/* * Copyright (c) 2013, 2019, Red Hat, Inc. All rights reserved. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "memory/allocation.hpp" #include "gc/shenandoah/shenandoahHeapRegionSet.inline.hpp" #include "gc/shenandoah/shenandoahHeap.inline.hpp" #include "gc/shenandoah/shenandoahHeapRegion.hpp" #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" #include "gc/shenandoah/shenandoahTraversalGC.hpp" #include "gc/shared/space.inline.hpp" #include "jfr/jfrEvents.hpp" #include "memory/iterator.inline.hpp" #include "memory/resourceArea.hpp" #include "memory/universe.hpp" #include "oops/oop.inline.hpp" #include "runtime/java.hpp" #include "runtime/mutexLocker.hpp" #include "runtime/os.hpp" #include "runtime/safepoint.hpp" size_t ShenandoahHeapRegion::RegionCount = 0; size_t ShenandoahHeapRegion::RegionSizeBytes = 0; size_t ShenandoahHeapRegion::RegionSizeWords = 0; size_t ShenandoahHeapRegion::RegionSizeBytesShift = 0; size_t ShenandoahHeapRegion::RegionSizeWordsShift = 0; size_t ShenandoahHeapRegion::RegionSizeBytesMask = 0; size_t ShenandoahHeapRegion::RegionSizeWordsMask = 0; size_t ShenandoahHeapRegion::HumongousThresholdBytes = 0; size_t ShenandoahHeapRegion::HumongousThresholdWords = 0; size_t ShenandoahHeapRegion::MaxTLABSizeBytes = 0; size_t ShenandoahHeapRegion::MaxTLABSizeWords = 0; ShenandoahHeapRegion::PaddedAllocSeqNum ShenandoahHeapRegion::_alloc_seq_num; ShenandoahHeapRegion::ShenandoahHeapRegion(ShenandoahHeap* heap, HeapWord* start, size_t size_words, size_t index, bool committed) : _heap(heap), _reserved(MemRegion(start, size_words)), _region_number(index), _new_top(NULL), _critical_pins(0), _empty_time(os::elapsedTime()), _state(committed ? _empty_committed : _empty_uncommitted), _tlab_allocs(0), _gclab_allocs(0), _shared_allocs(0), _seqnum_first_alloc_mutator(0), _seqnum_first_alloc_gc(0), _seqnum_last_alloc_mutator(0), _seqnum_last_alloc_gc(0), _live_data(0) { ContiguousSpace::initialize(_reserved, true, committed); } size_t ShenandoahHeapRegion::region_number() const { return _region_number; } void ShenandoahHeapRegion::report_illegal_transition(const char *method) { ResourceMark rm; stringStream ss; ss.print("Illegal region state transition from \"%s\", at %s\n ", region_state_to_string(_state), method); print_on(&ss); fatal("%s", ss.as_string()); } void ShenandoahHeapRegion::make_regular_allocation() { _heap->assert_heaplock_owned_by_current_thread(); switch (_state) { case _empty_uncommitted: do_commit(); case _empty_committed: set_state(_regular); case _regular: case _pinned: return; default: report_illegal_transition("regular allocation"); } } void ShenandoahHeapRegion::make_regular_bypass() { _heap->assert_heaplock_owned_by_current_thread(); assert (_heap->is_full_gc_in_progress() || _heap->is_degenerated_gc_in_progress(), "only for full or degen GC"); switch (_state) { case _empty_uncommitted: do_commit(); case _empty_committed: case _cset: case _humongous_start: case _humongous_cont: set_state(_regular); return; case _pinned_cset: set_state(_pinned); return; case _regular: case _pinned: return; default: report_illegal_transition("regular bypass"); } } void ShenandoahHeapRegion::make_humongous_start() { _heap->assert_heaplock_owned_by_current_thread(); switch (_state) { case _empty_uncommitted: do_commit(); case _empty_committed: set_state(_humongous_start); return; default: report_illegal_transition("humongous start allocation"); } } void ShenandoahHeapRegion::make_humongous_start_bypass() { _heap->assert_heaplock_owned_by_current_thread(); assert (_heap->is_full_gc_in_progress(), "only for full GC"); switch (_state) { case _empty_committed: case _regular: case _humongous_start: case _humongous_cont: set_state(_humongous_start); return; default: report_illegal_transition("humongous start bypass"); } } void ShenandoahHeapRegion::make_humongous_cont() { _heap->assert_heaplock_owned_by_current_thread(); switch (_state) { case _empty_uncommitted: do_commit(); case _empty_committed: set_state(_humongous_cont); return; default: report_illegal_transition("humongous continuation allocation"); } } void ShenandoahHeapRegion::make_humongous_cont_bypass() { _heap->assert_heaplock_owned_by_current_thread(); assert (_heap->is_full_gc_in_progress(), "only for full GC"); switch (_state) { case _empty_committed: case _regular: case _humongous_start: case _humongous_cont: set_state(_humongous_cont); return; default: report_illegal_transition("humongous continuation bypass"); } } void ShenandoahHeapRegion::make_pinned() { _heap->assert_heaplock_owned_by_current_thread(); switch (_state) { case _regular: assert (_critical_pins == 0, "sanity"); set_state(_pinned); case _pinned_cset: case _pinned: _critical_pins++; return; case _humongous_start: assert (_critical_pins == 0, "sanity"); set_state(_pinned_humongous_start); case _pinned_humongous_start: _critical_pins++; return; case _cset: guarantee(_heap->cancelled_gc(), "only valid when evac has been cancelled"); assert (_critical_pins == 0, "sanity"); _state = _pinned_cset; _critical_pins++; return; default: report_illegal_transition("pinning"); } } void ShenandoahHeapRegion::make_unpinned() { _heap->assert_heaplock_owned_by_current_thread(); switch (_state) { case _pinned: assert (_critical_pins > 0, "sanity"); _critical_pins--; if (_critical_pins == 0) { set_state(_regular); } return; case _regular: case _humongous_start: assert (_critical_pins == 0, "sanity"); return; case _pinned_cset: guarantee(_heap->cancelled_gc(), "only valid when evac has been cancelled"); assert (_critical_pins > 0, "sanity"); _critical_pins--; if (_critical_pins == 0) { set_state(_cset); } return; case _pinned_humongous_start: assert (_critical_pins > 0, "sanity"); _critical_pins--; if (_critical_pins == 0) { set_state(_humongous_start); } return; default: report_illegal_transition("unpinning"); } } void ShenandoahHeapRegion::make_cset() { _heap->assert_heaplock_owned_by_current_thread(); switch (_state) { case _regular: set_state(_cset); case _cset: return; default: report_illegal_transition("cset"); } } void ShenandoahHeapRegion::make_trash() { _heap->assert_heaplock_owned_by_current_thread(); switch (_state) { case _cset: // Reclaiming cset regions case _humongous_start: case _humongous_cont: // Reclaiming humongous regions case _regular: // Immediate region reclaim set_state(_trash); return; default: report_illegal_transition("trashing"); } } void ShenandoahHeapRegion::make_trash_immediate() { make_trash(); // On this path, we know there are no marked objects in the region, // tell marking context about it to bypass bitmap resets. _heap->complete_marking_context()->reset_top_bitmap(this); } void ShenandoahHeapRegion::make_empty() { _heap->assert_heaplock_owned_by_current_thread(); switch (_state) { case _trash: set_state(_empty_committed); _empty_time = os::elapsedTime(); return; default: report_illegal_transition("emptying"); } } void ShenandoahHeapRegion::make_uncommitted() { _heap->assert_heaplock_owned_by_current_thread(); switch (_state) { case _empty_committed: do_uncommit(); set_state(_empty_uncommitted); return; default: report_illegal_transition("uncommiting"); } } void ShenandoahHeapRegion::make_committed_bypass() { _heap->assert_heaplock_owned_by_current_thread(); assert (_heap->is_full_gc_in_progress(), "only for full GC"); switch (_state) { case _empty_uncommitted: do_commit(); set_state(_empty_committed); return; default: report_illegal_transition("commit bypass"); } } void ShenandoahHeapRegion::clear_live_data() { OrderAccess::release_store_fence(&_live_data, 0); } void ShenandoahHeapRegion::reset_alloc_metadata() { _tlab_allocs = 0; _gclab_allocs = 0; _shared_allocs = 0; _seqnum_first_alloc_mutator = 0; _seqnum_last_alloc_mutator = 0; _seqnum_first_alloc_gc = 0; _seqnum_last_alloc_gc = 0; } void ShenandoahHeapRegion::reset_alloc_metadata_to_shared() { if (used() > 0) { _tlab_allocs = 0; _gclab_allocs = 0; _shared_allocs = used() >> LogHeapWordSize; uint64_t next = _alloc_seq_num.value++; _seqnum_first_alloc_mutator = next; _seqnum_last_alloc_mutator = next; _seqnum_first_alloc_gc = 0; _seqnum_last_alloc_gc = 0; } else { reset_alloc_metadata(); } } size_t ShenandoahHeapRegion::get_shared_allocs() const { return _shared_allocs * HeapWordSize; } size_t ShenandoahHeapRegion::get_tlab_allocs() const { return _tlab_allocs * HeapWordSize; } size_t ShenandoahHeapRegion::get_gclab_allocs() const { return _gclab_allocs * HeapWordSize; } void ShenandoahHeapRegion::set_live_data(size_t s) { assert(Thread::current()->is_VM_thread(), "by VM thread"); _live_data = (s >> LogHeapWordSize); } size_t ShenandoahHeapRegion::get_live_data_words() const { return OrderAccess::load_acquire(&_live_data); } size_t ShenandoahHeapRegion::get_live_data_bytes() const { return get_live_data_words() * HeapWordSize; } bool ShenandoahHeapRegion::has_live() const { return get_live_data_words() != 0; } size_t ShenandoahHeapRegion::garbage() const { assert(used() >= get_live_data_bytes(), "Live Data must be a subset of used() live: " SIZE_FORMAT " used: " SIZE_FORMAT, get_live_data_bytes(), used()); size_t result = used() - get_live_data_bytes(); return result; } void ShenandoahHeapRegion::print_on(outputStream* st) const { st->print("|"); st->print(SIZE_FORMAT_W(5), this->_region_number); switch (_state) { case _empty_uncommitted: st->print("|EU "); break; case _empty_committed: st->print("|EC "); break; case _regular: st->print("|R "); break; case _humongous_start: st->print("|H "); break; case _pinned_humongous_start: st->print("|HP "); break; case _humongous_cont: st->print("|HC "); break; case _cset: st->print("|CS "); break; case _trash: st->print("|T "); break; case _pinned: st->print("|P "); break; case _pinned_cset: st->print("|CSP"); break; default: ShouldNotReachHere(); } st->print("|BTE " INTPTR_FORMAT_W(12) ", " INTPTR_FORMAT_W(12) ", " INTPTR_FORMAT_W(12), p2i(bottom()), p2i(top()), p2i(end())); st->print("|TAMS " INTPTR_FORMAT_W(12), p2i(_heap->marking_context()->top_at_mark_start(const_cast(this)))); st->print("|U " SIZE_FORMAT_W(5) "%1s", byte_size_in_proper_unit(used()), proper_unit_for_byte_size(used())); st->print("|T " SIZE_FORMAT_W(5) "%1s", byte_size_in_proper_unit(get_tlab_allocs()), proper_unit_for_byte_size(get_tlab_allocs())); st->print("|G " SIZE_FORMAT_W(5) "%1s", byte_size_in_proper_unit(get_gclab_allocs()), proper_unit_for_byte_size(get_gclab_allocs())); st->print("|S " SIZE_FORMAT_W(5) "%1s", byte_size_in_proper_unit(get_shared_allocs()), proper_unit_for_byte_size(get_shared_allocs())); st->print("|L " SIZE_FORMAT_W(5) "%1s", byte_size_in_proper_unit(get_live_data_bytes()), proper_unit_for_byte_size(get_live_data_bytes())); st->print("|CP " SIZE_FORMAT_W(3), _critical_pins); st->print("|SN " UINT64_FORMAT_X_W(12) ", " UINT64_FORMAT_X_W(8) ", " UINT64_FORMAT_X_W(8) ", " UINT64_FORMAT_X_W(8), seqnum_first_alloc_mutator(), seqnum_last_alloc_mutator(), seqnum_first_alloc_gc(), seqnum_last_alloc_gc()); st->cr(); } void ShenandoahHeapRegion::oop_iterate(OopIterateClosure* blk) { if (!is_active()) return; if (is_humongous()) { oop_iterate_humongous(blk); } else { oop_iterate_objects(blk); } } void ShenandoahHeapRegion::oop_iterate_objects(OopIterateClosure* blk) { assert(! is_humongous(), "no humongous region here"); HeapWord* obj_addr = bottom(); HeapWord* t = top(); // Could call objects iterate, but this is easier. while (obj_addr < t) { oop obj = oop(obj_addr); obj_addr += obj->oop_iterate_size(blk); } } void ShenandoahHeapRegion::oop_iterate_humongous(OopIterateClosure* blk) { assert(is_humongous(), "only humongous region here"); // Find head. ShenandoahHeapRegion* r = humongous_start_region(); assert(r->is_humongous_start(), "need humongous head here"); oop obj = oop(r->bottom()); obj->oop_iterate(blk, MemRegion(bottom(), top())); } ShenandoahHeapRegion* ShenandoahHeapRegion::humongous_start_region() const { assert(is_humongous(), "Must be a part of the humongous region"); size_t reg_num = region_number(); ShenandoahHeapRegion* r = const_cast(this); while (!r->is_humongous_start()) { assert(reg_num > 0, "Sanity"); reg_num --; r = _heap->get_region(reg_num); assert(r->is_humongous(), "Must be a part of the humongous region"); } assert(r->is_humongous_start(), "Must be"); return r; } void ShenandoahHeapRegion::recycle() { ContiguousSpace::clear(false); if (ZapUnusedHeapArea) { ContiguousSpace::mangle_unused_area_complete(); } clear_live_data(); reset_alloc_metadata(); _heap->marking_context()->reset_top_at_mark_start(this); make_empty(); } HeapWord* ShenandoahHeapRegion::block_start_const(const void* p) const { assert(MemRegion(bottom(), end()).contains(p), "p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")", p2i(p), p2i(bottom()), p2i(end())); if (p >= top()) { return top(); } else { HeapWord* last = bottom(); HeapWord* cur = last; while (cur <= p) { last = cur; cur += oop(cur)->size(); } shenandoah_assert_correct(NULL, oop(last)); return last; } } void ShenandoahHeapRegion::setup_sizes(size_t max_heap_size) { // Absolute minimums we should not ever break. static const size_t MIN_REGION_SIZE = 256*K; if (FLAG_IS_DEFAULT(ShenandoahMinRegionSize)) { FLAG_SET_DEFAULT(ShenandoahMinRegionSize, MIN_REGION_SIZE); } size_t region_size; if (FLAG_IS_DEFAULT(ShenandoahHeapRegionSize)) { if (ShenandoahMinRegionSize > max_heap_size / MIN_NUM_REGIONS) { err_msg message("Max heap size (" SIZE_FORMAT "K) is too low to afford the minimum number " "of regions (" SIZE_FORMAT ") of minimum region size (" SIZE_FORMAT "K).", max_heap_size/K, MIN_NUM_REGIONS, ShenandoahMinRegionSize/K); vm_exit_during_initialization("Invalid -XX:ShenandoahMinRegionSize option", message); } if (ShenandoahMinRegionSize < MIN_REGION_SIZE) { err_msg message("" SIZE_FORMAT "K should not be lower than minimum region size (" SIZE_FORMAT "K).", ShenandoahMinRegionSize/K, MIN_REGION_SIZE/K); vm_exit_during_initialization("Invalid -XX:ShenandoahMinRegionSize option", message); } if (ShenandoahMinRegionSize < MinTLABSize) { err_msg message("" SIZE_FORMAT "K should not be lower than TLAB size size (" SIZE_FORMAT "K).", ShenandoahMinRegionSize/K, MinTLABSize/K); vm_exit_during_initialization("Invalid -XX:ShenandoahMinRegionSize option", message); } if (ShenandoahMaxRegionSize < MIN_REGION_SIZE) { err_msg message("" SIZE_FORMAT "K should not be lower than min region size (" SIZE_FORMAT "K).", ShenandoahMaxRegionSize/K, MIN_REGION_SIZE/K); vm_exit_during_initialization("Invalid -XX:ShenandoahMaxRegionSize option", message); } if (ShenandoahMinRegionSize > ShenandoahMaxRegionSize) { err_msg message("Minimum (" SIZE_FORMAT "K) should be larger than maximum (" SIZE_FORMAT "K).", ShenandoahMinRegionSize/K, ShenandoahMaxRegionSize/K); vm_exit_during_initialization("Invalid -XX:ShenandoahMinRegionSize or -XX:ShenandoahMaxRegionSize", message); } // We rapidly expand to max_heap_size in most scenarios, so that is the measure // for usual heap sizes. Do not depend on initial_heap_size here. region_size = max_heap_size / ShenandoahTargetNumRegions; // Now make sure that we don't go over or under our limits. region_size = MAX2(ShenandoahMinRegionSize, region_size); region_size = MIN2(ShenandoahMaxRegionSize, region_size); } else { if (ShenandoahHeapRegionSize > max_heap_size / MIN_NUM_REGIONS) { err_msg message("Max heap size (" SIZE_FORMAT "K) is too low to afford the minimum number " "of regions (" SIZE_FORMAT ") of requested size (" SIZE_FORMAT "K).", max_heap_size/K, MIN_NUM_REGIONS, ShenandoahHeapRegionSize/K); vm_exit_during_initialization("Invalid -XX:ShenandoahHeapRegionSize option", message); } if (ShenandoahHeapRegionSize < ShenandoahMinRegionSize) { err_msg message("Heap region size (" SIZE_FORMAT "K) should be larger than min region size (" SIZE_FORMAT "K).", ShenandoahHeapRegionSize/K, ShenandoahMinRegionSize/K); vm_exit_during_initialization("Invalid -XX:ShenandoahHeapRegionSize option", message); } if (ShenandoahHeapRegionSize > ShenandoahMaxRegionSize) { err_msg message("Heap region size (" SIZE_FORMAT "K) should be lower than max region size (" SIZE_FORMAT "K).", ShenandoahHeapRegionSize/K, ShenandoahMaxRegionSize/K); vm_exit_during_initialization("Invalid -XX:ShenandoahHeapRegionSize option", message); } region_size = ShenandoahHeapRegionSize; } // Make sure region size is at least one large page, if enabled. // Otherwise, uncommitting one region may falsely uncommit the adjacent // regions too. // Also see shenandoahArguments.cpp, where it handles UseLargePages. if (UseLargePages && ShenandoahUncommit) { region_size = MAX2(region_size, os::large_page_size()); } int region_size_log = log2_long((jlong) region_size); // Recalculate the region size to make sure it's a power of // 2. This means that region_size is the largest power of 2 that's // <= what we've calculated so far. region_size = size_t(1) << region_size_log; // Now, set up the globals. guarantee(RegionSizeBytesShift == 0, "we should only set it once"); RegionSizeBytesShift = (size_t)region_size_log; guarantee(RegionSizeWordsShift == 0, "we should only set it once"); RegionSizeWordsShift = RegionSizeBytesShift - LogHeapWordSize; guarantee(RegionSizeBytes == 0, "we should only set it once"); RegionSizeBytes = region_size; RegionSizeWords = RegionSizeBytes >> LogHeapWordSize; assert (RegionSizeWords*HeapWordSize == RegionSizeBytes, "sanity"); guarantee(RegionSizeWordsMask == 0, "we should only set it once"); RegionSizeWordsMask = RegionSizeWords - 1; guarantee(RegionSizeBytesMask == 0, "we should only set it once"); RegionSizeBytesMask = RegionSizeBytes - 1; guarantee(RegionCount == 0, "we should only set it once"); RegionCount = max_heap_size / RegionSizeBytes; guarantee(RegionCount >= MIN_NUM_REGIONS, "Should have at least minimum regions"); guarantee(HumongousThresholdWords == 0, "we should only set it once"); HumongousThresholdWords = RegionSizeWords * ShenandoahHumongousThreshold / 100; HumongousThresholdWords = align_down(HumongousThresholdWords, MinObjAlignment); assert (HumongousThresholdWords <= RegionSizeWords, "sanity"); guarantee(HumongousThresholdBytes == 0, "we should only set it once"); HumongousThresholdBytes = HumongousThresholdWords * HeapWordSize; assert (HumongousThresholdBytes <= RegionSizeBytes, "sanity"); // The rationale for trimming the TLAB sizes has to do with the raciness in // TLAB allocation machinery. It may happen that TLAB sizing policy polls Shenandoah // about next free size, gets the answer for region #N, goes away for a while, then // tries to allocate in region #N, and fail because some other thread have claimed part // of the region #N, and then the freeset allocation code has to retire the region #N, // before moving the allocation to region #N+1. // // The worst case realizes when "answer" is "region size", which means it could // prematurely retire an entire region. Having smaller TLABs does not fix that // completely, but reduces the probability of too wasteful region retirement. // With current divisor, we will waste no more than 1/8 of region size in the worst // case. This also has a secondary effect on collection set selection: even under // the race, the regions would be at least 7/8 used, which allows relying on // "used" - "live" for cset selection. Otherwise, we can get the fragmented region // below the garbage threshold that would never be considered for collection. // // The whole thing is mitigated if Elastic TLABs are enabled. // guarantee(MaxTLABSizeWords == 0, "we should only set it once"); MaxTLABSizeWords = MIN2(ShenandoahElasticTLAB ? RegionSizeWords : (RegionSizeWords / 8), HumongousThresholdWords); MaxTLABSizeWords = align_down(MaxTLABSizeWords, MinObjAlignment); guarantee(MaxTLABSizeBytes == 0, "we should only set it once"); MaxTLABSizeBytes = MaxTLABSizeWords * HeapWordSize; assert (MaxTLABSizeBytes > MinTLABSize, "should be larger"); log_info(gc, init)("Regions: " SIZE_FORMAT " x " SIZE_FORMAT "%s", RegionCount, byte_size_in_proper_unit(RegionSizeBytes), proper_unit_for_byte_size(RegionSizeBytes)); log_info(gc, init)("Humongous object threshold: " SIZE_FORMAT "%s", byte_size_in_proper_unit(HumongousThresholdBytes), proper_unit_for_byte_size(HumongousThresholdBytes)); log_info(gc, init)("Max TLAB size: " SIZE_FORMAT "%s", byte_size_in_proper_unit(MaxTLABSizeBytes), proper_unit_for_byte_size(MaxTLABSizeBytes)); } void ShenandoahHeapRegion::do_commit() { if (!_heap->is_heap_region_special() && !os::commit_memory((char *) _reserved.start(), _reserved.byte_size(), false)) { report_java_out_of_memory("Unable to commit region"); } if (!_heap->commit_bitmap_slice(this)) { report_java_out_of_memory("Unable to commit bitmaps for region"); } _heap->increase_committed(ShenandoahHeapRegion::region_size_bytes()); } void ShenandoahHeapRegion::do_uncommit() { if (!_heap->is_heap_region_special() && !os::uncommit_memory((char *) _reserved.start(), _reserved.byte_size())) { report_java_out_of_memory("Unable to uncommit region"); } if (!_heap->uncommit_bitmap_slice(this)) { report_java_out_of_memory("Unable to uncommit bitmaps for region"); } _heap->decrease_committed(ShenandoahHeapRegion::region_size_bytes()); } void ShenandoahHeapRegion::set_state(RegionState to) { EventShenandoahHeapRegionStateChange evt; if (evt.should_commit()){ evt.set_index((unsigned)region_number()); evt.set_start((uintptr_t)bottom()); evt.set_used(used()); evt.set_from(_state); evt.set_to(to); evt.commit(); } _state = to; }