ movq(rax, Address(end_from, qword_count, Address::times_8, 8)); __ movq(Address(end_to, qword_count, Address::times_8, 8), rax); __ increment(qword_count); __ jcc(Assembler::notZero, L_copy_8_bytes); // Check for and copy trailing dword __ BIND(L_copy_4_bytes); __ testl(dword_count, 1); // Only byte test since the value is 0 or 1 __ jccb(Assembler::zero, L_exit); __ movl(rax, Address(end_from, 8)); __ movl(Address(end_to, 8), rax); __ BIND(L_exit); bs->arraycopy_epilogue(_masm, decorators, type, from, to, dword_count); restore_arg_regs(); inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free __ vzeroupper(); __ xorptr(rax, rax); // return 0 __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); // Copy in multi-bytes chunks copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); __ jmp(L_copy_4_bytes); return start; } // Arguments: // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary // ignored // is_oop - true => oop array, so generate store check code // name - stub name string // // Inputs: // c_rarg0 - source array address // c_rarg1 - destination array address // c_rarg2 - element count, treated as ssize_t, can be zero // // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let // the hardware handle it. The two dwords within qwords that span // cache line boundaries will still be loaded and stored atomicly. // address generate_conjoint_int_oop_copy(bool aligned, bool is_oop, address nooverlap_target, address *entry, const char *name, bool dest_uninitialized = false) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); Label L_copy_bytes, L_copy_8_bytes, L_copy_2_bytes, L_exit; const Register from = rdi; // source array address const Register to = rsi; // destination array address const Register count = rdx; // elements count const Register dword_count = rcx; const Register qword_count = count; __ enter(); // required for proper stackwalking of RuntimeStub frame assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. if (entry != NULL) { *entry = __ pc(); // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) BLOCK_COMMENT("Entry:"); } array_overlap_test(nooverlap_target, Address::times_4); setup_arg_regs(); // from => rdi, to => rsi, count => rdx // r9 and r10 may be used to save non-volatile registers DecoratorSet decorators = IN_HEAP | IS_ARRAY; if (dest_uninitialized) { decorators |= IS_DEST_UNINITIALIZED; } if (aligned) { decorators |= ARRAYCOPY_ALIGNED; } BasicType type = is_oop ? T_OBJECT : T_INT; BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); // no registers are destroyed by this call bs->arraycopy_prologue(_masm, decorators, type, from, to, count); assert_clean_int(count, rax); // Make sure 'count' is clean int. // 'from', 'to' and 'count' are now valid __ movptr(dword_count, count); __ shrptr(count, 1); // count => qword_count // Copy from high to low addresses. Use 'to' as scratch. // Check for and copy trailing dword __ testl(dword_count, 1); __ jcc(Assembler::zero, L_copy_bytes); __ movl(rax, Address(from, dword_count, Address::times_4, -4)); __ movl(Address(to, dword_count, Address::times_4, -4), rax); __ jmp(L_copy_bytes); // Copy trailing qwords __ BIND(L_copy_8_bytes); __ movq(rax, Address(from, qword_count, Address::times_8, -8)); __ movq(Address(to, qword_count, Address::times_8, -8), rax); __ decrement(qword_count); __ jcc(Assembler::notZero, L_copy_8_bytes); if (is_oop) { __ jmp(L_exit); } restore_arg_regs(); inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free __ xorptr(rax, rax); // return 0 __ vzeroupper(); __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); // Copy in multi-bytes chunks copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); __ BIND(L_exit); bs->arraycopy_epilogue(_masm, decorators, type, from, to, dword_count); restore_arg_regs(); inc_counter_np(SharedRuntime::_jint_array_copy_ctr); // Update counter after rscratch1 is free __ xorptr(rax, rax); // return 0 __ vzeroupper(); __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } // Arguments: // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes // ignored // is_oop - true => oop array, so generate store check code // name - stub name string // // Inputs: // c_rarg0 - source array address // c_rarg1 - destination array address // c_rarg2 - element count, treated as ssize_t, can be zero // // Side Effects: // disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the // no-overlap entry point used by generate_conjoint_long_oop_copy(). // address generate_disjoint_long_oop_copy(bool aligned, bool is_oop, address *entry, const char *name, bool dest_uninitialized = false) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); Label L_copy_bytes, L_copy_8_bytes, L_exit; const Register from = rdi; // source array address const Register to = rsi; // destination array address const Register qword_count = rdx; // elements count const Register end_from = from; // source array end address const Register end_to = rcx; // destination array end address const Register saved_count = r11; // End pointers are inclusive, and if count is not zero they point // to the last unit copied: end_to[0] := end_from[0] __ enter(); // required for proper stackwalking of RuntimeStub frame // Save no-overlap entry point for generate_conjoint_long_oop_copy() assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. if (entry != NULL) { *entry = __ pc(); // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) BLOCK_COMMENT("Entry:"); } setup_arg_regs(); // from => rdi, to => rsi, count => rdx // r9 and r10 may be used to save non-volatile registers // 'from', 'to' and 'qword_count' are now valid DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_DISJOINT; if (dest_uninitialized) { decorators |= IS_DEST_UNINITIALIZED; } if (aligned) { decorators |= ARRAYCOPY_ALIGNED; } BasicType type = is_oop ? T_OBJECT : T_LONG; BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); bs->arraycopy_prologue(_masm, decorators, type, from, to, qword_count); // Copy from low to high addresses. Use 'to' as scratch. __ lea(end_from, Address(from, qword_count, Address::times_8, -8)); __ lea(end_to, Address(to, qword_count, Address::times_8, -8)); __ negptr(qword_count); __ jmp(L_copy_bytes); // Copy trailing qwords __ BIND(L_copy_8_bytes); __ movq(rax, Address(end_from, qword_count, Address::times_8, 8)); __ movq(Address(end_to, qword_count, Address::times_8, 8), rax); __ increment(qword_count); __ jcc(Assembler::notZero, L_copy_8_bytes); if (is_oop) { __ jmp(L_exit); } else { restore_arg_regs(); inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free __ xorptr(rax, rax); // return 0 __ vzeroupper(); __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); } // Copy in multi-bytes chunks copy_bytes_forward(end_from, end_to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); __ BIND(L_exit); bs->arraycopy_epilogue(_masm, decorators, type, from, to, qword_count); restore_arg_regs(); if (is_oop) { inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free } else { inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free } __ vzeroupper(); __ xorptr(rax, rax); // return 0 __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } // Arguments: // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes // ignored // is_oop - true => oop array, so generate store check code // name - stub name string // // Inputs: // c_rarg0 - source array address // c_rarg1 - destination array address // c_rarg2 - element count, treated as ssize_t, can be zero // address generate_conjoint_long_oop_copy(bool aligned, bool is_oop, address nooverlap_target, address *entry, const char *name, bool dest_uninitialized = false) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); Label L_copy_bytes, L_copy_8_bytes, L_exit; const Register from = rdi; // source array address const Register to = rsi; // destination array address const Register qword_count = rdx; // elements count const Register saved_count = rcx; __ enter(); // required for proper stackwalking of RuntimeStub frame assert_clean_int(c_rarg2, rax); // Make sure 'count' is clean int. if (entry != NULL) { *entry = __ pc(); // caller can pass a 64-bit byte count here (from Unsafe.copyMemory) BLOCK_COMMENT("Entry:"); } array_overlap_test(nooverlap_target, Address::times_8); setup_arg_regs(); // from => rdi, to => rsi, count => rdx // r9 and r10 may be used to save non-volatile registers // 'from', 'to' and 'qword_count' are now valid DecoratorSet decorators = IN_HEAP | IS_ARRAY; if (dest_uninitialized) { decorators |= IS_DEST_UNINITIALIZED; } if (aligned) { decorators |= ARRAYCOPY_ALIGNED; } BasicType type = is_oop ? T_OBJECT : T_LONG; BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); bs->arraycopy_prologue(_masm, decorators, type, from, to, qword_count); __ jmp(L_copy_bytes); // Copy trailing qwords __ BIND(L_copy_8_bytes); __ movq(rax, Address(from, qword_count, Address::times_8, -8)); __ movq(Address(to, qword_count, Address::times_8, -8), rax); __ decrement(qword_count); __ jcc(Assembler::notZero, L_copy_8_bytes); if (is_oop) { __ jmp(L_exit); } else { restore_arg_regs(); inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free __ xorptr(rax, rax); // return 0 __ vzeroupper(); __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); } // Copy in multi-bytes chunks copy_bytes_backward(from, to, qword_count, rax, L_copy_bytes, L_copy_8_bytes); __ BIND(L_exit); bs->arraycopy_epilogue(_masm, decorators, type, from, to, qword_count); restore_arg_regs(); if (is_oop) { inc_counter_np(SharedRuntime::_oop_array_copy_ctr); // Update counter after rscratch1 is free } else { inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); // Update counter after rscratch1 is free } __ vzeroupper(); __ xorptr(rax, rax); // return 0 __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } // Helper for generating a dynamic type check. // Smashes no registers. void generate_type_check(Register sub_klass, Register super_check_offset, Register super_klass, Label& L_success) { assert_different_registers(sub_klass, super_check_offset, super_klass); BLOCK_COMMENT("type_check:"); Label L_miss; __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg, &L_success, &L_miss, NULL, super_check_offset); __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL); // Fall through on failure! __ BIND(L_miss); } // // Generate checkcasting array copy stub // // Input: // c_rarg0 - source array address // c_rarg1 - destination array address // c_rarg2 - element count, treated as ssize_t, can be zero // c_rarg3 - size_t ckoff (super_check_offset) // not Win64 // c_rarg4 - oop ckval (super_klass) // Win64 // rsp+40 - oop ckval (super_klass) // // Output: // rax == 0 - success // rax == -1^K - failure, where K is partial transfer count // address generate_checkcast_copy(const char *name, address *entry, bool dest_uninitialized = false) { Label L_load_element, L_store_element, L_do_card_marks, L_done; // Input registers (after setup_arg_regs) const Register from = rdi; // source array address const Register to = rsi; // destination array address const Register length = rdx; // elements count const Register ckoff = rcx; // super_check_offset const Register ckval = r8; // super_klass // Registers used as temps (r13, r14 are save-on-entry) const Register end_from = from; // source array end address const Register end_to = r13; // destination array end address const Register count = rdx; // -(count_remaining) const Register r14_length = r14; // saved copy of length // End pointers are inclusive, and if length is not zero they point // to the last unit copied: end_to[0] := end_from[0] const Register rax_oop = rax; // actual oop copied const Register r11_klass = r11; // oop._klass //--------------------------------------------------------------- // Assembler stub will be used for this call to arraycopy // if the two arrays are subtypes of Object[] but the // destination array type is not equal to or a supertype // of the source type. Each element must be separately // checked. __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); __ enter(); // required for proper stackwalking of RuntimeStub frame #ifdef ASSERT // caller guarantees that the arrays really are different // otherwise, we would have to make conjoint checks { Label L; array_overlap_test(L, TIMES_OOP); __ stop("checkcast_copy within a single array"); __ bind(L); } #endif //ASSERT setup_arg_regs(4); // from => rdi, to => rsi, length => rdx // ckoff => rcx, ckval => r8 // r9 and r10 may be used to save non-volatile registers #ifdef _WIN64 // last argument (#4) is on stack on Win64 __ movptr(ckval, Address(rsp, 6 * wordSize)); #endif // Caller of this entry point must set up the argument registers. if (entry != NULL) { *entry = __ pc(); BLOCK_COMMENT("Entry:"); } // allocate spill slots for r13, r14 enum { saved_r13_offset, saved_r14_offset, saved_rbp_offset }; __ subptr(rsp, saved_rbp_offset * wordSize); __ movptr(Address(rsp, saved_r13_offset * wordSize), r13); __ movptr(Address(rsp, saved_r14_offset * wordSize), r14); // check that int operands are properly extended to size_t assert_clean_int(length, rax); assert_clean_int(ckoff, rax); #ifdef ASSERT BLOCK_COMMENT("assert consistent ckoff/ckval"); // The ckoff and ckval must be mutually consistent, // even though caller generates both. { Label L; int sco_offset = in_bytes(Klass::super_check_offset_offset()); __ cmpl(ckoff, Address(ckval, sco_offset)); __ jcc(Assembler::equal, L); __ stop("super_check_offset inconsistent"); __ bind(L); } #endif //ASSERT // Loop-invariant addresses. They are exclusive end pointers. Address end_from_addr(from, length, TIMES_OOP, 0); Address end_to_addr(to, length, TIMES_OOP, 0); // Loop-variant addresses. They assume post-incremented count < 0. Address from_element_addr(end_from, count, TIMES_OOP, 0); Address to_element_addr(end_to, count, TIMES_OOP, 0); DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_CHECKCAST | ARRAYCOPY_DISJOINT; if (dest_uninitialized) { decorators |= IS_DEST_UNINITIALIZED; } BasicType type = T_OBJECT; BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); bs->arraycopy_prologue(_masm, decorators, type, from, to, count); // Copy from low to high addresses, indexed from the end of each array. __ lea(end_from, end_from_addr); __ lea(end_to, end_to_addr); __ movptr(r14_length, length); // save a copy of the length assert(length == count, ""); // else fix next line: __ negptr(count); // negate and test the length __ jcc(Assembler::notZero, L_load_element); // Empty array: Nothing to do. __ xorptr(rax, rax); // return 0 on (trivial) success __ jmp(L_done); // ======== begin loop ======== // (Loop is rotated; its entry is L_load_element.) // Loop control: // for (count = -count; count != 0; count++) // Base pointers src, dst are biased by 8*(count-1),to last element. __ align(OptoLoopAlignment); __ BIND(L_store_element); __ store_heap_oop(to_element_addr, rax_oop, noreg, noreg, AS_RAW); // store the oop __ increment(count); // increment the count toward zero __ jcc(Assembler::zero, L_do_card_marks); // ======== loop entry is here ======== __ BIND(L_load_element); __ load_heap_oop(rax_oop, from_element_addr, noreg, noreg, AS_RAW); // load the oop __ testptr(rax_oop, rax_oop); __ jcc(Assembler::zero, L_store_element); __ load_klass(r11_klass, rax_oop);// query the object klass generate_type_check(r11_klass, ckoff, ckval, L_store_element); // ======== end loop ======== // It was a real error; we must depend on the caller to finish the job. // Register rdx = -1 * number of *remaining* oops, r14 = *total* oops. // Emit GC store barriers for the oops we have copied (r14 + rdx), // and report their number to the caller. assert_different_registers(rax, r14_length, count, to, end_to, rcx, rscratch1); Label L_post_barrier; __ addptr(r14_length, count); // K = (original - remaining) oops __ movptr(rax, r14_length); // save the value __ notptr(rax); // report (-1^K) to caller (does not affect flags) __ jccb(Assembler::notZero, L_post_barrier); __ jmp(L_done); // K == 0, nothing was copied, skip post barrier // Come here on success only. __ BIND(L_do_card_marks); __ xorptr(rax, rax); // return 0 on success __ BIND(L_post_barrier); bs->arraycopy_epilogue(_masm, decorators, type, from, to, r14_length); // Common exit point (success or failure). __ BIND(L_done); __ movptr(r13, Address(rsp, saved_r13_offset * wordSize)); __ movptr(r14, Address(rsp, saved_r14_offset * wordSize)); restore_arg_regs(); inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr); // Update counter after rscratch1 is free __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } // // Generate 'unsafe' array copy stub // Though just as safe as the other stubs, it takes an unscaled // size_t argument instead of an element count. // // Input: // c_rarg0 - source array address // c_rarg1 - destination array address // c_rarg2 - byte count, treated as ssize_t, can be zero // // Examines the alignment of the operands and dispatches // to a long, int, short, or byte copy loop. // address generate_unsafe_copy(const char *name, address byte_copy_entry, address short_copy_entry, address int_copy_entry, address long_copy_entry) { Label L_long_aligned, L_int_aligned, L_short_aligned; // Input registers (before setup_arg_regs) const Register from = c_rarg0; // source array address const Register to = c_rarg1; // destination array address const Register size = c_rarg2; // byte count (size_t) // Register used as a temp const Register bits = rax; // test copy of low bits __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); __ enter(); // required for proper stackwalking of RuntimeStub frame // bump this on entry, not on exit: inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr); __ mov(bits, from); __ orptr(bits, to); __ orptr(bits, size); __ testb(bits, BytesPerLong-1); __ jccb(Assembler::zero, L_long_aligned); __ testb(bits, BytesPerInt-1); __ jccb(Assembler::zero, L_int_aligned); __ testb(bits, BytesPerShort-1); __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry)); __ BIND(L_short_aligned); __ shrptr(size, LogBytesPerShort); // size => short_count __ jump(RuntimeAddress(short_copy_entry)); __ BIND(L_int_aligned); __ shrptr(size, LogBytesPerInt); // size => int_count __ jump(RuntimeAddress(int_copy_entry)); __ BIND(L_long_aligned); __ shrptr(size, LogBytesPerLong); // size => qword_count __ jump(RuntimeAddress(long_copy_entry)); return start; } // Perform range checks on the proposed arraycopy. // Kills temp, but nothing else. // Also, clean the sign bits of src_pos and dst_pos. void arraycopy_range_checks(Register src, // source array oop (c_rarg0) Register src_pos, // source position (c_rarg1) Register dst, // destination array oo (c_rarg2) Register dst_pos, // destination position (c_rarg3) Register length, Register temp, Label& L_failed) { BLOCK_COMMENT("arraycopy_range_checks:"); // if (src_pos + length > arrayOop(src)->length()) FAIL; __ movl(temp, length); __ addl(temp, src_pos); // src_pos + length __ cmpl(temp, Address(src, arrayOopDesc::length_offset_in_bytes())); __ jcc(Assembler::above, L_failed); // if (dst_pos + length > arrayOop(dst)->length()) FAIL; __ movl(temp, length); __ addl(temp, dst_pos); // dst_pos + length __ cmpl(temp, Address(dst, arrayOopDesc::length_offset_in_bytes())); __ jcc(Assembler::above, L_failed); // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'. // Move with sign extension can be used since they are positive. __ movslq(src_pos, src_pos); __ movslq(dst_pos, dst_pos); BLOCK_COMMENT("arraycopy_range_checks done"); } // // Generate generic array copy stubs // // Input: // c_rarg0 - src oop // c_rarg1 - src_pos (32-bits) // c_rarg2 - dst oop // c_rarg3 - dst_pos (32-bits) // not Win64 // c_rarg4 - element count (32-bits) // Win64 // rsp+40 - element count (32-bits) // // Output: // rax == 0 - success // rax == -1^K - failure, where K is partial transfer count // address generate_generic_copy(const char *name, address byte_copy_entry, address short_copy_entry, address int_copy_entry, address oop_copy_entry, address long_copy_entry, address checkcast_copy_entry) { Label L_failed, L_failed_0, L_objArray; Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs; // Input registers const Register src = c_rarg0; // source array oop const Register src_pos = c_rarg1; // source position const Register dst = c_rarg2; // destination array oop const Register dst_pos = c_rarg3; // destination position #ifndef _WIN64 const Register length = c_rarg4; #else const Address length(rsp, 6 * wordSize); // elements count is on stack on Win64 #endif { int modulus = CodeEntryAlignment; int target = modulus - 5; // 5 = sizeof jmp(L_failed) int advance = target - (__ offset() % modulus); if (advance < 0) advance += modulus; if (advance > 0) __ nop(advance); } StubCodeMark mark(this, "StubRoutines", name); // Short-hop target to L_failed. Makes for denser prologue code. __ BIND(L_failed_0); __ jmp(L_failed); assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed"); __ align(CodeEntryAlignment); address start = __ pc(); __ enter(); // required for proper stackwalking of RuntimeStub frame // bump this on entry, not on exit: inc_counter_np(SharedRuntime::_generic_array_copy_ctr); //----------------------------------------------------------------------- // Assembler stub will be used for this call to arraycopy // if the following conditions are met: // // (1) src and dst must not be null. // (2) src_pos must not be negative. // (3) dst_pos must not be negative. // (4) length must not be negative. // (5) src klass and dst klass should be the same and not NULL. // (6) src and dst should be arrays. // (7) src_pos + length must not exceed length of src. // (8) dst_pos + length must not exceed length of dst. // // if (src == NULL) return -1; __ testptr(src, src); // src oop size_t j1off = __ offset(); __ jccb(Assembler::zero, L_failed_0); // if (src_pos < 0) return -1; __ testl(src_pos, src_pos); // src_pos (32-bits) __ jccb(Assembler::negative, L_failed_0); // if (dst == NULL) return -1; __ testptr(dst, dst); // dst oop __ jccb(Assembler::zero, L_failed_0); // if (dst_pos < 0) return -1; __ testl(dst_pos, dst_pos); // dst_pos (32-bits) size_t j4off = __ offset(); __ jccb(Assembler::negative, L_failed_0); // The first four tests are very dense code, // but not quite dense enough to put four // jumps in a 16-byte instruction fetch buffer. // That's good, because some branch predicters // do not like jumps so close together. // Make sure of this. guarantee(((j1off ^ j4off) & ~15) != 0, "I$ line of 1st & 4th jumps"); // registers used as temp const Register r11_length = r11; // elements count to copy const Register r10_src_klass = r10; // array klass // if (length < 0) return -1; __ movl(r11_length, length); // length (elements count, 32-bits value) __ testl(r11_length, r11_length); __ jccb(Assembler::negative, L_failed_0); __ load_klass(r10_src_klass, src); #ifdef ASSERT // assert(src->klass() != NULL); { BLOCK_COMMENT("assert klasses not null {"); Label L1, L2; __ testptr(r10_src_klass, r10_src_klass); __ jcc(Assembler::notZero, L2); // it is broken if klass is NULL __ bind(L1); __ stop("broken null klass"); __ bind(L2); __ load_klass(rax, dst); __ cmpq(rax, 0); __ jcc(Assembler::equal, L1); // this would be broken also BLOCK_COMMENT("} assert klasses not null done"); } #endif // Load layout helper (32-bits) // // |array_tag| | header_size | element_type | |log2_element_size| // 32 30 24 16 8 2 0 // // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0 // const int lh_offset = in_bytes(Klass::layout_helper_offset()); // Handle objArrays completely differently... const jint objArray_lh = Klass::array_layout_helper(T_OBJECT); __ cmpl(Address(r10_src_klass, lh_offset), objArray_lh); __ jcc(Assembler::equal, L_objArray); // if (src->klass() != dst->klass()) return -1; __ load_klass(rax, dst); __ cmpq(r10_src_klass, rax); __ jcc(Assembler::notEqual, L_failed); const Register rax_lh = rax; // layout helper __ movl(rax_lh, Address(r10_src_klass, lh_offset)); // if (!src->is_Array()) return -1; __ cmpl(rax_lh, Klass::_lh_neutral_value); __ jcc(Assembler::greaterEqual, L_failed); // At this point, it is known to be a typeArray (array_tag 0x3). #ifdef ASSERT { BLOCK_COMMENT("assert primitive array {"); Label L; __ cmpl(rax_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift)); __ jcc(Assembler::greaterEqual, L); __ stop("must be a primitive array"); __ bind(L); BLOCK_COMMENT("} assert primitive array done"); } #endif arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length, r10, L_failed); // TypeArrayKlass // // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize); // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize); // const Register r10_offset = r10; // array offset const Register rax_elsize = rax_lh; // element size __ movl(r10_offset, rax_lh); __ shrl(r10_offset, Klass::_lh_header_size_shift); __ andptr(r10_offset, Klass::_lh_header_size_mask); // array_offset __ addptr(src, r10_offset); // src array offset __ addptr(dst, r10_offset); // dst array offset BLOCK_COMMENT("choose copy loop based on element size"); __ andl(rax_lh, Klass::_lh_log2_element_size_mask); // rax_lh -> rax_elsize // next registers should be set before the jump to corresponding stub const Register from = c_rarg0; // source array address const Register to = c_rarg1; // destination array address const Register count = c_rarg2; // elements count // 'from', 'to', 'count' registers should be set in such order // since they are the same as 'src', 'src_pos', 'dst'. __ BIND(L_copy_bytes); __ cmpl(rax_elsize, 0); __ jccb(Assembler::notEqual, L_copy_shorts); __ lea(from, Address(src, src_pos, Address::times_1, 0));// src_addr __ lea(to, Address(dst, dst_pos, Address::times_1, 0));// dst_addr __ movl2ptr(count, r11_length); // length __ jump(RuntimeAddress(byte_copy_entry)); __ BIND(L_copy_shorts); __ cmpl(rax_elsize, LogBytesPerShort); __ jccb(Assembler::notEqual, L_copy_ints); __ lea(from, Address(src, src_pos, Address::times_2, 0));// src_addr __ lea(to, Address(dst, dst_pos, Address::times_2, 0));// dst_addr __ movl2ptr(count, r11_length); // length __ jump(RuntimeAddress(short_copy_entry)); __ BIND(L_copy_ints); __ cmpl(rax_elsize, LogBytesPerInt); __ jccb(Assembler::notEqual, L_copy_longs); __ lea(from, Address(src, src_pos, Address::times_4, 0));// src_addr __ lea(to, Address(dst, dst_pos, Address::times_4, 0));// dst_addr __ movl2ptr(count, r11_length); // length __ jump(RuntimeAddress(int_copy_entry)); __ BIND(L_copy_longs); #ifdef ASSERT { BLOCK_COMMENT("assert long copy {"); Label L; __ cmpl(rax_elsize, LogBytesPerLong); __ jcc(Assembler::equal, L); __ stop("must be long copy, but elsize is wrong"); __ bind(L); BLOCK_COMMENT("} assert long copy done"); } #endif __ lea(from, Address(src, src_pos, Address::times_8, 0));// src_addr __ lea(to, Address(dst, dst_pos, Address::times_8, 0));// dst_addr __ movl2ptr(count, r11_length); // length __ jump(RuntimeAddress(long_copy_entry)); // ObjArrayKlass __ BIND(L_objArray); // live at this point: r10_src_klass, r11_length, src[_pos], dst[_pos] Label L_plain_copy, L_checkcast_copy; // test array classes for subtyping __ load_klass(rax, dst); __ cmpq(r10_src_klass, rax); // usual case is exact equality __ jcc(Assembler::notEqual, L_checkcast_copy); // Identically typed arrays can be copied without element-wise checks. arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length, r10, L_failed); __ lea(from, Address(src, src_pos, TIMES_OOP, arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr __ lea(to, Address(dst, dst_pos, TIMES_OOP, arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr __ movl2ptr(count, r11_length); // length __ BIND(L_plain_copy); __ jump(RuntimeAddress(oop_copy_entry)); __ BIND(L_checkcast_copy); // live at this point: r10_src_klass, r11_length, rax (dst_klass) { // Before looking at dst.length, make sure dst is also an objArray. __ cmpl(Address(rax, lh_offset), objArray_lh); __ jcc(Assembler::notEqual, L_failed); // It is safe to examine both src.length and dst.length. arraycopy_range_checks(src, src_pos, dst, dst_pos, r11_length, rax, L_failed); const Register r11_dst_klass = r11; __ load_klass(r11_dst_klass, dst); // reload // Marshal the base address arguments now, freeing registers. __ lea(from, Address(src, src_pos, TIMES_OOP, arrayOopDesc::base_offset_in_bytes(T_OBJECT))); __ lea(to, Address(dst, dst_pos, TIMES_OOP, arrayOopDesc::base_offset_in_bytes(T_OBJECT))); __ movl(count, length); // length (reloaded) Register sco_temp = c_rarg3; // this register is free now assert_different_registers(from, to, count, sco_temp, r11_dst_klass, r10_src_klass); assert_clean_int(count, sco_temp); // Generate the type check. const int sco_offset = in_bytes(Klass::super_check_offset_offset()); __ movl(sco_temp, Address(r11_dst_klass, sco_offset)); assert_clean_int(sco_temp, rax); generate_type_check(r10_src_klass, sco_temp, r11_dst_klass, L_plain_copy); // Fetch destination element klass from the ObjArrayKlass header. int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset()); __ movptr(r11_dst_klass, Address(r11_dst_klass, ek_offset)); __ movl( sco_temp, Address(r11_dst_klass, sco_offset)); assert_clean_int(sco_temp, rax); // the checkcast_copy loop needs two extra arguments: assert(c_rarg3 == sco_temp, "#3 already in place"); // Set up arguments for checkcast_copy_entry. setup_arg_regs(4); __ movptr(r8, r11_dst_klass); // dst.klass.element_klass, r8 is c_rarg4 on Linux/Solaris __ jump(RuntimeAddress(checkcast_copy_entry)); } __ BIND(L_failed); __ xorptr(rax, rax); __ notptr(rax); // return -1 __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } void generate_arraycopy_stubs() { address entry; address entry_jbyte_arraycopy; address entry_jshort_arraycopy; address entry_jint_arraycopy; address entry_oop_arraycopy; address entry_jlong_arraycopy; address entry_checkcast_arraycopy; StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry, "jbyte_disjoint_arraycopy"); StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry, &entry_jbyte_arraycopy, "jbyte_arraycopy"); StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry, "jshort_disjoint_arraycopy"); StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry, &entry_jshort_arraycopy, "jshort_arraycopy"); StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, false, &entry, "jint_disjoint_arraycopy"); StubRoutines::_jint_arraycopy = generate_conjoint_int_oop_copy(false, false, entry, &entry_jint_arraycopy, "jint_arraycopy"); StubRoutines::_jlong_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, false, &entry, "jlong_disjoint_arraycopy"); StubRoutines::_jlong_arraycopy = generate_conjoint_long_oop_copy(false, false, entry, &entry_jlong_arraycopy, "jlong_arraycopy"); if (UseCompressedOops) { StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_int_oop_copy(false, true, &entry, "oop_disjoint_arraycopy"); StubRoutines::_oop_arraycopy = generate_conjoint_int_oop_copy(false, true, entry, &entry_oop_arraycopy, "oop_arraycopy"); StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_int_oop_copy(false, true, &entry, "oop_disjoint_arraycopy_uninit", /*dest_uninitialized*/true); StubRoutines::_oop_arraycopy_uninit = generate_conjoint_int_oop_copy(false, true, entry, NULL, "oop_arraycopy_uninit", /*dest_uninitialized*/true); } else { StubRoutines::_oop_disjoint_arraycopy = generate_disjoint_long_oop_copy(false, true, &entry, "oop_disjoint_arraycopy"); StubRoutines::_oop_arraycopy = generate_conjoint_long_oop_copy(false, true, entry, &entry_oop_arraycopy, "oop_arraycopy"); StubRoutines::_oop_disjoint_arraycopy_uninit = generate_disjoint_long_oop_copy(false, true, &entry, "oop_disjoint_arraycopy_uninit", /*dest_uninitialized*/true); StubRoutines::_oop_arraycopy_uninit = generate_conjoint_long_oop_copy(false, true, entry, NULL, "oop_arraycopy_uninit", /*dest_uninitialized*/true); } StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy); StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, /*dest_uninitialized*/true); StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy", entry_jbyte_arraycopy, entry_jshort_arraycopy, entry_jint_arraycopy, entry_jlong_arraycopy); StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy", entry_jbyte_arraycopy, entry_jshort_arraycopy, entry_jint_arraycopy, entry_oop_arraycopy, entry_jlong_arraycopy, entry_checkcast_arraycopy); StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill"); StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill"); StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill"); StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill"); StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill"); StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill"); // We don't generate specialized code for HeapWord-aligned source // arrays, so just use the code we've already generated StubRoutines::_arrayof_jbyte_disjoint_arraycopy = StubRoutines::_jbyte_disjoint_arraycopy; StubRoutines::_arrayof_jbyte_arraycopy = StubRoutines::_jbyte_arraycopy; StubRoutines::_arrayof_jshort_disjoint_arraycopy = StubRoutines::_jshort_disjoint_arraycopy; StubRoutines::_arrayof_jshort_arraycopy = StubRoutines::_jshort_arraycopy; StubRoutines::_arrayof_jint_disjoint_arraycopy = StubRoutines::_jint_disjoint_arraycopy; StubRoutines::_arrayof_jint_arraycopy = StubRoutines::_jint_arraycopy; StubRoutines::_arrayof_jlong_disjoint_arraycopy = StubRoutines::_jlong_disjoint_arraycopy; StubRoutines::_arrayof_jlong_arraycopy = StubRoutines::_jlong_arraycopy; StubRoutines::_arrayof_oop_disjoint_arraycopy = StubRoutines::_oop_disjoint_arraycopy; StubRoutines::_arrayof_oop_arraycopy = StubRoutines::_oop_arraycopy; StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit; StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit; } // AES intrinsic stubs enum {AESBlockSize = 16}; address generate_key_shuffle_mask() { __ align(16); StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask"); address start = __ pc(); __ emit_data64( 0x0405060700010203, relocInfo::none ); __ emit_data64( 0x0c0d0e0f08090a0b, relocInfo::none ); return start; } address generate_counter_shuffle_mask() { __ align(16); StubCodeMark mark(this, "StubRoutines", "counter_shuffle_mask"); address start = __ pc(); __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); __ emit_data64(0x0001020304050607, relocInfo::none); return start; } // Utility routine for loading a 128-bit key word in little endian format // can optionally specify that the shuffle mask is already in an xmmregister void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) { __ movdqu(xmmdst, Address(key, offset)); if (xmm_shuf_mask != NULL) { __ pshufb(xmmdst, xmm_shuf_mask); } else { __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); } } // Utility routine for increase 128bit counter (iv in CTR mode) void inc_counter(Register reg, XMMRegister xmmdst, int inc_delta, Label& next_block) { __ pextrq(reg, xmmdst, 0x0); __ addq(reg, inc_delta); __ pinsrq(xmmdst, reg, 0x0); __ jcc(Assembler::carryClear, next_block); // jump if no carry __ pextrq(reg, xmmdst, 0x01); // Carry __ addq(reg, 0x01); __ pinsrq(xmmdst, reg, 0x01); //Carry end __ BIND(next_block); // next instruction } // Arguments: // // Inputs: // c_rarg0 - source byte array address // c_rarg1 - destination byte array address // c_rarg2 - K (key) in little endian int array // address generate_aescrypt_encryptBlock() { assert(UseAES, "need AES instructions and misaligned SSE support"); __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock"); Label L_doLast; address start = __ pc(); const Register from = c_rarg0; // source array address const Register to = c_rarg1; // destination array address const Register key = c_rarg2; // key array address const Register keylen = rax; const XMMRegister xmm_result = xmm0; const XMMRegister xmm_key_shuf_mask = xmm1; // On win64 xmm6-xmm15 must be preserved so don't use them. const XMMRegister xmm_temp1 = xmm2; const XMMRegister xmm_temp2 = xmm3; const XMMRegister xmm_temp3 = xmm4; const XMMRegister xmm_temp4 = xmm5; __ enter(); // required for proper stackwalking of RuntimeStub frame // keylen could be only {11, 13, 15} * 4 = {44, 52, 60} __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); __ movdqu(xmm_result, Address(from, 0)); // get 16 bytes of input // For encryption, the java expanded key ordering is just what we need // we don't know if the key is aligned, hence not using load-execute form load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask); __ pxor(xmm_result, xmm_temp1); load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask); load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask); load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask); load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask); __ aesenc(xmm_result, xmm_temp1); __ aesenc(xmm_result, xmm_temp2); __ aesenc(xmm_result, xmm_temp3); __ aesenc(xmm_result, xmm_temp4); load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask); load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask); load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask); load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask); __ aesenc(xmm_result, xmm_temp1); __ aesenc(xmm_result, xmm_temp2); __ aesenc(xmm_result, xmm_temp3); __ aesenc(xmm_result, xmm_temp4); load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask); load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask); __ cmpl(keylen, 44); __ jccb(Assembler::equal, L_doLast); __ aesenc(xmm_result, xmm_temp1); __ aesenc(xmm_result, xmm_temp2); load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask); load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask); __ cmpl(keylen, 52); __ jccb(Assembler::equal, L_doLast); __ aesenc(xmm_result, xmm_temp1); __ aesenc(xmm_result, xmm_temp2); load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask); load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask); __ BIND(L_doLast); __ aesenc(xmm_result, xmm_temp1); __ aesenclast(xmm_result, xmm_temp2); __ movdqu(Address(to, 0), xmm_result); // store the result __ xorptr(rax, rax); // return 0 __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } // Arguments: // // Inputs: // c_rarg0 - source byte array address // c_rarg1 - destination byte array address // c_rarg2 - K (key) in little endian int array // address generate_aescrypt_decryptBlock() { assert(UseAES, "need AES instructions and misaligned SSE support"); __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock"); Label L_doLast; address start = __ pc(); const Register from = c_rarg0; // source array address const Register to = c_rarg1; // destination array address const Register key = c_rarg2; // key array address const Register keylen = rax; const XMMRegister xmm_result = xmm0; const XMMRegister xmm_key_shuf_mask = xmm1; // On win64 xmm6-xmm15 must be preserved so don't use them. const XMMRegister xmm_temp1 = xmm2; const XMMRegister xmm_temp2 = xmm3; const XMMRegister xmm_temp3 = xmm4; const XMMRegister xmm_temp4 = xmm5; __ enter(); // required for proper stackwalking of RuntimeStub frame // keylen could be only {11, 13, 15} * 4 = {44, 52, 60} __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); __ movdqu(xmm_result, Address(from, 0)); // for decryption java expanded key ordering is rotated one position from what we want // so we start from 0x10 here and hit 0x00 last // we don't know if the key is aligned, hence not using load-execute form load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask); load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask); load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask); load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask); __ pxor (xmm_result, xmm_temp1); __ aesdec(xmm_result, xmm_temp2); __ aesdec(xmm_result, xmm_temp3); __ aesdec(xmm_result, xmm_temp4); load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask); load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask); load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask); load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask); __ aesdec(xmm_result, xmm_temp1); __ aesdec(xmm_result, xmm_temp2); __ aesdec(xmm_result, xmm_temp3); __ aesdec(xmm_result, xmm_temp4); load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask); load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask); load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask); __ cmpl(keylen, 44); __ jccb(Assembler::equal, L_doLast); __ aesdec(xmm_result, xmm_temp1); __ aesdec(xmm_result, xmm_temp2); load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask); load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask); __ cmpl(keylen, 52); __ jccb(Assembler::equal, L_doLast); __ aesdec(xmm_result, xmm_temp1); __ aesdec(xmm_result, xmm_temp2); load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask); load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask); __ BIND(L_doLast); __ aesdec(xmm_result, xmm_temp1); __ aesdec(xmm_result, xmm_temp2); // for decryption the aesdeclast operation is always on key+0x00 __ aesdeclast(xmm_result, xmm_temp3); __ movdqu(Address(to, 0), xmm_result); // store the result __ xorptr(rax, rax); // return 0 __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } // Arguments: // // Inputs: // c_rarg0 - source byte array address // c_rarg1 - destination byte array address // c_rarg2 - K (key) in little endian int array // c_rarg3 - r vector byte array address // c_rarg4 - input length // // Output: // rax - input length // address generate_cipherBlockChaining_encryptAESCrypt() { assert(UseAES, "need AES instructions and misaligned SSE support"); __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt"); address start = __ pc(); Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256; const Register from = c_rarg0; // source array address const Register to = c_rarg1; // destination array address const Register key = c_rarg2; // key array address const Register rvec = c_rarg3; // r byte array initialized from initvector array address // and left with the results of the last encryption block #ifndef _WIN64 const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16) #else const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64 const Register len_reg = r11; // pick the volatile windows register #endif const Register pos = rax; // xmm register assignments for the loops below const XMMRegister xmm_result = xmm0; const XMMRegister xmm_temp = xmm1; // keys 0-10 preloaded into xmm2-xmm12 const int XMM_REG_NUM_KEY_FIRST = 2; const int XMM_REG_NUM_KEY_LAST = 15; const XMMRegister xmm_key0 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST); const XMMRegister xmm_key10 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+10); const XMMRegister xmm_key11 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+11); const XMMRegister xmm_key12 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+12); const XMMRegister xmm_key13 = as_XMMRegister(XMM_REG_NUM_KEY_FIRST+13); __ enter(); // required for proper stackwalking of RuntimeStub frame #ifdef _WIN64 // on win64, fill len_reg from stack position __ movl(len_reg, len_mem); #else __ push(len_reg); // Save #endif const XMMRegister xmm_key_shuf_mask = xmm_temp; // used temporarily to swap key bytes up front __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); // load up xmm regs xmm2 thru xmm12 with key 0x00 - 0xa0 for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum <= XMM_REG_NUM_KEY_FIRST+10; rnum++) { load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask); offset += 0x10; } __ movdqu(xmm_result, Address(rvec, 0x00)); // initialize xmm_result with r vec // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256)) __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); __ cmpl(rax, 44); __ jcc(Assembler::notEqual, L_key_192_256); // 128 bit code follows here __ movptr(pos, 0); __ align(OptoLoopAlignment); __ BIND(L_loopTop_128); __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input __ pxor (xmm_result, xmm_temp); // xor with the current r vector __ pxor (xmm_result, xmm_key0); // do the aes rounds for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 9; rnum++) { __ aesenc(xmm_result, as_XMMRegister(rnum)); } __ aesenclast(xmm_result, xmm_key10); __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output // no need to store r to memory until we exit __ addptr(pos, AESBlockSize); __ subptr(len_reg, AESBlockSize); __ jcc(Assembler::notEqual, L_loopTop_128); __ BIND(L_exit); __ movdqu(Address(rvec, 0), xmm_result); // final value of r stored in rvec of CipherBlockChaining object #ifdef _WIN64 __ movl(rax, len_mem); #else __ pop(rax); // return length #endif __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); __ BIND(L_key_192_256); // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256) load_key(xmm_key11, key, 0xb0, xmm_key_shuf_mask); load_key(xmm_key12, key, 0xc0, xmm_key_shuf_mask); __ cmpl(rax, 52); __ jcc(Assembler::notEqual, L_key_256); // 192-bit code follows here (could be changed to use more xmm registers) __ movptr(pos, 0); __ align(OptoLoopAlignment); __ BIND(L_loopTop_192); __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input __ pxor (xmm_result, xmm_temp); // xor with the current r vector __ pxor (xmm_result, xmm_key0); // do the aes rounds for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 11; rnum++) { __ aesenc(xmm_result, as_XMMRegister(rnum)); } __ aesenclast(xmm_result, xmm_key12); __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output // no need to store r to memory until we exit __ addptr(pos, AESBlockSize); __ subptr(len_reg, AESBlockSize); __ jcc(Assembler::notEqual, L_loopTop_192); __ jmp(L_exit); __ BIND(L_key_256); // 256-bit code follows here (could be changed to use more xmm registers) load_key(xmm_key13, key, 0xd0, xmm_key_shuf_mask); __ movptr(pos, 0); __ align(OptoLoopAlignment); __ BIND(L_loopTop_256); __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of input __ pxor (xmm_result, xmm_temp); // xor with the current r vector __ pxor (xmm_result, xmm_key0); // do the aes rounds for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_FIRST + 13; rnum++) { __ aesenc(xmm_result, as_XMMRegister(rnum)); } load_key(xmm_temp, key, 0xe0); __ aesenclast(xmm_result, xmm_temp); __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output // no need to store r to memory until we exit __ addptr(pos, AESBlockSize); __ subptr(len_reg, AESBlockSize); __ jcc(Assembler::notEqual, L_loopTop_256); __ jmp(L_exit); return start; } // Safefetch stubs. void generate_safefetch(const char* name, int size, address* entry, address* fault_pc, address* continuation_pc) { // safefetch signatures: // int SafeFetch32(int* adr, int errValue); // intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue); // // arguments: // c_rarg0 = adr // c_rarg1 = errValue // // result: // PPC_RET = *adr or errValue StubCodeMark mark(this, "StubRoutines", name); // Entry point, pc or function descriptor. *entry = __ pc(); // Load *adr into c_rarg1, may fault. *fault_pc = __ pc(); switch (size) { case 4: // int32_t __ movl(c_rarg1, Address(c_rarg0, 0)); break; case 8: // int64_t __ movq(c_rarg1, Address(c_rarg0, 0)); break; default: ShouldNotReachHere(); } // return errValue or *adr *continuation_pc = __ pc(); __ movq(rax, c_rarg1); __ ret(0); } // This is a version of CBC/AES Decrypt which does 4 blocks in a loop at a time // to hide instruction latency // // Arguments: // // Inputs: // c_rarg0 - source byte array address // c_rarg1 - destination byte array address // c_rarg2 - K (key) in little endian int array // c_rarg3 - r vector byte array address // c_rarg4 - input length // // Output: // rax - input length // address generate_cipherBlockChaining_decryptAESCrypt_Parallel() { assert(UseAES, "need AES instructions and misaligned SSE support"); __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt"); address start = __ pc(); const Register from = c_rarg0; // source array address const Register to = c_rarg1; // destination array address const Register key = c_rarg2; // key array address const Register rvec = c_rarg3; // r byte array initialized from initvector array address // and left with the results of the last encryption block #ifndef _WIN64 const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16) #else const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64 const Register len_reg = r11; // pick the volatile windows register #endif const Register pos = rax; const int PARALLEL_FACTOR = 4; const int ROUNDS[3] = { 10, 12, 14 }; // aes rounds for key128, key192, key256 Label L_exit; Label L_singleBlock_loopTopHead[3]; // 128, 192, 256 Label L_singleBlock_loopTopHead2[3]; // 128, 192, 256 Label L_singleBlock_loopTop[3]; // 128, 192, 256 Label L_multiBlock_loopTopHead[3]; // 128, 192, 256 Label L_multiBlock_loopTop[3]; // 128, 192, 256 // keys 0-10 preloaded into xmm5-xmm15 const int XMM_REG_NUM_KEY_FIRST = 5; const int XMM_REG_NUM_KEY_LAST = 15; const XMMRegister xmm_key_first = as_XMMRegister(XMM_REG_NUM_KEY_FIRST); const XMMRegister xmm_key_last = as_XMMRegister(XMM_REG_NUM_KEY_LAST); __ enter(); // required for proper stackwalking of RuntimeStub frame #ifdef _WIN64 // on win64, fill len_reg from stack position __ movl(len_reg, len_mem); #else __ push(len_reg); // Save #endif __ push(rbx); // the java expanded key ordering is rotated one position from what we want // so we start from 0x10 here and hit 0x00 last const XMMRegister xmm_key_shuf_mask = xmm1; // used temporarily to swap key bytes up front __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); // load up xmm regs 5 thru 15 with key 0x10 - 0xa0 - 0x00 for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum < XMM_REG_NUM_KEY_LAST; rnum++) { load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask); offset += 0x10; } load_key(xmm_key_last, key, 0x00, xmm_key_shuf_mask); const XMMRegister xmm_prev_block_cipher = xmm1; // holds cipher of previous block // registers holding the four results in the parallelized loop const XMMRegister xmm_result0 = xmm0; const XMMRegister xmm_result1 = xmm2; const XMMRegister xmm_result2 = xmm3; const XMMRegister xmm_result3 = xmm4; __ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00)); // initialize with initial rvec __ xorptr(pos, pos); // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256)) __ movl(rbx, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); __ cmpl(rbx, 52); __ jcc(Assembler::equal, L_multiBlock_loopTopHead[1]); __ cmpl(rbx, 60); __ jcc(Assembler::equal, L_multiBlock_loopTopHead[2]); #define DoFour(opc, src_reg) \ __ opc(xmm_result0, src_reg); \ __ opc(xmm_result1, src_reg); \ __ opc(xmm_result2, src_reg); \ __ opc(xmm_result3, src_reg); \ for (int k = 0; k < 3; ++k) { __ BIND(L_multiBlock_loopTopHead[k]); if (k != 0) { __ cmpptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // see if at least 4 blocks left __ jcc(Assembler::less, L_singleBlock_loopTopHead2[k]); } if (k == 1) { __ subptr(rsp, 6 * wordSize); __ movdqu(Address(rsp, 0), xmm15); //save last_key from xmm15 load_key(xmm15, key, 0xb0); // 0xb0; 192-bit key goes up to 0xc0 __ movdqu(Address(rsp, 2 * wordSize), xmm15); load_key(xmm1, key, 0xc0); // 0xc0; __ movdqu(Address(rsp, 4 * wordSize), xmm1); } else if (k == 2) { __ subptr(rsp, 10 * wordSize); __ movdqu(Address(rsp, 0), xmm15); //save last_key from xmm15 load_key(xmm15, key, 0xd0); // 0xd0; 256-bit key goes upto 0xe0 __ movdqu(Address(rsp, 6 * wordSize), xmm15); load_key(xmm1, key, 0xe0); // 0xe0; __ movdqu(Address(rsp, 8 * wordSize), xmm1); load_key(xmm15, key, 0xb0); // 0xb0; __ movdqu(Address(rsp, 2 * wordSize), xmm15); load_key(xmm1, key, 0xc0); // 0xc0; __ movdqu(Address(rsp, 4 * wordSize), xmm1); } __ align(OptoLoopAlignment); __ BIND(L_multiBlock_loopTop[k]); __ cmpptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // see if at least 4 blocks left __ jcc(Assembler::less, L_singleBlock_loopTopHead[k]); if (k != 0) { __ movdqu(xmm15, Address(rsp, 2 * wordSize)); __ movdqu(xmm1, Address(rsp, 4 * wordSize)); } __ movdqu(xmm_result0, Address(from, pos, Address::times_1, 0 * AESBlockSize)); // get next 4 blocks into xmmresult registers __ movdqu(xmm_result1, Address(from, pos, Address::times_1, 1 * AESBlockSize)); __ movdqu(xmm_result2, Address(from, pos, Address::times_1, 2 * AESBlockSize)); __ movdqu(xmm_result3, Address(from, pos, Address::times_1, 3 * AESBlockSize)); DoFour(pxor, xmm_key_first); if (k == 0) { for (int rnum = 1; rnum < ROUNDS[k]; rnum++) { DoFour(aesdec, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST)); } DoFour(aesdeclast, xmm_key_last); } else if (k == 1) { for (int rnum = 1; rnum <= ROUNDS[k]-2; rnum++) { DoFour(aesdec, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST)); } __ movdqu(xmm_key_last, Address(rsp, 0)); // xmm15 needs to be loaded again. DoFour(aesdec, xmm1); // key : 0xc0 __ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00)); // xmm1 needs to be loaded again DoFour(aesdeclast, xmm_key_last); } else if (k == 2) { for (int rnum = 1; rnum <= ROUNDS[k] - 4; rnum++) { DoFour(aesdec, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST)); } DoFour(aesdec, xmm1); // key : 0xc0 __ movdqu(xmm15, Address(rsp, 6 * wordSize)); __ movdqu(xmm1, Address(rsp, 8 * wordSize)); DoFour(aesdec, xmm15); // key : 0xd0 __ movdqu(xmm_key_last, Address(rsp, 0)); // xmm15 needs to be loaded again. DoFour(aesdec, xmm1); // key : 0xe0 __ movdqu(xmm_prev_block_cipher, Address(rvec, 0x00)); // xmm1 needs to be loaded again DoFour(aesdeclast, xmm_key_last); } // for each result, xor with the r vector of previous cipher block __ pxor(xmm_result0, xmm_prev_block_cipher); __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 0 * AESBlockSize)); __ pxor(xmm_result1, xmm_prev_block_cipher); __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 1 * AESBlockSize)); __ pxor(xmm_result2, xmm_prev_block_cipher); __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 2 * AESBlockSize)); __ pxor(xmm_result3, xmm_prev_block_cipher); __ movdqu(xmm_prev_block_cipher, Address(from, pos, Address::times_1, 3 * AESBlockSize)); // this will carry over to next set of blocks if (k != 0) { __ movdqu(Address(rvec, 0x00), xmm_prev_block_cipher); } __ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0); // store 4 results into the next 64 bytes of output __ movdqu(Address(to, pos, Address::times_1, 1 * AESBlockSize), xmm_result1); __ movdqu(Address(to, pos, Address::times_1, 2 * AESBlockSize), xmm_result2); __ movdqu(Address(to, pos, Address::times_1, 3 * AESBlockSize), xmm_result3); __ addptr(pos, PARALLEL_FACTOR * AESBlockSize); __ subptr(len_reg, PARALLEL_FACTOR * AESBlockSize); __ jmp(L_multiBlock_loopTop[k]); // registers used in the non-parallelized loops // xmm register assignments for the loops below const XMMRegister xmm_result = xmm0; const XMMRegister xmm_prev_block_cipher_save = xmm2; const XMMRegister xmm_key11 = xmm3; const XMMRegister xmm_key12 = xmm4; const XMMRegister key_tmp = xmm4; __ BIND(L_singleBlock_loopTopHead[k]); if (k == 1) { __ addptr(rsp, 6 * wordSize); } else if (k == 2) { __ addptr(rsp, 10 * wordSize); } __ cmpptr(len_reg, 0); // any blocks left?? __ jcc(Assembler::equal, L_exit); __ BIND(L_singleBlock_loopTopHead2[k]); if (k == 1) { load_key(xmm_key11, key, 0xb0); // 0xb0; 192-bit key goes upto 0xc0 load_key(xmm_key12, key, 0xc0); // 0xc0; 192-bit key goes upto 0xc0 } if (k == 2) { load_key(xmm_key11, key, 0xb0); // 0xb0; 256-bit key goes upto 0xe0 } __ align(OptoLoopAlignment); __ BIND(L_singleBlock_loopTop[k]); __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0)); // get next 16 bytes of cipher input __ movdqa(xmm_prev_block_cipher_save, xmm_result); // save for next r vector __ pxor(xmm_result, xmm_key_first); // do the aes dec rounds for (int rnum = 1; rnum <= 9 ; rnum++) { __ aesdec(xmm_result, as_XMMRegister(rnum + XMM_REG_NUM_KEY_FIRST)); } if (k == 1) { __ aesdec(xmm_result, xmm_key11); __ aesdec(xmm_result, xmm_key12); } if (k == 2) { __ aesdec(xmm_result, xmm_key11); load_key(key_tmp, key, 0xc0); __ aesdec(xmm_result, key_tmp); load_key(key_tmp, key, 0xd0); __ aesdec(xmm_result, key_tmp); load_key(key_tmp, key, 0xe0); __ aesdec(xmm_result, key_tmp); } __ aesdeclast(xmm_result, xmm_key_last); // xmm15 always came from key+0 __ pxor(xmm_result, xmm_prev_block_cipher); // xor with the current r vector __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result); // store into the next 16 bytes of output // no need to store r to memory until we exit __ movdqa(xmm_prev_block_cipher, xmm_prev_block_cipher_save); // set up next r vector with cipher input from this block __ addptr(pos, AESBlockSize); __ subptr(len_reg, AESBlockSize); __ jcc(Assembler::notEqual, L_singleBlock_loopTop[k]); if (k != 2) { __ jmp(L_exit); } } //for 128/192/256 __ BIND(L_exit); __ movdqu(Address(rvec, 0), xmm_prev_block_cipher); // final value of r stored in rvec of CipherBlockChaining object __ pop(rbx); #ifdef _WIN64 __ movl(rax, len_mem); #else __ pop(rax); // return length #endif __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } address generate_electronicCodeBook_encryptAESCrypt() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "electronicCodeBook_encryptAESCrypt"); address start = __ pc(); const Register from = c_rarg0; // source array address const Register to = c_rarg1; // destination array address const Register key = c_rarg2; // key array address const Register len = c_rarg3; // src len (must be multiple of blocksize 16) __ enter(); // required for proper stackwalking of RuntimeStub frame __ aesecb_encrypt(from, to, key, len); __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } address generate_electronicCodeBook_decryptAESCrypt() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "electronicCodeBook_decryptAESCrypt"); address start = __ pc(); const Register from = c_rarg0; // source array address const Register to = c_rarg1; // destination array address const Register key = c_rarg2; // key array address const Register len = c_rarg3; // src len (must be multiple of blocksize 16) __ enter(); // required for proper stackwalking of RuntimeStub frame __ aesecb_decrypt(from, to, key, len); __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } address generate_upper_word_mask() { __ align(64); StubCodeMark mark(this, "StubRoutines", "upper_word_mask"); address start = __ pc(); __ emit_data64(0x0000000000000000, relocInfo::none); __ emit_data64(0xFFFFFFFF00000000, relocInfo::none); return start; } address generate_shuffle_byte_flip_mask() { __ align(64); StubCodeMark mark(this, "StubRoutines", "shuffle_byte_flip_mask"); address start = __ pc(); __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); __ emit_data64(0x0001020304050607, relocInfo::none); return start; } // ofs and limit are use for multi-block byte array. // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) address generate_sha1_implCompress(bool multi_block, const char *name) { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); Register buf = c_rarg0; Register state = c_rarg1; Register ofs = c_rarg2; Register limit = c_rarg3; const XMMRegister abcd = xmm0; const XMMRegister e0 = xmm1; const XMMRegister e1 = xmm2; const XMMRegister msg0 = xmm3; const XMMRegister msg1 = xmm4; const XMMRegister msg2 = xmm5; const XMMRegister msg3 = xmm6; const XMMRegister shuf_mask = xmm7; __ enter(); __ subptr(rsp, 4 * wordSize); __ fast_sha1(abcd, e0, e1, msg0, msg1, msg2, msg3, shuf_mask, buf, state, ofs, limit, rsp, multi_block); __ addptr(rsp, 4 * wordSize); __ leave(); __ ret(0); return start; } address generate_pshuffle_byte_flip_mask() { __ align(64); StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask"); address start = __ pc(); __ emit_data64(0x0405060700010203, relocInfo::none); __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); if (VM_Version::supports_avx2()) { __ emit_data64(0x0405060700010203, relocInfo::none); // second copy __ emit_data64(0x0c0d0e0f08090a0b, relocInfo::none); // _SHUF_00BA __ emit_data64(0x0b0a090803020100, relocInfo::none); __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); __ emit_data64(0x0b0a090803020100, relocInfo::none); __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); // _SHUF_DC00 __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); __ emit_data64(0x0b0a090803020100, relocInfo::none); __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); __ emit_data64(0x0b0a090803020100, relocInfo::none); } return start; } //Mask for byte-swapping a couple of qwords in an XMM register using (v)pshufb. address generate_pshuffle_byte_flip_mask_sha512() { __ align(32); StubCodeMark mark(this, "StubRoutines", "pshuffle_byte_flip_mask_sha512"); address start = __ pc(); if (VM_Version::supports_avx2()) { __ emit_data64(0x0001020304050607, relocInfo::none); // PSHUFFLE_BYTE_FLIP_MASK __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); __ emit_data64(0x1011121314151617, relocInfo::none); __ emit_data64(0x18191a1b1c1d1e1f, relocInfo::none); __ emit_data64(0x0000000000000000, relocInfo::none); //MASK_YMM_LO __ emit_data64(0x0000000000000000, relocInfo::none); __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); __ emit_data64(0xFFFFFFFFFFFFFFFF, relocInfo::none); } return start; } // ofs and limit are use for multi-block byte array. // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) address generate_sha256_implCompress(bool multi_block, const char *name) { assert(VM_Version::supports_sha() || VM_Version::supports_avx2(), ""); __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); Register buf = c_rarg0; Register state = c_rarg1; Register ofs = c_rarg2; Register limit = c_rarg3; const XMMRegister msg = xmm0; const XMMRegister state0 = xmm1; const XMMRegister state1 = xmm2; const XMMRegister msgtmp0 = xmm3; const XMMRegister msgtmp1 = xmm4; const XMMRegister msgtmp2 = xmm5; const XMMRegister msgtmp3 = xmm6; const XMMRegister msgtmp4 = xmm7; const XMMRegister shuf_mask = xmm8; __ enter(); __ subptr(rsp, 4 * wordSize); if (VM_Version::supports_sha()) { __ fast_sha256(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, buf, state, ofs, limit, rsp, multi_block, shuf_mask); } else if (VM_Version::supports_avx2()) { __ sha256_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, buf, state, ofs, limit, rsp, multi_block, shuf_mask); } __ addptr(rsp, 4 * wordSize); __ vzeroupper(); __ leave(); __ ret(0); return start; } address generate_sha512_implCompress(bool multi_block, const char *name) { assert(VM_Version::supports_avx2(), ""); assert(VM_Version::supports_bmi2(), ""); __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", name); address start = __ pc(); Register buf = c_rarg0; Register state = c_rarg1; Register ofs = c_rarg2; Register limit = c_rarg3; const XMMRegister msg = xmm0; const XMMRegister state0 = xmm1; const XMMRegister state1 = xmm2; const XMMRegister msgtmp0 = xmm3; const XMMRegister msgtmp1 = xmm4; const XMMRegister msgtmp2 = xmm5; const XMMRegister msgtmp3 = xmm6; const XMMRegister msgtmp4 = xmm7; const XMMRegister shuf_mask = xmm8; __ enter(); __ sha512_AVX2(msg, state0, state1, msgtmp0, msgtmp1, msgtmp2, msgtmp3, msgtmp4, buf, state, ofs, limit, rsp, multi_block, shuf_mask); __ vzeroupper(); __ leave(); __ ret(0); return start; } // This mask is used for incrementing counter value(linc0, linc4, etc.) address counter_mask_addr() { __ align(64); StubCodeMark mark(this, "StubRoutines", "counter_mask_addr"); address start = __ pc(); __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none);//lbswapmask __ emit_data64(0x0001020304050607, relocInfo::none); __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); __ emit_data64(0x0001020304050607, relocInfo::none); __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); __ emit_data64(0x0001020304050607, relocInfo::none); __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none); __ emit_data64(0x0001020304050607, relocInfo::none); __ emit_data64(0x0000000000000000, relocInfo::none);//linc0 = counter_mask_addr+64 __ emit_data64(0x0000000000000000, relocInfo::none); __ emit_data64(0x0000000000000001, relocInfo::none);//counter_mask_addr() + 80 __ emit_data64(0x0000000000000000, relocInfo::none); __ emit_data64(0x0000000000000002, relocInfo::none); __ emit_data64(0x0000000000000000, relocInfo::none); __ emit_data64(0x0000000000000003, relocInfo::none); __ emit_data64(0x0000000000000000, relocInfo::none); __ emit_data64(0x0000000000000004, relocInfo::none);//linc4 = counter_mask_addr() + 128 __ emit_data64(0x0000000000000000, relocInfo::none); __ emit_data64(0x0000000000000004, relocInfo::none); __ emit_data64(0x0000000000000000, relocInfo::none); __ emit_data64(0x0000000000000004, relocInfo::none); __ emit_data64(0x0000000000000000, relocInfo::none); __ emit_data64(0x0000000000000004, relocInfo::none); __ emit_data64(0x0000000000000000, relocInfo::none); __ emit_data64(0x0000000000000008, relocInfo::none);//linc8 = counter_mask_addr() + 192 __ emit_data64(0x0000000000000000, relocInfo::none); __ emit_data64(0x0000000000000008, relocInfo::none); __ emit_data64(0x0000000000000000, relocInfo::none); __ emit_data64(0x0000000000000008, relocInfo::none); __ emit_data64(0x0000000000000000, relocInfo::none); __ emit_data64(0x0000000000000008, relocInfo::none); __ emit_data64(0x0000000000000000, relocInfo::none); __ emit_data64(0x0000000000000020, relocInfo::none);//linc32 = counter_mask_addr() + 256 __ emit_data64(0x0000000000000000, relocInfo::none); __ emit_data64(0x0000000000000020, relocInfo::none); __ emit_data64(0x0000000000000000, relocInfo::none); __ emit_data64(0x0000000000000020, relocInfo::none); __ emit_data64(0x0000000000000000, relocInfo::none); __ emit_data64(0x0000000000000020, relocInfo::none); __ emit_data64(0x0000000000000000, relocInfo::none); __ emit_data64(0x0000000000000010, relocInfo::none);//linc16 = counter_mask_addr() + 320 __ emit_data64(0x0000000000000000, relocInfo::none); __ emit_data64(0x0000000000000010, relocInfo::none); __ emit_data64(0x0000000000000000, relocInfo::none); __ emit_data64(0x0000000000000010, relocInfo::none); __ emit_data64(0x0000000000000000, relocInfo::none); __ emit_data64(0x0000000000000010, relocInfo::none); __ emit_data64(0x0000000000000000, relocInfo::none); return start; } // Vector AES Counter implementation address generate_counterMode_VectorAESCrypt() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "counterMode_AESCrypt"); address start = __ pc(); const Register from = c_rarg0; // source array address const Register to = c_rarg1; // destination array address const Register key = c_rarg2; // key array address r8 const Register counter = c_rarg3; // counter byte array initialized from counter array address // and updated with the incremented counter in the end #ifndef _WIN64 const Register len_reg = c_rarg4; const Register saved_encCounter_start = c_rarg5; const Register used_addr = r10; const Address used_mem(rbp, 2 * wordSize); const Register used = r11; #else const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64 const Address saved_encCounter_mem(rbp, 7 * wordSize); // saved encrypted counter is on stack on Win64 const Address used_mem(rbp, 8 * wordSize); // used length is on stack on Win64 const Register len_reg = r10; // pick the first volatile windows register const Register saved_encCounter_start = r11; const Register used_addr = r13; const Register used = r14; #endif __ enter(); // Save state before entering routine __ push(r12); __ push(r13); __ push(r14); __ push(r15); #ifdef _WIN64 // on win64, fill len_reg from stack position __ movl(len_reg, len_mem); __ movptr(saved_encCounter_start, saved_encCounter_mem); __ movptr(used_addr, used_mem); __ movl(used, Address(used_addr, 0)); #else __ push(len_reg); // Save __ movptr(used_addr, used_mem); __ movl(used, Address(used_addr, 0)); #endif __ push(rbx); __ aesctr_encrypt(from, to, key, counter, len_reg, used, used_addr, saved_encCounter_start); // Restore state before leaving routine __ pop(rbx); #ifdef _WIN64 __ movl(rax, len_mem); // return length #else __ pop(rax); // return length #endif __ pop(r15); __ pop(r14); __ pop(r13); __ pop(r12); __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } // This is a version of CTR/AES crypt which does 6 blocks in a loop at a time // to hide instruction latency // // Arguments: // // Inputs: // c_rarg0 - source byte array address // c_rarg1 - destination byte array address // c_rarg2 - K (key) in little endian int array // c_rarg3 - counter vector byte array address // Linux // c_rarg4 - input length // c_rarg5 - saved encryptedCounter start // rbp + 6 * wordSize - saved used length // Windows // rbp + 6 * wordSize - input length // rbp + 7 * wordSize - saved encryptedCounter start // rbp + 8 * wordSize - saved used length // // Output: // rax - input length // address generate_counterMode_AESCrypt_Parallel() { assert(UseAES, "need AES instructions and misaligned SSE support"); __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "counterMode_AESCrypt"); address start = __ pc(); const Register from = c_rarg0; // source array address const Register to = c_rarg1; // destination array address const Register key = c_rarg2; // key array address const Register counter = c_rarg3; // counter byte array initialized from counter array address // and updated with the incremented counter in the end #ifndef _WIN64 const Register len_reg = c_rarg4; const Register saved_encCounter_start = c_rarg5; const Register used_addr = r10; const Address used_mem(rbp, 2 * wordSize); const Register used = r11; #else const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64 const Address saved_encCounter_mem(rbp, 7 * wordSize); // length is on stack on Win64 const Address used_mem(rbp, 8 * wordSize); // length is on stack on Win64 const Register len_reg = r10; // pick the first volatile windows register const Register saved_encCounter_start = r11; const Register used_addr = r13; const Register used = r14; #endif const Register pos = rax; const int PARALLEL_FACTOR = 6; const XMMRegister xmm_counter_shuf_mask = xmm0; const XMMRegister xmm_key_shuf_mask = xmm1; // used temporarily to swap key bytes up front const XMMRegister xmm_curr_counter = xmm2; const XMMRegister xmm_key_tmp0 = xmm3; const XMMRegister xmm_key_tmp1 = xmm4; // registers holding the four results in the parallelized loop const XMMRegister xmm_result0 = xmm5; const XMMRegister xmm_result1 = xmm6; const XMMRegister xmm_result2 = xmm7; const XMMRegister xmm_result3 = xmm8; const XMMRegister xmm_result4 = xmm9; const XMMRegister xmm_result5 = xmm10; const XMMRegister xmm_from0 = xmm11; const XMMRegister xmm_from1 = xmm12; const XMMRegister xmm_from2 = xmm13; const XMMRegister xmm_from3 = xmm14; //the last one is xmm14. we have to preserve it on WIN64. const XMMRegister xmm_from4 = xmm3; //reuse xmm3~4. Because xmm_key_tmp0~1 are useless when loading input text const XMMRegister xmm_from5 = xmm4; //for key_128, key_192, key_256 const int rounds[3] = {10, 12, 14}; Label L_exit_preLoop, L_preLoop_start; Label L_multiBlock_loopTop[3]; Label L_singleBlockLoopTop[3]; Label L__incCounter[3][6]; //for 6 blocks Label L__incCounter_single[3]; //for single block, key128, key192, key256 Label L_processTail_insr[3], L_processTail_4_insr[3], L_processTail_2_insr[3], L_processTail_1_insr[3], L_processTail_exit_insr[3]; Label L_processTail_extr[3], L_processTail_4_extr[3], L_processTail_2_extr[3], L_processTail_1_extr[3], L_processTail_exit_extr[3]; Label L_exit; __ enter(); // required for proper stackwalking of RuntimeStub frame #ifdef _WIN64 // allocate spill slots for r13, r14 enum { saved_r13_offset, saved_r14_offset }; __ subptr(rsp, 2 * wordSize); __ movptr(Address(rsp, saved_r13_offset * wordSize), r13); __ movptr(Address(rsp, saved_r14_offset * wordSize), r14); // on win64, fill len_reg from stack position __ movl(len_reg, len_mem); __ movptr(saved_encCounter_start, saved_encCounter_mem); __ movptr(used_addr, used_mem); __ movl(used, Address(used_addr, 0)); #else __ push(len_reg); // Save __ movptr(used_addr, used_mem); __ movl(used, Address(used_addr, 0)); #endif __ push(rbx); // Save RBX __ movdqu(xmm_curr_counter, Address(counter, 0x00)); // initialize counter with initial counter __ movdqu(xmm_counter_shuf_mask, ExternalAddress(StubRoutines::x86::counter_shuffle_mask_addr()), pos); // pos as scratch __ pshufb(xmm_curr_counter, xmm_counter_shuf_mask); //counter is shuffled __ movptr(pos, 0); // Use the partially used encrpyted counter from last invocation __ BIND(L_preLoop_start); __ cmpptr(used, 16); __ jcc(Assembler::aboveEqual, L_exit_preLoop); __ cmpptr(len_reg, 0); __ jcc(Assembler::lessEqual, L_exit_preLoop); __ movb(rbx, Address(saved_encCounter_start, used)); __ xorb(rbx, Address(from, pos)); __ movb(Address(to, pos), rbx); __ addptr(pos, 1); __ addptr(used, 1); __ subptr(len_reg, 1); __ jmp(L_preLoop_start); __ BIND(L_exit_preLoop); __ movl(Address(used_addr, 0), used); // key length could be only {11, 13, 15} * 4 = {44, 52, 60} __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()), rbx); // rbx as scratch __ movl(rbx, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); __ cmpl(rbx, 52); __ jcc(Assembler::equal, L_multiBlock_loopTop[1]); __ cmpl(rbx, 60); __ jcc(Assembler::equal, L_multiBlock_loopTop[2]); #define CTR_DoSix(opc, src_reg) \ __ opc(xmm_result0, src_reg); \ __ opc(xmm_result1, src_reg); \ __ opc(xmm_result2, src_reg); \ __ opc(xmm_result3, src_reg); \ __ opc(xmm_result4, src_reg); \ __ opc(xmm_result5, src_reg); // k == 0 : generate code for key_128 // k == 1 : generate code for key_192 // k == 2 : generate code for key_256 for (int k = 0; k < 3; ++k) { //multi blocks starts here __ align(OptoLoopAlignment); __ BIND(L_multiBlock_loopTop[k]); __ cmpptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // see if at least PARALLEL_FACTOR blocks left __ jcc(Assembler::less, L_singleBlockLoopTop[k]); load_key(xmm_key_tmp0, key, 0x00, xmm_key_shuf_mask); //load, then increase counters CTR_DoSix(movdqa, xmm_curr_counter); inc_counter(rbx, xmm_result1, 0x01, L__incCounter[k][0]); inc_counter(rbx, xmm_result2, 0x02, L__incCounter[k][1]); inc_counter(rbx, xmm_result3, 0x03, L__incCounter[k][2]); inc_counter(rbx, xmm_result4, 0x04, L__incCounter[k][3]); inc_counter(rbx, xmm_result5, 0x05, L__incCounter[k][4]); inc_counter(rbx, xmm_curr_counter, 0x06, L__incCounter[k][5]); CTR_DoSix(pshufb, xmm_counter_shuf_mask); // after increased, shuffled counters back for PXOR CTR_DoSix(pxor, xmm_key_tmp0); //PXOR with Round 0 key //load two ROUND_KEYs at a time for (int i = 1; i < rounds[k]; ) { load_key(xmm_key_tmp1, key, (0x10 * i), xmm_key_shuf_mask); load_key(xmm_key_tmp0, key, (0x10 * (i+1)), xmm_key_shuf_mask); CTR_DoSix(aesenc, xmm_key_tmp1); i++; if (i != rounds[k]) { CTR_DoSix(aesenc, xmm_key_tmp0); } else { CTR_DoSix(aesenclast, xmm_key_tmp0); } i++; } // get next PARALLEL_FACTOR blocks into xmm_result registers __ movdqu(xmm_from0, Address(from, pos, Address::times_1, 0 * AESBlockSize)); __ movdqu(xmm_from1, Address(from, pos, Address::times_1, 1 * AESBlockSize)); __ movdqu(xmm_from2, Address(from, pos, Address::times_1, 2 * AESBlockSize)); __ movdqu(xmm_from3, Address(from, pos, Address::times_1, 3 * AESBlockSize)); __ movdqu(xmm_from4, Address(from, pos, Address::times_1, 4 * AESBlockSize)); __ movdqu(xmm_from5, Address(from, pos, Address::times_1, 5 * AESBlockSize)); __ pxor(xmm_result0, xmm_from0); __ pxor(xmm_result1, xmm_from1); __ pxor(xmm_result2, xmm_from2); __ pxor(xmm_result3, xmm_from3); __ pxor(xmm_result4, xmm_from4); __ pxor(xmm_result5, xmm_from5); // store 6 results into the next 64 bytes of output __ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0); __ movdqu(Address(to, pos, Address::times_1, 1 * AESBlockSize), xmm_result1); __ movdqu(Address(to, pos, Address::times_1, 2 * AESBlockSize), xmm_result2); __ movdqu(Address(to, pos, Address::times_1, 3 * AESBlockSize), xmm_result3); __ movdqu(Address(to, pos, Address::times_1, 4 * AESBlockSize), xmm_result4); __ movdqu(Address(to, pos, Address::times_1, 5 * AESBlockSize), xmm_result5); __ addptr(pos, PARALLEL_FACTOR * AESBlockSize); // increase the length of crypt text __ subptr(len_reg, PARALLEL_FACTOR * AESBlockSize); // decrease the remaining length __ jmp(L_multiBlock_loopTop[k]); // singleBlock starts here __ align(OptoLoopAlignment); __ BIND(L_singleBlockLoopTop[k]); __ cmpptr(len_reg, 0); __ jcc(Assembler::lessEqual, L_exit); load_key(xmm_key_tmp0, key, 0x00, xmm_key_shuf_mask); __ movdqa(xmm_result0, xmm_curr_counter); inc_counter(rbx, xmm_curr_counter, 0x01, L__incCounter_single[k]); __ pshufb(xmm_result0, xmm_counter_shuf_mask); __ pxor(xmm_result0, xmm_key_tmp0); for (int i = 1; i < rounds[k]; i++) { load_key(xmm_key_tmp0, key, (0x10 * i), xmm_key_shuf_mask); __ aesenc(xmm_result0, xmm_key_tmp0); } load_key(xmm_key_tmp0, key, (rounds[k] * 0x10), xmm_key_shuf_mask); __ aesenclast(xmm_result0, xmm_key_tmp0); __ cmpptr(len_reg, AESBlockSize); __ jcc(Assembler::less, L_processTail_insr[k]); __ movdqu(xmm_from0, Address(from, pos, Address::times_1, 0 * AESBlockSize)); __ pxor(xmm_result0, xmm_from0); __ movdqu(Address(to, pos, Address::times_1, 0 * AESBlockSize), xmm_result0); __ addptr(pos, AESBlockSize); __ subptr(len_reg, AESBlockSize); __ jmp(L_singleBlockLoopTop[k]); __ BIND(L_processTail_insr[k]); // Process the tail part of the input array __ addptr(pos, len_reg); // 1. Insert bytes from src array into xmm_from0 register __ testptr(len_reg, 8); __ jcc(Assembler::zero, L_processTail_4_insr[k]); __ subptr(pos,8); __ pinsrq(xmm_from0, Address(from, pos), 0); __ BIND(L_processTail_4_insr[k]); __ testptr(len_reg, 4); __ jcc(Assembler::zero, L_processTail_2_insr[k]); __ subptr(pos,4); __ pslldq(xmm_from0, 4); __ pinsrd(xmm_from0, Address(from, pos), 0); __ BIND(L_processTail_2_insr[k]); __ testptr(len_reg, 2); __ jcc(Assembler::zero, L_processTail_1_insr[k]); __ subptr(pos, 2); __ pslldq(xmm_from0, 2); __ pinsrw(xmm_from0, Address(from, pos), 0); __ BIND(L_processTail_1_insr[k]); __ testptr(len_reg, 1); __ jcc(Assembler::zero, L_processTail_exit_insr[k]); __ subptr(pos, 1); __ pslldq(xmm_from0, 1); __ pinsrb(xmm_from0, Address(from, pos), 0); __ BIND(L_processTail_exit_insr[k]); __ movdqu(Address(saved_encCounter_start, 0), xmm_result0); // 2. Perform pxor of the encrypted counter and plaintext Bytes. __ pxor(xmm_result0, xmm_from0); // Also the encrypted counter is saved for next invocation. __ testptr(len_reg, 8); __ jcc(Assembler::zero, L_processTail_4_extr[k]); // 3. Extract bytes from xmm_result0 into the dest. array __ pextrq(Address(to, pos), xmm_result0, 0); __ psrldq(xmm_result0, 8); __ addptr(pos, 8); __ BIND(L_processTail_4_extr[k]); __ testptr(len_reg, 4); __ jcc(Assembler::zero, L_processTail_2_extr[k]); __ pextrd(Address(to, pos), xmm_result0, 0); __ psrldq(xmm_result0, 4); __ addptr(pos, 4); __ BIND(L_processTail_2_extr[k]); __ testptr(len_reg, 2); __ jcc(Assembler::zero, L_processTail_1_extr[k]); __ pextrw(Address(to, pos), xmm_result0, 0); __ psrldq(xmm_result0, 2); __ addptr(pos, 2); __ BIND(L_processTail_1_extr[k]); __ testptr(len_reg, 1); __ jcc(Assembler::zero, L_processTail_exit_extr[k]); __ pextrb(Address(to, pos), xmm_result0, 0); __ BIND(L_processTail_exit_extr[k]); __ movl(Address(used_addr, 0), len_reg); __ jmp(L_exit); } __ BIND(L_exit); __ pshufb(xmm_curr_counter, xmm_counter_shuf_mask); //counter is shuffled back. __ movdqu(Address(counter, 0), xmm_curr_counter); //save counter back __ pop(rbx); // pop the saved RBX. #ifdef _WIN64 __ movl(rax, len_mem); __ movptr(r13, Address(rsp, saved_r13_offset * wordSize)); __ movptr(r14, Address(rsp, saved_r14_offset * wordSize)); __ addptr(rsp, 2 * wordSize); #else __ pop(rax); // return 'len' #endif __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } void roundDec(XMMRegister xmm_reg) { __ vaesdec(xmm1, xmm1, xmm_reg, Assembler::AVX_512bit); __ vaesdec(xmm2, xmm2, xmm_reg, Assembler::AVX_512bit); __ vaesdec(xmm3, xmm3, xmm_reg, Assembler::AVX_512bit); __ vaesdec(xmm4, xmm4, xmm_reg, Assembler::AVX_512bit); __ vaesdec(xmm5, xmm5, xmm_reg, Assembler::AVX_512bit); __ vaesdec(xmm6, xmm6, xmm_reg, Assembler::AVX_512bit); __ vaesdec(xmm7, xmm7, xmm_reg, Assembler::AVX_512bit); __ vaesdec(xmm8, xmm8, xmm_reg, Assembler::AVX_512bit); } void roundDeclast(XMMRegister xmm_reg) { __ vaesdeclast(xmm1, xmm1, xmm_reg, Assembler::AVX_512bit); __ vaesdeclast(xmm2, xmm2, xmm_reg, Assembler::AVX_512bit); __ vaesdeclast(xmm3, xmm3, xmm_reg, Assembler::AVX_512bit); __ vaesdeclast(xmm4, xmm4, xmm_reg, Assembler::AVX_512bit); __ vaesdeclast(xmm5, xmm5, xmm_reg, Assembler::AVX_512bit); __ vaesdeclast(xmm6, xmm6, xmm_reg, Assembler::AVX_512bit); __ vaesdeclast(xmm7, xmm7, xmm_reg, Assembler::AVX_512bit); __ vaesdeclast(xmm8, xmm8, xmm_reg, Assembler::AVX_512bit); } void ev_load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask = NULL) { __ movdqu(xmmdst, Address(key, offset)); if (xmm_shuf_mask != NULL) { __ pshufb(xmmdst, xmm_shuf_mask); } else { __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); } __ evshufi64x2(xmmdst, xmmdst, xmmdst, 0x0, Assembler::AVX_512bit); } address generate_cipherBlockChaining_decryptVectorAESCrypt() { assert(VM_Version::supports_vaes(), "need AES instructions and misaligned SSE support"); __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt"); address start = __ pc(); const Register from = c_rarg0; // source array address const Register to = c_rarg1; // destination array address const Register key = c_rarg2; // key array address const Register rvec = c_rarg3; // r byte array initialized from initvector array address // and left with the results of the last encryption block #ifndef _WIN64 const Register len_reg = c_rarg4; // src len (must be multiple of blocksize 16) #else const Address len_mem(rbp, 6 * wordSize); // length is on stack on Win64 const Register len_reg = r11; // pick the volatile windows register #endif Label Loop, Loop1, L_128, L_256, L_192, KEY_192, KEY_256, Loop2, Lcbc_dec_rem_loop, Lcbc_dec_rem_last, Lcbc_dec_ret, Lcbc_dec_rem, Lcbc_exit; __ enter(); #ifdef _WIN64 // on win64, fill len_reg from stack position __ movl(len_reg, len_mem); #else __ push(len_reg); // Save #endif __ push(rbx); __ vzeroupper(); // Temporary variable declaration for swapping key bytes const XMMRegister xmm_key_shuf_mask = xmm1; __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr())); // Calculate number of rounds from key size: 44 for 10-rounds, 52 for 12-rounds, 60 for 14-rounds const Register rounds = rbx; __ movl(rounds, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT))); const XMMRegister IV = xmm0; // Load IV and broadcast value to 512-bits __ evbroadcasti64x2(IV, Address(rvec, 0), Assembler::AVX_512bit); // Temporary variables for storing round keys const XMMRegister RK0 = xmm30; const XMMRegister RK1 = xmm9; const XMMRegister RK2 = xmm18; const XMMRegister RK3 = xmm19; const XMMRegister RK4 = xmm20; const XMMRegister RK5 = xmm21; const XMMRegister RK6 = xmm22; const XMMRegister RK7 = xmm23; const XMMRegister RK8 = xmm24; const XMMRegister RK9 = xmm25; const XMMRegister RK10 = xmm26; // Load and shuffle key // the java expanded key ordering is rotated one position from what we want // so we start from 1*16 here and hit 0*16 last ev_load_key(RK1, key, 1 * 16, xmm_key_shuf_mask); ev_load_key(RK2, key, 2 * 16, xmm_key_shuf_mask); ev_load_key(RK3, key, 3 * 16, xmm_key_shuf_mask); ev_load_key(RK4, key, 4 * 16, xmm_key_shuf_mask); ev_load_key(RK5, key, 5 * 16, xmm_key_shuf_mask); ev_load_key(RK6, key, 6 * 16, xmm_key_shuf_mask); ev_load_key(RK7, key, 7 * 16, xmm_key_shuf_mask); ev_load_key(RK8, key, 8 * 16, xmm_key_shuf_mask); ev_load_key(RK9, key, 9 * 16, xmm_key_shuf_mask); ev_load_key(RK10, key, 10 * 16, xmm_key_shuf_mask); ev_load_key(RK0, key, 0*16, xmm_key_shuf_mask); // Variables for storing source cipher text const XMMRegister S0 = xmm10; const XMMRegister S1 = xmm11; const XMMRegister S2 = xmm12; const XMMRegister S3 = xmm13; const XMMRegister S4 = xmm14; const XMMRegister S5 = xmm15; const XMMRegister S6 = xmm16; const XMMRegister S7 = xmm17; // Variables for storing decrypted text const XMMRegister B0 = xmm1; const XMMRegister B1 = xmm2; const XMMRegister B2 = xmm3; const XMMRegister B3 = xmm4; const XMMRegister B4 = xmm5; const XMMRegister B5 = xmm6; const XMMRegister B6 = xmm7; const XMMRegister B7 = xmm8; __ cmpl(rounds, 44); __ jcc(Assembler::greater, KEY_192); __ jmp(Loop); __ BIND(KEY_192); const XMMRegister RK11 = xmm27; const XMMRegister RK12 = xmm28; ev_load_key(RK11, key, 11*16, xmm_key_shuf_mask); ev_load_key(RK12, key, 12*16, xmm_key_shuf_mask); __ cmpl(rounds, 52); __ jcc(Assembler::greater, KEY_256); __ jmp(Loop); __ BIND(KEY_256); const XMMRegister RK13 = xmm29; const XMMRegister RK14 = xmm31; ev_load_key(RK13, key, 13*16, xmm_key_shuf_mask); ev_load_key(RK14, key, 14*16, xmm_key_shuf_mask); __ BIND(Loop); __ cmpl(len_reg, 512); __ jcc(Assembler::below, Lcbc_dec_rem); __ BIND(Loop1); __ subl(len_reg, 512); __ evmovdquq(S0, Address(from, 0 * 64), Assembler::AVX_512bit); __ evmovdquq(S1, Address(from, 1 * 64), Assembler::AVX_512bit); __ evmovdquq(S2, Address(from, 2 * 64), Assembler::AVX_512bit); __ evmovdquq(S3, Address(from, 3 * 64), Assembler::AVX_512bit); __ evmovdquq(S4, Address(from, 4 * 64), Assembler::AVX_512bit); __ evmovdquq(S5, Address(from, 5 * 64), Assembler::AVX_512bit); __ evmovdquq(S6, Address(from, 6 * 64), Assembler::AVX_512bit); __ evmovdquq(S7, Address(from, 7 * 64), Assembler::AVX_512bit); __ leaq(from, Address(from, 8 * 64)); __ evpxorq(B0, S0, RK1, Assembler::AVX_512bit); __ evpxorq(B1, S1, RK1, Assembler::AVX_512bit); __ evpxorq(B2, S2, RK1, Assembler::AVX_512bit); __ evpxorq(B3, S3, RK1, Assembler::AVX_512bit); __ evpxorq(B4, S4, RK1, Assembler::AVX_512bit); __ evpxorq(B5, S5, RK1, Assembler::AVX_512bit); __ evpxorq(B6, S6, RK1, Assembler::AVX_512bit); __ evpxorq(B7, S7, RK1, Assembler::AVX_512bit); __ evalignq(IV, S0, IV, 0x06); __ evalignq(S0, S1, S0, 0x06); __ evalignq(S1, S2, S1, 0x06); __ evalignq(S2, S3, S2, 0x06); __ evalignq(S3, S4, S3, 0x06); __ evalignq(S4, S5, S4, 0x06); __ evalignq(S5, S6, S5, 0x06); __ evalignq(S6, S7, S6, 0x06); roundDec(RK2); roundDec(RK3); roundDec(RK4); roundDec(RK5); roundDec(RK6); roundDec(RK7); roundDec(RK8); roundDec(RK9); roundDec(RK10); __ cmpl(rounds, 44); __ jcc(Assembler::belowEqual, L_128); roundDec(RK11); roundDec(RK12); __ cmpl(rounds, 52); __ jcc(Assembler::belowEqual, L_192); roundDec(RK13); roundDec(RK14); __ BIND(L_256); roundDeclast(RK0); __ jmp(Loop2); __ BIND(L_128); roundDeclast(RK0); __ jmp(Loop2); __ BIND(L_192); roundDeclast(RK0); __ BIND(Loop2); __ evpxorq(B0, B0, IV, Assembler::AVX_512bit); __ evpxorq(B1, B1, S0, Assembler::AVX_512bit); __ evpxorq(B2, B2, S1, Assembler::AVX_512bit); __ evpxorq(B3, B3, S2, Assembler::AVX_512bit); __ evpxorq(B4, B4, S3, Assembler::AVX_512bit); __ evpxorq(B5, B5, S4, Assembler::AVX_512bit); __ evpxorq(B6, B6, S5, Assembler::AVX_512bit); __ evpxorq(B7, B7, S6, Assembler::AVX_512bit); __ evmovdquq(IV, S7, Assembler::AVX_512bit); __ evmovdquq(Address(to, 0 * 64), B0, Assembler::AVX_512bit); __ evmovdquq(Address(to, 1 * 64), B1, Assembler::AVX_512bit); __ evmovdquq(Address(to, 2 * 64), B2, Assembler::AVX_512bit); __ evmovdquq(Address(to, 3 * 64), B3, Assembler::AVX_512bit); __ evmovdquq(Address(to, 4 * 64), B4, Assembler::AVX_512bit); __ evmovdquq(Address(to, 5 * 64), B5, Assembler::AVX_512bit); __ evmovdquq(Address(to, 6 * 64), B6, Assembler::AVX_512bit); __ evmovdquq(Address(to, 7 * 64), B7, Assembler::AVX_512bit); __ leaq(to, Address(to, 8 * 64)); __ jmp(Loop); __ BIND(Lcbc_dec_rem); __ evshufi64x2(IV, IV, IV, 0x03, Assembler::AVX_512bit); __ BIND(Lcbc_dec_rem_loop); __ subl(len_reg, 16); __ jcc(Assembler::carrySet, Lcbc_dec_ret); __ movdqu(S0, Address(from, 0)); __ evpxorq(B0, S0, RK1, Assembler::AVX_512bit); __ vaesdec(B0, B0, RK2, Assembler::AVX_512bit); __ vaesdec(B0, B0, RK3, Assembler::AVX_512bit); __ vaesdec(B0, B0, RK4, Assembler::AVX_512bit); __ vaesdec(B0, B0, RK5, Assembler::AVX_512bit); __ vaesdec(B0, B0, RK6, Assembler::AVX_512bit); __ vaesdec(B0, B0, RK7, Assembler::AVX_512bit); __ vaesdec(B0, B0, RK8, Assembler::AVX_512bit); __ vaesdec(B0, B0, RK9, Assembler::AVX_512bit); __ vaesdec(B0, B0, RK10, Assembler::AVX_512bit); __ cmpl(rounds, 44); __ jcc(Assembler::belowEqual, Lcbc_dec_rem_last); __ vaesdec(B0, B0, RK11, Assembler::AVX_512bit); __ vaesdec(B0, B0, RK12, Assembler::AVX_512bit); __ cmpl(rounds, 52); __ jcc(Assembler::belowEqual, Lcbc_dec_rem_last); __ vaesdec(B0, B0, RK13, Assembler::AVX_512bit); __ vaesdec(B0, B0, RK14, Assembler::AVX_512bit); __ BIND(Lcbc_dec_rem_last); __ vaesdeclast(B0, B0, RK0, Assembler::AVX_512bit); __ evpxorq(B0, B0, IV, Assembler::AVX_512bit); __ evmovdquq(IV, S0, Assembler::AVX_512bit); __ movdqu(Address(to, 0), B0); __ leaq(from, Address(from, 16)); __ leaq(to, Address(to, 16)); __ jmp(Lcbc_dec_rem_loop); __ BIND(Lcbc_dec_ret); __ movdqu(Address(rvec, 0), IV); // Zero out the round keys __ evpxorq(RK0, RK0, RK0, Assembler::AVX_512bit); __ evpxorq(RK1, RK1, RK1, Assembler::AVX_512bit); __ evpxorq(RK2, RK2, RK2, Assembler::AVX_512bit); __ evpxorq(RK3, RK3, RK3, Assembler::AVX_512bit); __ evpxorq(RK4, RK4, RK4, Assembler::AVX_512bit); __ evpxorq(RK5, RK5, RK5, Assembler::AVX_512bit); __ evpxorq(RK6, RK6, RK6, Assembler::AVX_512bit); __ evpxorq(RK7, RK7, RK7, Assembler::AVX_512bit); __ evpxorq(RK8, RK8, RK8, Assembler::AVX_512bit); __ evpxorq(RK9, RK9, RK9, Assembler::AVX_512bit); __ evpxorq(RK10, RK10, RK10, Assembler::AVX_512bit); __ cmpl(rounds, 44); __ jcc(Assembler::belowEqual, Lcbc_exit); __ evpxorq(RK11, RK11, RK11, Assembler::AVX_512bit); __ evpxorq(RK12, RK12, RK12, Assembler::AVX_512bit); __ cmpl(rounds, 52); __ jcc(Assembler::belowEqual, Lcbc_exit); __ evpxorq(RK13, RK13, RK13, Assembler::AVX_512bit); __ evpxorq(RK14, RK14, RK14, Assembler::AVX_512bit); __ BIND(Lcbc_exit); __ pop(rbx); #ifdef _WIN64 __ movl(rax, len_mem); #else __ pop(rax); // return length #endif __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } // Polynomial x^128+x^127+x^126+x^121+1 address ghash_polynomial_addr() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "_ghash_poly_addr"); address start = __ pc(); __ emit_data64(0x0000000000000001, relocInfo::none); __ emit_data64(0xc200000000000000, relocInfo::none); return start; } address ghash_shufflemask_addr() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "_ghash_shuffmask_addr"); address start = __ pc(); __ emit_data64(0x0f0f0f0f0f0f0f0f, relocInfo::none); __ emit_data64(0x0f0f0f0f0f0f0f0f, relocInfo::none); return start; } // Ghash single and multi block operations using AVX instructions address generate_avx_ghash_processBlocks() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "ghash_processBlocks"); address start = __ pc(); // arguments const Register state = c_rarg0; const Register htbl = c_rarg1; const Register data = c_rarg2; const Register blocks = c_rarg3; __ enter(); // Save state before entering routine __ avx_ghash(state, htbl, data, blocks); __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } // byte swap x86 long address generate_ghash_long_swap_mask() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "ghash_long_swap_mask"); address start = __ pc(); __ emit_data64(0x0f0e0d0c0b0a0908, relocInfo::none ); __ emit_data64(0x0706050403020100, relocInfo::none ); return start; } // byte swap x86 byte array address generate_ghash_byte_swap_mask() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "ghash_byte_swap_mask"); address start = __ pc(); __ emit_data64(0x08090a0b0c0d0e0f, relocInfo::none ); __ emit_data64(0x0001020304050607, relocInfo::none ); return start; } /* Single and multi-block ghash operations */ address generate_ghash_processBlocks() { __ align(CodeEntryAlignment); Label L_ghash_loop, L_exit; StubCodeMark mark(this, "StubRoutines", "ghash_processBlocks"); address start = __ pc(); const Register state = c_rarg0; const Register subkeyH = c_rarg1; const Register data = c_rarg2; const Register blocks = c_rarg3; const XMMRegister xmm_temp0 = xmm0; const XMMRegister xmm_temp1 = xmm1; const XMMRegister xmm_temp2 = xmm2; const XMMRegister xmm_temp3 = xmm3; const XMMRegister xmm_temp4 = xmm4; const XMMRegister xmm_temp5 = xmm5; const XMMRegister xmm_temp6 = xmm6; const XMMRegister xmm_temp7 = xmm7; const XMMRegister xmm_temp8 = xmm8; const XMMRegister xmm_temp9 = xmm9; const XMMRegister xmm_temp10 = xmm10; __ enter(); __ movdqu(xmm_temp10, ExternalAddress(StubRoutines::x86::ghash_long_swap_mask_addr())); __ movdqu(xmm_temp0, Address(state, 0)); __ pshufb(xmm_temp0, xmm_temp10); __ BIND(L_ghash_loop); __ movdqu(xmm_temp2, Address(data, 0)); __ pshufb(xmm_temp2, ExternalAddress(StubRoutines::x86::ghash_byte_swap_mask_addr())); __ movdqu(xmm_temp1, Address(subkeyH, 0)); __ pshufb(xmm_temp1, xmm_temp10); __ pxor(xmm_temp0, xmm_temp2); // // Multiply with the hash key // __ movdqu(xmm_temp3, xmm_temp0); __ pclmulqdq(xmm_temp3, xmm_temp1, 0); // xmm3 holds a0*b0 __ movdqu(xmm_temp4, xmm_temp0); __ pclmulqdq(xmm_temp4, xmm_temp1, 16); // xmm4 holds a0*b1 __ movdqu(xmm_temp5, xmm_temp0); __ pclmulqdq(xmm_temp5, xmm_temp1, 1); // xmm5 holds a1*b0 __ movdqu(xmm_temp6, xmm_temp0); __ pclmulqdq(xmm_temp6, xmm_temp1, 17); // xmm6 holds a1*b1 __ pxor(xmm_temp4, xmm_temp5); // xmm4 holds a0*b1 + a1*b0 __ movdqu(xmm_temp5, xmm_temp4); // move the contents of xmm4 to xmm5 __ psrldq(xmm_temp4, 8); // shift by xmm4 64 bits to the right __ pslldq(xmm_temp5, 8); // shift by xmm5 64 bits to the left __ pxor(xmm_temp3, xmm_temp5); __ pxor(xmm_temp6, xmm_temp4); // Register pair holds the result // of the carry-less multiplication of // xmm0 by xmm1. // We shift the result of the multiplication by one bit position // to the left to cope for the fact that the bits are reversed. __ movdqu(xmm_temp7, xmm_temp3); __ movdqu(xmm_temp8, xmm_temp6); __ pslld(xmm_temp3, 1); __ pslld(xmm_temp6, 1); __ psrld(xmm_temp7, 31); __ psrld(xmm_temp8, 31); __ movdqu(xmm_temp9, xmm_temp7); __ pslldq(xmm_temp8, 4); __ pslldq(xmm_temp7, 4); __ psrldq(xmm_temp9, 12); __ por(xmm_temp3, xmm_temp7); __ por(xmm_temp6, xmm_temp8); __ por(xmm_temp6, xmm_temp9); // // First phase of the reduction // // Move xmm3 into xmm7, xmm8, xmm9 in order to perform the shifts // independently. __ movdqu(xmm_temp7, xmm_temp3); __ movdqu(xmm_temp8, xmm_temp3); __ movdqu(xmm_temp9, xmm_temp3); __ pslld(xmm_temp7, 31); // packed right shift shifting << 31 __ pslld(xmm_temp8, 30); // packed right shift shifting << 30 __ pslld(xmm_temp9, 25); // packed right shift shifting << 25 __ pxor(xmm_temp7, xmm_temp8); // xor the shifted versions __ pxor(xmm_temp7, xmm_temp9); __ movdqu(xmm_temp8, xmm_temp7); __ pslldq(xmm_temp7, 12); __ psrldq(xmm_temp8, 4); __ pxor(xmm_temp3, xmm_temp7); // first phase of the reduction complete // // Second phase of the reduction // // Make 3 copies of xmm3 in xmm2, xmm4, xmm5 for doing these // shift operations. __ movdqu(xmm_temp2, xmm_temp3); __ movdqu(xmm_temp4, xmm_temp3); __ movdqu(xmm_temp5, xmm_temp3); __ psrld(xmm_temp2, 1); // packed left shifting >> 1 __ psrld(xmm_temp4, 2); // packed left shifting >> 2 __ psrld(xmm_temp5, 7); // packed left shifting >> 7 __ pxor(xmm_temp2, xmm_temp4); // xor the shifted versions __ pxor(xmm_temp2, xmm_temp5); __ pxor(xmm_temp2, xmm_temp8); __ pxor(xmm_temp3, xmm_temp2); __ pxor(xmm_temp6, xmm_temp3); // the result is in xmm6 __ decrement(blocks); __ jcc(Assembler::zero, L_exit); __ movdqu(xmm_temp0, xmm_temp6); __ addptr(data, 16); __ jmp(L_ghash_loop); __ BIND(L_exit); __ pshufb(xmm_temp6, xmm_temp10); // Byte swap 16-byte result __ movdqu(Address(state, 0), xmm_temp6); // store the result __ leave(); __ ret(0); return start; } //base64 character set address base64_charset_addr() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "base64_charset"); address start = __ pc(); __ emit_data64(0x0000004200000041, relocInfo::none); __ emit_data64(0x0000004400000043, relocInfo::none); __ emit_data64(0x0000004600000045, relocInfo::none); __ emit_data64(0x0000004800000047, relocInfo::none); __ emit_data64(0x0000004a00000049, relocInfo::none); __ emit_data64(0x0000004c0000004b, relocInfo::none); __ emit_data64(0x0000004e0000004d, relocInfo::none); __ emit_data64(0x000000500000004f, relocInfo::none); __ emit_data64(0x0000005200000051, relocInfo::none); __ emit_data64(0x0000005400000053, relocInfo::none); __ emit_data64(0x0000005600000055, relocInfo::none); __ emit_data64(0x0000005800000057, relocInfo::none); __ emit_data64(0x0000005a00000059, relocInfo::none); __ emit_data64(0x0000006200000061, relocInfo::none); __ emit_data64(0x0000006400000063, relocInfo::none); __ emit_data64(0x0000006600000065, relocInfo::none); __ emit_data64(0x0000006800000067, relocInfo::none); __ emit_data64(0x0000006a00000069, relocInfo::none); __ emit_data64(0x0000006c0000006b, relocInfo::none); __ emit_data64(0x0000006e0000006d, relocInfo::none); __ emit_data64(0x000000700000006f, relocInfo::none); __ emit_data64(0x0000007200000071, relocInfo::none); __ emit_data64(0x0000007400000073, relocInfo::none); __ emit_data64(0x0000007600000075, relocInfo::none); __ emit_data64(0x0000007800000077, relocInfo::none); __ emit_data64(0x0000007a00000079, relocInfo::none); __ emit_data64(0x0000003100000030, relocInfo::none); __ emit_data64(0x0000003300000032, relocInfo::none); __ emit_data64(0x0000003500000034, relocInfo::none); __ emit_data64(0x0000003700000036, relocInfo::none); __ emit_data64(0x0000003900000038, relocInfo::none); __ emit_data64(0x0000002f0000002b, relocInfo::none); return start; } //base64 url character set address base64url_charset_addr() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "base64url_charset"); address start = __ pc(); __ emit_data64(0x0000004200000041, relocInfo::none); __ emit_data64(0x0000004400000043, relocInfo::none); __ emit_data64(0x0000004600000045, relocInfo::none); __ emit_data64(0x0000004800000047, relocInfo::none); __ emit_data64(0x0000004a00000049, relocInfo::none); __ emit_data64(0x0000004c0000004b, relocInfo::none); __ emit_data64(0x0000004e0000004d, relocInfo::none); __ emit_data64(0x000000500000004f, relocInfo::none); __ emit_data64(0x0000005200000051, relocInfo::none); __ emit_data64(0x0000005400000053, relocInfo::none); __ emit_data64(0x0000005600000055, relocInfo::none); __ emit_data64(0x0000005800000057, relocInfo::none); __ emit_data64(0x0000005a00000059, relocInfo::none); __ emit_data64(0x0000006200000061, relocInfo::none); __ emit_data64(0x0000006400000063, relocInfo::none); __ emit_data64(0x0000006600000065, relocInfo::none); __ emit_data64(0x0000006800000067, relocInfo::none); __ emit_data64(0x0000006a00000069, relocInfo::none); __ emit_data64(0x0000006c0000006b, relocInfo::none); __ emit_data64(0x0000006e0000006d, relocInfo::none); __ emit_data64(0x000000700000006f, relocInfo::none); __ emit_data64(0x0000007200000071, relocInfo::none); __ emit_data64(0x0000007400000073, relocInfo::none); __ emit_data64(0x0000007600000075, relocInfo::none); __ emit_data64(0x0000007800000077, relocInfo::none); __ emit_data64(0x0000007a00000079, relocInfo::none); __ emit_data64(0x0000003100000030, relocInfo::none); __ emit_data64(0x0000003300000032, relocInfo::none); __ emit_data64(0x0000003500000034, relocInfo::none); __ emit_data64(0x0000003700000036, relocInfo::none); __ emit_data64(0x0000003900000038, relocInfo::none); __ emit_data64(0x0000005f0000002d, relocInfo::none); return start; } address base64_bswap_mask_addr() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "bswap_mask_base64"); address start = __ pc(); __ emit_data64(0x0504038002010080, relocInfo::none); __ emit_data64(0x0b0a098008070680, relocInfo::none); __ emit_data64(0x0908078006050480, relocInfo::none); __ emit_data64(0x0f0e0d800c0b0a80, relocInfo::none); __ emit_data64(0x0605048003020180, relocInfo::none); __ emit_data64(0x0c0b0a8009080780, relocInfo::none); __ emit_data64(0x0504038002010080, relocInfo::none); __ emit_data64(0x0b0a098008070680, relocInfo::none); return start; } address base64_right_shift_mask_addr() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "right_shift_mask"); address start = __ pc(); __ emit_data64(0x0006000400020000, relocInfo::none); __ emit_data64(0x0006000400020000, relocInfo::none); __ emit_data64(0x0006000400020000, relocInfo::none); __ emit_data64(0x0006000400020000, relocInfo::none); __ emit_data64(0x0006000400020000, relocInfo::none); __ emit_data64(0x0006000400020000, relocInfo::none); __ emit_data64(0x0006000400020000, relocInfo::none); __ emit_data64(0x0006000400020000, relocInfo::none); return start; } address base64_left_shift_mask_addr() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "left_shift_mask"); address start = __ pc(); __ emit_data64(0x0000000200040000, relocInfo::none); __ emit_data64(0x0000000200040000, relocInfo::none); __ emit_data64(0x0000000200040000, relocInfo::none); __ emit_data64(0x0000000200040000, relocInfo::none); __ emit_data64(0x0000000200040000, relocInfo::none); __ emit_data64(0x0000000200040000, relocInfo::none); __ emit_data64(0x0000000200040000, relocInfo::none); __ emit_data64(0x0000000200040000, relocInfo::none); return start; } address base64_and_mask_addr() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "and_mask"); address start = __ pc(); __ emit_data64(0x3f003f003f000000, relocInfo::none); __ emit_data64(0x3f003f003f000000, relocInfo::none); __ emit_data64(0x3f003f003f000000, relocInfo::none); __ emit_data64(0x3f003f003f000000, relocInfo::none); __ emit_data64(0x3f003f003f000000, relocInfo::none); __ emit_data64(0x3f003f003f000000, relocInfo::none); __ emit_data64(0x3f003f003f000000, relocInfo::none); __ emit_data64(0x3f003f003f000000, relocInfo::none); return start; } address base64_gather_mask_addr() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "gather_mask"); address start = __ pc(); __ emit_data64(0xffffffffffffffff, relocInfo::none); return start; } // Code for generating Base64 encoding. // Intrinsic function prototype in Base64.java: // private void encodeBlock(byte[] src, int sp, int sl, byte[] dst, int dp, boolean isURL) { address generate_base64_encodeBlock() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "implEncode"); address start = __ pc(); __ enter(); // Save callee-saved registers before using them __ push(r12); __ push(r13); __ push(r14); __ push(r15); // arguments const Register source = c_rarg0; // Source Array const Register start_offset = c_rarg1; // start offset const Register end_offset = c_rarg2; // end offset const Register dest = c_rarg3; // destination array #ifndef _WIN64 const Register dp = c_rarg4; // Position for writing to dest array const Register isURL = c_rarg5;// Base64 or URL character set #else const Address dp_mem(rbp, 6 * wordSize); // length is on stack on Win64 const Address isURL_mem(rbp, 7 * wordSize); const Register isURL = r10; // pick the volatile windows register const Register dp = r12; __ movl(dp, dp_mem); __ movl(isURL, isURL_mem); #endif const Register length = r14; Label L_process80, L_process32, L_process3, L_exit, L_processdata; // calculate length from offsets __ movl(length, end_offset); __ subl(length, start_offset); __ cmpl(length, 0); __ jcc(Assembler::lessEqual, L_exit); __ lea(r11, ExternalAddress(StubRoutines::x86::base64_charset_addr())); // check if base64 charset(isURL=0) or base64 url charset(isURL=1) needs to be loaded __ cmpl(isURL, 0); __ jcc(Assembler::equal, L_processdata); __ lea(r11, ExternalAddress(StubRoutines::x86::base64url_charset_addr())); // load masks required for encoding data __ BIND(L_processdata); __ movdqu(xmm16, ExternalAddress(StubRoutines::x86::base64_gather_mask_addr())); // Set 64 bits of K register. __ evpcmpeqb(k3, xmm16, xmm16, Assembler::AVX_512bit); __ evmovdquq(xmm12, ExternalAddress(StubRoutines::x86::base64_bswap_mask_addr()), Assembler::AVX_256bit, r13); __ evmovdquq(xmm13, ExternalAddress(StubRoutines::x86::base64_right_shift_mask_addr()), Assembler::AVX_512bit, r13); __ evmovdquq(xmm14, ExternalAddress(StubRoutines::x86::base64_left_shift_mask_addr()), Assembler::AVX_512bit, r13); __ evmovdquq(xmm15, ExternalAddress(StubRoutines::x86::base64_and_mask_addr()), Assembler::AVX_512bit, r13); // Vector Base64 implementation, producing 96 bytes of encoded data __ BIND(L_process80); __ cmpl(length, 80); __ jcc(Assembler::below, L_process32); __ evmovdquq(xmm0, Address(source, start_offset, Address::times_1, 0), Assembler::AVX_256bit); __ evmovdquq(xmm1, Address(source, start_offset, Address::times_1, 24), Assembler::AVX_256bit); __ evmovdquq(xmm2, Address(source, start_offset, Address::times_1, 48), Assembler::AVX_256bit); //permute the input data in such a manner that we have continuity of the source __ vpermq(xmm3, xmm0, 148, Assembler::AVX_256bit); __ vpermq(xmm4, xmm1, 148, Assembler::AVX_256bit); __ vpermq(xmm5, xmm2, 148, Assembler::AVX_256bit); //shuffle input and group 3 bytes of data and to it add 0 as the 4th byte. //we can deal with 12 bytes at a time in a 128 bit register __ vpshufb(xmm3, xmm3, xmm12, Assembler::AVX_256bit); __ vpshufb(xmm4, xmm4, xmm12, Assembler::AVX_256bit); __ vpshufb(xmm5, xmm5, xmm12, Assembler::AVX_256bit); //convert byte to word. Each 128 bit register will have 6 bytes for processing __ vpmovzxbw(xmm3, xmm3, Assembler::AVX_512bit); __ vpmovzxbw(xmm4, xmm4, Assembler::AVX_512bit); __ vpmovzxbw(xmm5, xmm5, Assembler::AVX_512bit); // Extract bits in the following pattern 6, 4+2, 2+4, 6 to convert 3, 8 bit numbers to 4, 6 bit numbers __ evpsrlvw(xmm0, xmm3, xmm13, Assembler::AVX_512bit); __ evpsrlvw(xmm1, xmm4, xmm13, Assembler::AVX_512bit); __ evpsrlvw(xmm2, xmm5, xmm13, Assembler::AVX_512bit); __ evpsllvw(xmm3, xmm3, xmm14, Assembler::AVX_512bit); __ evpsllvw(xmm4, xmm4, xmm14, Assembler::AVX_512bit); __ evpsllvw(xmm5, xmm5, xmm14, Assembler::AVX_512bit); __ vpsrlq(xmm0, xmm0, 8, Assembler::AVX_512bit); __ vpsrlq(xmm1, xmm1, 8, Assembler::AVX_512bit); __ vpsrlq(xmm2, xmm2, 8, Assembler::AVX_512bit); __ vpsllq(xmm3, xmm3, 8, Assembler::AVX_512bit); __ vpsllq(xmm4, xmm4, 8, Assembler::AVX_512bit); __ vpsllq(xmm5, xmm5, 8, Assembler::AVX_512bit); __ vpandq(xmm3, xmm3, xmm15, Assembler::AVX_512bit); __ vpandq(xmm4, xmm4, xmm15, Assembler::AVX_512bit); __ vpandq(xmm5, xmm5, xmm15, Assembler::AVX_512bit); // Get the final 4*6 bits base64 encoding __ vporq(xmm3, xmm3, xmm0, Assembler::AVX_512bit); __ vporq(xmm4, xmm4, xmm1, Assembler::AVX_512bit); __ vporq(xmm5, xmm5, xmm2, Assembler::AVX_512bit); // Shift __ vpsrlq(xmm3, xmm3, 8, Assembler::AVX_512bit); __ vpsrlq(xmm4, xmm4, 8, Assembler::AVX_512bit); __ vpsrlq(xmm5, xmm5, 8, Assembler::AVX_512bit); // look up 6 bits in the base64 character set to fetch the encoding // we are converting word to dword as gather instructions need dword indices for looking up encoding __ vextracti64x4(xmm6, xmm3, 0); __ vpmovzxwd(xmm0, xmm6, Assembler::AVX_512bit); __ vextracti64x4(xmm6, xmm3, 1); __ vpmovzxwd(xmm1, xmm6, Assembler::AVX_512bit); __ vextracti64x4(xmm6, xmm4, 0); __ vpmovzxwd(xmm2, xmm6, Assembler::AVX_512bit); __ vextracti64x4(xmm6, xmm4, 1); __ vpmovzxwd(xmm3, xmm6, Assembler::AVX_512bit); __ vextracti64x4(xmm4, xmm5, 0); __ vpmovzxwd(xmm6, xmm4, Assembler::AVX_512bit); __ vextracti64x4(xmm4, xmm5, 1); __ vpmovzxwd(xmm7, xmm4, Assembler::AVX_512bit); __ kmovql(k2, k3); __ evpgatherdd(xmm4, k2, Address(r11, xmm0, Address::times_4, 0), Assembler::AVX_512bit); __ kmovql(k2, k3); __ evpgatherdd(xmm5, k2, Address(r11, xmm1, Address::times_4, 0), Assembler::AVX_512bit); __ kmovql(k2, k3); __ evpgatherdd(xmm8, k2, Address(r11, xmm2, Address::times_4, 0), Assembler::AVX_512bit); __ kmovql(k2, k3); __ evpgatherdd(xmm9, k2, Address(r11, xmm3, Address::times_4, 0), Assembler::AVX_512bit); __ kmovql(k2, k3); __ evpgatherdd(xmm10, k2, Address(r11, xmm6, Address::times_4, 0), Assembler::AVX_512bit); __ kmovql(k2, k3); __ evpgatherdd(xmm11, k2, Address(r11, xmm7, Address::times_4, 0), Assembler::AVX_512bit); //Down convert dword to byte. Final output is 16*6 = 96 bytes long __ evpmovdb(Address(dest, dp, Address::times_1, 0), xmm4, Assembler::AVX_512bit); __ evpmovdb(Address(dest, dp, Address::times_1, 16), xmm5, Assembler::AVX_512bit); __ evpmovdb(Address(dest, dp, Address::times_1, 32), xmm8, Assembler::AVX_512bit); __ evpmovdb(Address(dest, dp, Address::times_1, 48), xmm9, Assembler::AVX_512bit); __ evpmovdb(Address(dest, dp, Address::times_1, 64), xmm10, Assembler::AVX_512bit); __ evpmovdb(Address(dest, dp, Address::times_1, 80), xmm11, Assembler::AVX_512bit); __ addq(dest, 96); __ addq(source, 72); __ subq(length, 72); __ jmp(L_process80); // Vector Base64 implementation generating 32 bytes of encoded data __ BIND(L_process32); __ cmpl(length, 32); __ jcc(Assembler::below, L_process3); __ evmovdquq(xmm0, Address(source, start_offset), Assembler::AVX_256bit); __ vpermq(xmm0, xmm0, 148, Assembler::AVX_256bit); __ vpshufb(xmm6, xmm0, xmm12, Assembler::AVX_256bit); __ vpmovzxbw(xmm6, xmm6, Assembler::AVX_512bit); __ evpsrlvw(xmm2, xmm6, xmm13, Assembler::AVX_512bit); __ evpsllvw(xmm3, xmm6, xmm14, Assembler::AVX_512bit); __ vpsrlq(xmm2, xmm2, 8, Assembler::AVX_512bit); __ vpsllq(xmm3, xmm3, 8, Assembler::AVX_512bit); __ vpandq(xmm3, xmm3, xmm15, Assembler::AVX_512bit); __ vporq(xmm1, xmm2, xmm3, Assembler::AVX_512bit); __ vpsrlq(xmm1, xmm1, 8, Assembler::AVX_512bit); __ vextracti64x4(xmm9, xmm1, 0); __ vpmovzxwd(xmm6, xmm9, Assembler::AVX_512bit); __ vextracti64x4(xmm9, xmm1, 1); __ vpmovzxwd(xmm5, xmm9, Assembler::AVX_512bit); __ kmovql(k2, k3); __ evpgatherdd(xmm8, k2, Address(r11, xmm6, Address::times_4, 0), Assembler::AVX_512bit); __ kmovql(k2, k3); __ evpgatherdd(xmm10, k2, Address(r11, xmm5, Address::times_4, 0), Assembler::AVX_512bit); __ evpmovdb(Address(dest, dp, Address::times_1, 0), xmm8, Assembler::AVX_512bit); __ evpmovdb(Address(dest, dp, Address::times_1, 16), xmm10, Assembler::AVX_512bit); __ subq(length, 24); __ addq(dest, 32); __ addq(source, 24); __ jmp(L_process32); // Scalar data processing takes 3 bytes at a time and produces 4 bytes of encoded data /* This code corresponds to the scalar version of the following snippet in Base64.java ** int bits = (src[sp0++] & 0xff) << 16 |(src[sp0++] & 0xff) << 8 |(src[sp0++] & 0xff); ** dst[dp0++] = (byte)base64[(bits >> > 18) & 0x3f]; ** dst[dp0++] = (byte)base64[(bits >> > 12) & 0x3f]; ** dst[dp0++] = (byte)base64[(bits >> > 6) & 0x3f]; ** dst[dp0++] = (byte)base64[bits & 0x3f];*/ __ BIND(L_process3); __ cmpl(length, 3); __ jcc(Assembler::below, L_exit); // Read 1 byte at a time __ movzbl(rax, Address(source, start_offset)); __ shll(rax, 0x10); __ movl(r15, rax); __ movzbl(rax, Address(source, start_offset, Address::times_1, 1)); __ shll(rax, 0x8); __ movzwl(rax, rax); __ orl(r15, rax); __ movzbl(rax, Address(source, start_offset, Address::times_1, 2)); __ orl(rax, r15); // Save 3 bytes read in r15 __ movl(r15, rax); __ shrl(rax, 0x12); __ andl(rax, 0x3f); // rax contains the index, r11 contains base64 lookup table __ movb(rax, Address(r11, rax, Address::times_4)); // Write the encoded byte to destination __ movb(Address(dest, dp, Address::times_1, 0), rax); __ movl(rax, r15); __ shrl(rax, 0xc); __ andl(rax, 0x3f); __ movb(rax, Address(r11, rax, Address::times_4)); __ movb(Address(dest, dp, Address::times_1, 1), rax); __ movl(rax, r15); __ shrl(rax, 0x6); __ andl(rax, 0x3f); __ movb(rax, Address(r11, rax, Address::times_4)); __ movb(Address(dest, dp, Address::times_1, 2), rax); __ movl(rax, r15); __ andl(rax, 0x3f); __ movb(rax, Address(r11, rax, Address::times_4)); __ movb(Address(dest, dp, Address::times_1, 3), rax); __ subl(length, 3); __ addq(dest, 4); __ addq(source, 3); __ jmp(L_process3); __ BIND(L_exit); __ pop(r15); __ pop(r14); __ pop(r13); __ pop(r12); __ leave(); __ ret(0); return start; } /** * Arguments: * * Inputs: * c_rarg0 - int crc * c_rarg1 - byte* buf * c_rarg2 - int length * * Ouput: * rax - int crc result */ address generate_updateBytesCRC32() { assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions"); __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32"); address start = __ pc(); // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) // rscratch1: r10 const Register crc = c_rarg0; // crc const Register buf = c_rarg1; // source java byte array address const Register len = c_rarg2; // length const Register table = c_rarg3; // crc_table address (reuse register) const Register tmp1 = r11; const Register tmp2 = r10; assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax); BLOCK_COMMENT("Entry:"); __ enter(); // required for proper stackwalking of RuntimeStub frame if (VM_Version::supports_sse4_1() && VM_Version::supports_avx512_vpclmulqdq() && VM_Version::supports_avx512bw() && VM_Version::supports_avx512vl()) { __ kernel_crc32_avx512(crc, buf, len, table, tmp1, tmp2); } else { __ kernel_crc32(crc, buf, len, table, tmp1); } __ movl(rax, crc); __ vzeroupper(); __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } /** * Arguments: * * Inputs: * c_rarg0 - int crc * c_rarg1 - byte* buf * c_rarg2 - long length * c_rarg3 - table_start - optional (present only when doing a library_call, * not used by x86 algorithm) * * Ouput: * rax - int crc result */ address generate_updateBytesCRC32C(bool is_pclmulqdq_supported) { assert(UseCRC32CIntrinsics, "need SSE4_2"); __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32C"); address start = __ pc(); //reg.arg int#0 int#1 int#2 int#3 int#4 int#5 float regs //Windows RCX RDX R8 R9 none none XMM0..XMM3 //Lin / Sol RDI RSI RDX RCX R8 R9 XMM0..XMM7 const Register crc = c_rarg0; // crc const Register buf = c_rarg1; // source java byte array address const Register len = c_rarg2; // length const Register a = rax; const Register j = r9; const Register k = r10; const Register l = r11; #ifdef _WIN64 const Register y = rdi; const Register z = rsi; #else const Register y = rcx; const Register z = r8; #endif assert_different_registers(crc, buf, len, a, j, k, l, y, z); BLOCK_COMMENT("Entry:"); __ enter(); // required for proper stackwalking of RuntimeStub frame #ifdef _WIN64 __ push(y); __ push(z); #endif __ crc32c_ipl_alg2_alt2(crc, buf, len, a, j, k, l, y, z, c_farg0, c_farg1, c_farg2, is_pclmulqdq_supported); __ movl(rax, crc); #ifdef _WIN64 __ pop(z); __ pop(y); #endif __ vzeroupper(); __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } /** * Arguments: * * Input: * c_rarg0 - x address * c_rarg1 - x length * c_rarg2 - y address * c_rarg3 - y length * not Win64 * c_rarg4 - z address * c_rarg5 - z length * Win64 * rsp+40 - z address * rsp+48 - z length */ address generate_multiplyToLen() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "multiplyToLen"); address start = __ pc(); // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) const Register x = rdi; const Register xlen = rax; const Register y = rsi; const Register ylen = rcx; const Register z = r8; const Register zlen = r11; // Next registers will be saved on stack in multiply_to_len(). const Register tmp1 = r12; const Register tmp2 = r13; const Register tmp3 = r14; const Register tmp4 = r15; const Register tmp5 = rbx; BLOCK_COMMENT("Entry:"); __ enter(); // required for proper stackwalking of RuntimeStub frame #ifndef _WIN64 __ movptr(zlen, r9); // Save r9 in r11 - zlen #endif setup_arg_regs(4); // x => rdi, xlen => rsi, y => rdx // ylen => rcx, z => r8, zlen => r11 // r9 and r10 may be used to save non-volatile registers #ifdef _WIN64 // last 2 arguments (#4, #5) are on stack on Win64 __ movptr(z, Address(rsp, 6 * wordSize)); __ movptr(zlen, Address(rsp, 7 * wordSize)); #endif __ movptr(xlen, rsi); __ movptr(y, rdx); __ multiply_to_len(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5); restore_arg_regs(); __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } /** * Arguments: * * Input: * c_rarg0 - obja address * c_rarg1 - objb address * c_rarg3 - length length * c_rarg4 - scale log2_array_indxscale * * Output: * rax - int >= mismatched index, < 0 bitwise complement of tail */ address generate_vectorizedMismatch() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "vectorizedMismatch"); address start = __ pc(); BLOCK_COMMENT("Entry:"); __ enter(); #ifdef _WIN64 // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) const Register scale = c_rarg0; //rcx, will exchange with r9 const Register objb = c_rarg1; //rdx const Register length = c_rarg2; //r8 const Register obja = c_rarg3; //r9 __ xchgq(obja, scale); //now obja and scale contains the correct contents const Register tmp1 = r10; const Register tmp2 = r11; #endif #ifndef _WIN64 // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) const Register obja = c_rarg0; //U:rdi const Register objb = c_rarg1; //U:rsi const Register length = c_rarg2; //U:rdx const Register scale = c_rarg3; //U:rcx const Register tmp1 = r8; const Register tmp2 = r9; #endif const Register result = rax; //return value const XMMRegister vec0 = xmm0; const XMMRegister vec1 = xmm1; const XMMRegister vec2 = xmm2; __ vectorized_mismatch(obja, objb, length, scale, result, tmp1, tmp2, vec0, vec1, vec2); __ vzeroupper(); __ leave(); __ ret(0); return start; } /** * Arguments: * // Input: // c_rarg0 - x address // c_rarg1 - x length // c_rarg2 - z address // c_rarg3 - z lenth * */ address generate_squareToLen() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "squareToLen"); address start = __ pc(); // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) // Unix: rdi, rsi, rdx, rcx (c_rarg0, c_rarg1, ...) const Register x = rdi; const Register len = rsi; const Register z = r8; const Register zlen = rcx; const Register tmp1 = r12; const Register tmp2 = r13; const Register tmp3 = r14; const Register tmp4 = r15; const Register tmp5 = rbx; BLOCK_COMMENT("Entry:"); __ enter(); // required for proper stackwalking of RuntimeStub frame setup_arg_regs(4); // x => rdi, len => rsi, z => rdx // zlen => rcx // r9 and r10 may be used to save non-volatile registers __ movptr(r8, rdx); __ square_to_len(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); restore_arg_regs(); __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } /** * Arguments: * * Input: * c_rarg0 - out address * c_rarg1 - in address * c_rarg2 - offset * c_rarg3 - len * not Win64 * c_rarg4 - k * Win64 * rsp+40 - k */ address generate_mulAdd() { __ align(CodeEntryAlignment); StubCodeMark mark(this, "StubRoutines", "mulAdd"); address start = __ pc(); // Win64: rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) // Unix: rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) const Register out = rdi; const Register in = rsi; const Register offset = r11; const Register len = rcx; const Register k = r8; // Next registers will be saved on stack in mul_add(). const Register tmp1 = r12; const Register tmp2 = r13; const Register tmp3 = r14; const Register tmp4 = r15; const Register tmp5 = rbx; BLOCK_COMMENT("Entry:"); __ enter(); // required for proper stackwalking of RuntimeStub frame setup_arg_regs(4); // out => rdi, in => rsi, offset => rdx // len => rcx, k => r8 // r9 and r10 may be used to save non-volatile registers #ifdef _WIN64 // last argument is on stack on Win64 __ movl(k, Address(rsp, 6 * wordSize)); #endif __ movptr(r11, rdx); // move offset in rdx to offset(r11) __ mul_add(out, in, offset, len, k, tmp1, tmp2, tmp3, tmp4, tmp5, rdx, rax); restore_arg_regs(); __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } address generate_libmExp() { StubCodeMark mark(this, "StubRoutines", "libmExp"); address start = __ pc(); const XMMRegister x0 = xmm0; const XMMRegister x1 = xmm1; const XMMRegister x2 = xmm2; const XMMRegister x3 = xmm3; const XMMRegister x4 = xmm4; const XMMRegister x5 = xmm5; const XMMRegister x6 = xmm6; const XMMRegister x7 = xmm7; const Register tmp = r11; BLOCK_COMMENT("Entry:"); __ enter(); // required for proper stackwalking of RuntimeStub frame __ fast_exp(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp); __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } address generate_libmLog() { StubCodeMark mark(this, "StubRoutines", "libmLog"); address start = __ pc(); const XMMRegister x0 = xmm0; const XMMRegister x1 = xmm1; const XMMRegister x2 = xmm2; const XMMRegister x3 = xmm3; const XMMRegister x4 = xmm4; const XMMRegister x5 = xmm5; const XMMRegister x6 = xmm6; const XMMRegister x7 = xmm7; const Register tmp1 = r11; const Register tmp2 = r8; BLOCK_COMMENT("Entry:"); __ enter(); // required for proper stackwalking of RuntimeStub frame __ fast_log(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp1, tmp2); __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } address generate_libmLog10() { StubCodeMark mark(this, "StubRoutines", "libmLog10"); address start = __ pc(); const XMMRegister x0 = xmm0; const XMMRegister x1 = xmm1; const XMMRegister x2 = xmm2; const XMMRegister x3 = xmm3; const XMMRegister x4 = xmm4; const XMMRegister x5 = xmm5; const XMMRegister x6 = xmm6; const XMMRegister x7 = xmm7; const Register tmp = r11; BLOCK_COMMENT("Entry:"); __ enter(); // required for proper stackwalking of RuntimeStub frame __ fast_log10(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp); __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } address generate_libmPow() { StubCodeMark mark(this, "StubRoutines", "libmPow"); address start = __ pc(); const XMMRegister x0 = xmm0; const XMMRegister x1 = xmm1; const XMMRegister x2 = xmm2; const XMMRegister x3 = xmm3; const XMMRegister x4 = xmm4; const XMMRegister x5 = xmm5; const XMMRegister x6 = xmm6; const XMMRegister x7 = xmm7; const Register tmp1 = r8; const Register tmp2 = r9; const Register tmp3 = r10; const Register tmp4 = r11; BLOCK_COMMENT("Entry:"); __ enter(); // required for proper stackwalking of RuntimeStub frame __ fast_pow(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp1, tmp2, tmp3, tmp4); __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } address generate_libmSin() { StubCodeMark mark(this, "StubRoutines", "libmSin"); address start = __ pc(); const XMMRegister x0 = xmm0; const XMMRegister x1 = xmm1; const XMMRegister x2 = xmm2; const XMMRegister x3 = xmm3; const XMMRegister x4 = xmm4; const XMMRegister x5 = xmm5; const XMMRegister x6 = xmm6; const XMMRegister x7 = xmm7; const Register tmp1 = r8; const Register tmp2 = r9; const Register tmp3 = r10; const Register tmp4 = r11; BLOCK_COMMENT("Entry:"); __ enter(); // required for proper stackwalking of RuntimeStub frame #ifdef _WIN64 __ push(rsi); __ push(rdi); #endif __ fast_sin(x0, x1, x2, x3, x4, x5, x6, x7, rax, rbx, rcx, rdx, tmp1, tmp2, tmp3, tmp4); #ifdef _WIN64 __ pop(rdi); __ pop(rsi); #endif __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } address generate_libmCos() { StubCodeMark mark(this, "StubRoutines", "libmCos"); address start = __ pc(); const XMMRegister x0 = xmm0; const XMMRegister x1 = xmm1; const XMMRegister x2 = xmm2; const XMMRegister x3 = xmm3; const XMMRegister x4 = xmm4; const XMMRegister x5 = xmm5; const XMMRegister x6 = xmm6; const XMMRegister x7 = xmm7; const Register tmp1 = r8; const Register tmp2 = r9; const Register tmp3 = r10; const Register tmp4 = r11; BLOCK_COMMENT("Entry:"); __ enter(); // required for proper stackwalking of RuntimeStub frame #ifdef _WIN64 __ push(rsi); __ push(rdi); #endif __ fast_cos(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp1, tmp2, tmp3, tmp4); #ifdef _WIN64 __ pop(rdi); __ pop(rsi); #endif __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } address generate_libmTan() { StubCodeMark mark(this, "StubRoutines", "libmTan"); address start = __ pc(); const XMMRegister x0 = xmm0; const XMMRegister x1 = xmm1; const XMMRegister x2 = xmm2; const XMMRegister x3 = xmm3; const XMMRegister x4 = xmm4; const XMMRegister x5 = xmm5; const XMMRegister x6 = xmm6; const XMMRegister x7 = xmm7; const Register tmp1 = r8; const Register tmp2 = r9; const Register tmp3 = r10; const Register tmp4 = r11; BLOCK_COMMENT("Entry:"); __ enter(); // required for proper stackwalking of RuntimeStub frame #ifdef _WIN64 __ push(rsi); __ push(rdi); #endif __ fast_tan(x0, x1, x2, x3, x4, x5, x6, x7, rax, rcx, rdx, tmp1, tmp2, tmp3, tmp4); #ifdef _WIN64 __ pop(rdi); __ pop(rsi); #endif __ leave(); // required for proper stackwalking of RuntimeStub frame __ ret(0); return start; } #undef __ #define __ masm-> // Continuation point for throwing of implicit exceptions that are // not handled in the current activation. Fabricates an exception // oop and initiates normal exception dispatching in this // frame. Since we need to preserve callee-saved values (currently // only for C2, but done for C1 as well) we need a callee-saved oop // map and therefore have to make these stubs into RuntimeStubs // rather than BufferBlobs. If the compiler needs all registers to // be preserved between the fault point and the exception handler // then it must assume responsibility for that in // AbstractCompiler::continuation_for_implicit_null_exception or // continuation_for_implicit_division_by_zero_exception. All other // implicit exceptions (e.g., NullPointerException or // AbstractMethodError on entry) are either at call sites or // otherwise assume that stack unwinding will be initiated, so // caller saved registers were assumed volatile in the compiler. address generate_throw_exception(const char* name, address runtime_entry, Register arg1 = noreg, Register arg2 = noreg) { // Information about frame layout at time of blocking runtime call. // Note that we only have to preserve callee-saved registers since // the compilers are responsible for supplying a continuation point // if they expect all registers to be preserved. enum layout { rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt, rbp_off2, return_off, return_off2, framesize // inclusive of return address }; int insts_size = 512; int locs_size = 64; CodeBuffer code(name, insts_size, locs_size); OopMapSet* oop_maps = new OopMapSet(); MacroAssembler* masm = new MacroAssembler(&code); address start = __ pc(); // This is an inlined and slightly modified version of call_VM // which has the ability to fetch the return PC out of // thread-local storage and also sets up last_Java_sp slightly // differently than the real call_VM __ enter(); // required for proper stackwalking of RuntimeStub frame assert(is_even(framesize/2), "sp not 16-byte aligned"); // return address and rbp are already in place __ subptr(rsp, (framesize-4) << LogBytesPerInt); // prolog int frame_complete = __ pc() - start; // Set up last_Java_sp and last_Java_fp address the_pc = __ pc(); __ set_last_Java_frame(rsp, rbp, the_pc); __ andptr(rsp, -(StackAlignmentInBytes)); // Align stack // Call runtime if (arg1 != noreg) { assert(arg2 != c_rarg1, "clobbered"); __ movptr(c_rarg1, arg1); } if (arg2 != noreg) { __ movptr(c_rarg2, arg2); } __ movptr(c_rarg0, r15_thread); BLOCK_COMMENT("call runtime_entry"); __ call(RuntimeAddress(runtime_entry)); // Generate oop map OopMap* map = new OopMap(framesize, 0); oop_maps->add_gc_map(the_pc - start, map); __ reset_last_Java_frame(true); __ leave(); // required for proper stackwalking of RuntimeStub frame // check for pending exceptions #ifdef ASSERT Label L; __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD); __ jcc(Assembler::notEqual, L); __ should_not_reach_here(); __ bind(L); #endif // ASSERT __ jump(RuntimeAddress(StubRoutines::forward_exception_entry())); // codeBlob framesize is in words (not VMRegImpl::slot_size) RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, (framesize >> (LogBytesPerWord - LogBytesPerInt)), oop_maps, false); return stub->entry_point(); } void create_control_words() { // Round to nearest, 53-bit mode, exceptions masked StubRoutines::_fpu_cntrl_wrd_std = 0x027F; // Round to zero, 53-bit mode, exception mased StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F; // Round to nearest, 24-bit mode, exceptions masked StubRoutines::_fpu_cntrl_wrd_24 = 0x007F; // Round to nearest, 64-bit mode, exceptions masked StubRoutines::_fpu_cntrl_wrd_64 = 0x037F; // Round to nearest, 64-bit mode, exceptions masked StubRoutines::_mxcsr_std = 0x1F80; // Note: the following two constants are 80-bit values // layout is critical for correct loading by FPU. // Bias for strict fp multiply/divide StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000 StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000; StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff; // Un-Bias for strict fp multiply/divide StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000 StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000; StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff; } // Initialization void generate_initial() { // Generates all stubs and initializes the entry points // This platform-specific settings are needed by generate_call_stub() create_control_words(); // entry points that exist in all platforms Note: This is code // that could be shared among different platforms - however the // benefit seems to be smaller than the disadvantage of having a // much more complicated generator structure. See also comment in // stubRoutines.hpp. StubRoutines::_forward_exception_entry = generate_forward_exception(); StubRoutines::_call_stub_entry = generate_call_stub(StubRoutines::_call_stub_return_address); // is referenced by megamorphic call StubRoutines::_catch_exception_entry = generate_catch_exception(); // atomic calls StubRoutines::_atomic_xchg_entry = generate_atomic_xchg(); StubRoutines::_atomic_xchg_long_entry = generate_atomic_xchg_long(); StubRoutines::_atomic_cmpxchg_entry = generate_atomic_cmpxchg(); StubRoutines::_atomic_cmpxchg_byte_entry = generate_atomic_cmpxchg_byte(); StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long(); StubRoutines::_atomic_add_entry = generate_atomic_add(); StubRoutines::_atomic_add_long_entry = generate_atomic_add_long(); StubRoutines::_fence_entry = generate_orderaccess_fence(); // platform dependent StubRoutines::x86::_get_previous_fp_entry = generate_get_previous_fp(); StubRoutines::x86::_get_previous_sp_entry = generate_get_previous_sp(); StubRoutines::x86::_verify_mxcsr_entry = generate_verify_mxcsr(); // Build this early so it's available for the interpreter. StubRoutines::_throw_StackOverflowError_entry = generate_throw_exception("StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime:: throw_StackOverflowError)); StubRoutines::_throw_delayed_StackOverflowError_entry = generate_throw_exception("delayed StackOverflowError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime:: throw_delayed_StackOverflowError)); if (UseCRC32Intrinsics) { // set table address before stub generation which use it StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table; StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32(); } if (UseCRC32CIntrinsics) { bool supports_clmul = VM_Version::supports_clmul(); StubRoutines::x86::generate_CRC32C_table(supports_clmul); StubRoutines::_crc32c_table_addr = (address)StubRoutines::x86::_crc32c_table; StubRoutines::_updateBytesCRC32C = generate_updateBytesCRC32C(supports_clmul); } if (VM_Version::supports_sse2() && UseLibmIntrinsic && InlineIntrinsics) { if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin) || vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos) || vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) { StubRoutines::x86::_ONEHALF_adr = (address)StubRoutines::x86::_ONEHALF; StubRoutines::x86::_P_2_adr = (address)StubRoutines::x86::_P_2; StubRoutines::x86::_SC_4_adr = (address)StubRoutines::x86::_SC_4; StubRoutines::x86::_Ctable_adr = (address)StubRoutines::x86::_Ctable; StubRoutines::x86::_SC_2_adr = (address)StubRoutines::x86::_SC_2; StubRoutines::x86::_SC_3_adr = (address)StubRoutines::x86::_SC_3; StubRoutines::x86::_SC_1_adr = (address)StubRoutines::x86::_SC_1; StubRoutines::x86::_PI_INV_TABLE_adr = (address)StubRoutines::x86::_PI_INV_TABLE; StubRoutines::x86::_PI_4_adr = (address)StubRoutines::x86::_PI_4; StubRoutines::x86::_PI32INV_adr = (address)StubRoutines::x86::_PI32INV; StubRoutines::x86::_SIGN_MASK_adr = (address)StubRoutines::x86::_SIGN_MASK; StubRoutines::x86::_P_1_adr = (address)StubRoutines::x86::_P_1; StubRoutines::x86::_P_3_adr = (address)StubRoutines::x86::_P_3; StubRoutines::x86::_NEG_ZERO_adr = (address)StubRoutines::x86::_NEG_ZERO; } if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dexp)) { StubRoutines::_dexp = generate_libmExp(); } if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog)) { StubRoutines::_dlog = generate_libmLog(); } if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dlog10)) { StubRoutines::_dlog10 = generate_libmLog10(); } if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dpow)) { StubRoutines::_dpow = generate_libmPow(); } if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dsin)) { StubRoutines::_dsin = generate_libmSin(); } if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dcos)) { StubRoutines::_dcos = generate_libmCos(); } if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_dtan)) { StubRoutines::_dtan = generate_libmTan(); } } } void generate_all() { // Generates all stubs and initializes the entry points // These entry points require SharedInfo::stack0 to be set up in // non-core builds and need to be relocatable, so they each // fabricate a RuntimeStub internally. StubRoutines::_throw_AbstractMethodError_entry = generate_throw_exception("AbstractMethodError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime:: throw_AbstractMethodError)); StubRoutines::_throw_IncompatibleClassChangeError_entry = generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime:: throw_IncompatibleClassChangeError)); StubRoutines::_throw_NullPointerException_at_call_entry = generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime:: throw_NullPointerException_at_call)); // entry points that are platform specific StubRoutines::x86::_f2i_fixup = generate_f2i_fixup(); StubRoutines::x86::_f2l_fixup = generate_f2l_fixup(); StubRoutines::x86::_d2i_fixup = generate_d2i_fixup(); StubRoutines::x86::_d2l_fixup = generate_d2l_fixup(); StubRoutines::x86::_float_sign_mask = generate_fp_mask("float_sign_mask", 0x7FFFFFFF7FFFFFFF); StubRoutines::x86::_float_sign_flip = generate_fp_mask("float_sign_flip", 0x8000000080000000); StubRoutines::x86::_double_sign_mask = generate_fp_mask("double_sign_mask", 0x7FFFFFFFFFFFFFFF); StubRoutines::x86::_double_sign_flip = generate_fp_mask("double_sign_flip", 0x8000000000000000); StubRoutines::x86::_vector_float_sign_mask = generate_vector_mask("vector_float_sign_mask", 0x7FFFFFFF7FFFFFFF); StubRoutines::x86::_vector_float_sign_flip = generate_vector_mask("vector_float_sign_flip", 0x8000000080000000); StubRoutines::x86::_vector_double_sign_mask = generate_vector_mask("vector_double_sign_mask", 0x7FFFFFFFFFFFFFFF); StubRoutines::x86::_vector_double_sign_flip = generate_vector_mask("vector_double_sign_flip", 0x8000000000000000); StubRoutines::x86::_vector_short_to_byte_mask = generate_vector_mask("vector_short_to_byte_mask", 0x00ff00ff00ff00ff); StubRoutines::x86::_vector_byte_perm_mask = generate_vector_byte_perm_mask("vector_byte_perm_mask"); StubRoutines::x86::_vector_long_sign_mask = generate_vector_mask("vector_long_sign_mask", 0x8000000000000000); // support for verify_oop (must happen after universe_init) StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop(); // arraycopy stubs used by compilers generate_arraycopy_stubs(); // don't bother generating these AES intrinsic stubs unless global flag is set if (UseAESIntrinsics) { StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask(); // needed by the others StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock(); StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock(); StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt(); if (VM_Version::supports_vaes() && VM_Version::supports_avx512vl() && VM_Version::supports_avx512dq() ) { StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptVectorAESCrypt(); StubRoutines::_electronicCodeBook_encryptAESCrypt = generate_electronicCodeBook_encryptAESCrypt(); StubRoutines::_electronicCodeBook_decryptAESCrypt = generate_electronicCodeBook_decryptAESCrypt(); } else { StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt_Parallel(); } } if (UseAESCTRIntrinsics) { if (VM_Version::supports_vaes() && VM_Version::supports_avx512bw() && VM_Version::supports_avx512vl()) { StubRoutines::x86::_counter_mask_addr = counter_mask_addr(); StubRoutines::_counterMode_AESCrypt = generate_counterMode_VectorAESCrypt(); } else { StubRoutines::x86::_counter_shuffle_mask_addr = generate_counter_shuffle_mask(); StubRoutines::_counterMode_AESCrypt = generate_counterMode_AESCrypt_Parallel(); } } if (UseSHA1Intrinsics) { StubRoutines::x86::_upper_word_mask_addr = generate_upper_word_mask(); StubRoutines::x86::_shuffle_byte_flip_mask_addr = generate_shuffle_byte_flip_mask(); StubRoutines::_sha1_implCompress = generate_sha1_implCompress(false, "sha1_implCompress"); StubRoutines::_sha1_implCompressMB = generate_sha1_implCompress(true, "sha1_implCompressMB"); } if (UseSHA256Intrinsics) { StubRoutines::x86::_k256_adr = (address)StubRoutines::x86::_k256; char* dst = (char*)StubRoutines::x86::_k256_W; char* src = (char*)StubRoutines::x86::_k256; for (int ii = 0; ii < 16; ++ii) { memcpy(dst + 32 * ii, src + 16 * ii, 16); memcpy(dst + 32 * ii + 16, src + 16 * ii, 16); } StubRoutines::x86::_k256_W_adr = (address)StubRoutines::x86::_k256_W; StubRoutines::x86::_pshuffle_byte_flip_mask_addr = generate_pshuffle_byte_flip_mask(); StubRoutines::_sha256_implCompress = generate_sha256_implCompress(false, "sha256_implCompress"); StubRoutines::_sha256_implCompressMB = generate_sha256_implCompress(true, "sha256_implCompressMB"); } if (UseSHA512Intrinsics) { StubRoutines::x86::_k512_W_addr = (address)StubRoutines::x86::_k512_W; StubRoutines::x86::_pshuffle_byte_flip_mask_addr_sha512 = generate_pshuffle_byte_flip_mask_sha512(); StubRoutines::_sha512_implCompress = generate_sha512_implCompress(false, "sha512_implCompress"); StubRoutines::_sha512_implCompressMB = generate_sha512_implCompress(true, "sha512_implCompressMB"); } // Generate GHASH intrinsics code if (UseGHASHIntrinsics) { StubRoutines::x86::_ghash_long_swap_mask_addr = generate_ghash_long_swap_mask(); StubRoutines::x86::_ghash_byte_swap_mask_addr = generate_ghash_byte_swap_mask(); if (VM_Version::supports_avx()) { StubRoutines::x86::_ghash_shuffmask_addr = ghash_shufflemask_addr(); StubRoutines::x86::_ghash_poly_addr = ghash_polynomial_addr(); StubRoutines::_ghash_processBlocks = generate_avx_ghash_processBlocks(); } else { StubRoutines::_ghash_processBlocks = generate_ghash_processBlocks(); } } if (UseBASE64Intrinsics) { StubRoutines::x86::_and_mask = base64_and_mask_addr(); StubRoutines::x86::_bswap_mask = base64_bswap_mask_addr(); StubRoutines::x86::_base64_charset = base64_charset_addr(); StubRoutines::x86::_url_charset = base64url_charset_addr(); StubRoutines::x86::_gather_mask = base64_gather_mask_addr(); StubRoutines::x86::_left_shift_mask = base64_left_shift_mask_addr(); StubRoutines::x86::_right_shift_mask = base64_right_shift_mask_addr(); StubRoutines::_base64_encodeBlock = generate_base64_encodeBlock(); } // Safefetch stubs. generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry, &StubRoutines::_safefetch32_fault_pc, &StubRoutines::_safefetch32_continuation_pc); generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry, &StubRoutines::_safefetchN_fault_pc, &StubRoutines::_safefetchN_continuation_pc); #ifdef COMPILER2 if (UseMultiplyToLenIntrinsic) { StubRoutines::_multiplyToLen = generate_multiplyToLen(); } if (UseSquareToLenIntrinsic) { StubRoutines::_squareToLen = generate_squareToLen(); } if (UseMulAddIntrinsic) { StubRoutines::_mulAdd = generate_mulAdd(); } if (UseMontgomeryMultiplyIntrinsic) { StubRoutines::_montgomeryMultiply = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_multiply); } if (UseMontgomerySquareIntrinsic) { StubRoutines::_montgomerySquare = CAST_FROM_FN_PTR(address, SharedRuntime::montgomery_square); } #endif // COMPILER2 if (UseVectorizedMismatchIntrinsic) { StubRoutines::_vectorizedMismatch = generate_vectorizedMismatch(); } } public: StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) { if (all) { generate_all(); } else { generate_initial(); } } }; // end class declaration void StubGenerator_generate(CodeBuffer* code, bool all) { StubGenerator g(code, all); }