/* * Copyright (c) 2011, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_UTILITIES_QUICKSORT_HPP #define SHARE_UTILITIES_QUICKSORT_HPP #include "memory/allocation.hpp" #include "runtime/globals.hpp" #include "utilities/debug.hpp" class QuickSort : AllStatic { private: template static void swap(T* array, size_t x, size_t y) { T tmp = array[x]; array[x] = array[y]; array[y] = tmp; } // As pivot we use the median of the first, last and middle elements. // We swap in these three values at the right place in the array. This // means that this method not only returns the index of the pivot // element. It also alters the array so that: // array[first] <= array[middle] <= array[last] // A side effect of this is that arrays of length <= 3 are sorted. template static size_t find_pivot(T* array, size_t length, C comparator) { assert(length > 1, "length of array must be > 0"); size_t middle_index = length / 2; size_t last_index = length - 1; if (comparator(array[0], array[middle_index]) > 0) { swap(array, 0, middle_index); } if (comparator(array[0], array[last_index]) > 0) { swap(array, 0, last_index); } if (comparator(array[middle_index], array[last_index]) > 0) { swap(array, middle_index, last_index); } // Now the value in the middle of the array is the median // of the fist, last and middle values. Use this as pivot. return middle_index; } template static size_t partition(T* array, size_t pivot, size_t length, C comparator) { size_t left_index = 0; size_t right_index = length - 1; T pivot_val = array[pivot]; for ( ; true; ++left_index, --right_index) { for ( ; comparator(array[left_index], pivot_val) < 0; ++left_index) { assert(left_index < length, "reached end of partition"); } for ( ; comparator(array[right_index], pivot_val) > 0; --right_index) { assert(right_index > 0, "reached start of partition"); } if (left_index < right_index) { if (!idempotent || comparator(array[left_index], array[right_index]) != 0) { swap(array, left_index, right_index); } } else { return right_index; } } ShouldNotReachHere(); return 0; } template static void inner_sort(T* array, size_t length, C comparator) { if (length < 2) { return; } size_t pivot = find_pivot(array, length, comparator); if (length < 4) { // arrays up to length 3 will be sorted after finding the pivot return; } size_t split = partition(array, pivot, length, comparator); size_t first_part_length = split + 1; inner_sort(array, first_part_length, comparator); inner_sort(&array[first_part_length], length - first_part_length, comparator); } public: // The idempotent parameter prevents the sort from // reordering a previous valid sort by not swapping // fields that compare as equal. This requires extra // calls to the comparator, so the performance // impact depends on the comparator. template static void sort(T* array, size_t length, C comparator, bool idempotent) { // Switch "idempotent" from function paramter to template parameter if (idempotent) { inner_sort(array, length, comparator); } else { inner_sort(array, length, comparator); } } }; #endif // SHARE_UTILITIES_QUICKSORT_HPP