/* * Copyright © 2017 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * @file iris_batch.c * * Batchbuffer and command submission module. * * Every API draw call results in a number of GPU commands, which we * collect into a "batch buffer". Typically, many draw calls are grouped * into a single batch to amortize command submission overhead. * * We submit batches to the kernel using the I915_GEM_EXECBUFFER2 ioctl. * One critical piece of data is the "validation list", which contains a * list of the buffer objects (BOs) which the commands in the GPU need. * The kernel will make sure these are resident and pinned at the correct * virtual memory address before executing our batch. If a BO is not in * the validation list, it effectively does not exist, so take care. */ #include "iris_batch.h" #include "iris_bufmgr.h" #include "iris_context.h" #include "iris_fence.h" #include "drm-uapi/i915_drm.h" #include "common/intel_aux_map.h" #include "intel/common/intel_gem.h" #include "util/hash_table.h" #include "util/set.h" #include "util/u_upload_mgr.h" #include "main/macros.h" #include #include #if HAVE_VALGRIND #include #include #define VG(x) x #else #define VG(x) #endif #define FILE_DEBUG_FLAG DEBUG_BUFMGR static void iris_batch_reset(struct iris_batch *batch); static unsigned num_fences(struct iris_batch *batch) { return util_dynarray_num_elements(&batch->exec_fences, struct drm_i915_gem_exec_fence); } /** * Debugging code to dump the fence list, used by INTEL_DEBUG=submit. */ static void dump_fence_list(struct iris_batch *batch) { fprintf(stderr, "Fence list (length %u): ", num_fences(batch)); util_dynarray_foreach(&batch->exec_fences, struct drm_i915_gem_exec_fence, f) { fprintf(stderr, "%s%u%s ", (f->flags & I915_EXEC_FENCE_WAIT) ? "..." : "", f->handle, (f->flags & I915_EXEC_FENCE_SIGNAL) ? "!" : ""); } fprintf(stderr, "\n"); } /** * Debugging code to dump the validation list, used by INTEL_DEBUG=submit. */ static void dump_bo_list(struct iris_batch *batch) { fprintf(stderr, "BO list (length %d):\n", batch->exec_count); for (int i = 0; i < batch->exec_count; i++) { struct iris_bo *bo = batch->exec_bos[i]; struct iris_bo *backing = iris_get_backing_bo(bo); bool written = BITSET_TEST(batch->bos_written, i); fprintf(stderr, "[%2d]: %3d (%3d) %-14s @ 0x%016"PRIx64" (%-6s %8"PRIu64"B) %2d refs %s\n", i, bo->gem_handle, backing->gem_handle, bo->name, bo->address, backing->real.local ? "local" : "system", bo->size, bo->refcount, written ? "(write)" : ""); } } /** * Return BO information to the batch decoder (for debugging). */ static struct intel_batch_decode_bo decode_get_bo(void *v_batch, bool ppgtt, uint64_t address) { struct iris_batch *batch = v_batch; assert(ppgtt); for (int i = 0; i < batch->exec_count; i++) { struct iris_bo *bo = batch->exec_bos[i]; /* The decoder zeroes out the top 16 bits, so we need to as well */ uint64_t bo_address = bo->address & (~0ull >> 16); if (address >= bo_address && address < bo_address + bo->size) { return (struct intel_batch_decode_bo) { .addr = bo_address, .size = bo->size, .map = iris_bo_map(batch->dbg, bo, MAP_READ), }; } } return (struct intel_batch_decode_bo) { }; } static unsigned decode_get_state_size(void *v_batch, uint64_t address, UNUSED uint64_t base_address) { struct iris_batch *batch = v_batch; unsigned size = (uintptr_t) _mesa_hash_table_u64_search(batch->state_sizes, address); return size; } /** * Decode the current batch. */ static void decode_batch(struct iris_batch *batch) { void *map = iris_bo_map(batch->dbg, batch->exec_bos[0], MAP_READ); intel_print_batch(&batch->decoder, map, batch->primary_batch_size, batch->exec_bos[0]->address, false); } void iris_init_batch(struct iris_context *ice, enum iris_batch_name name, int priority) { struct iris_batch *batch = &ice->batches[name]; struct iris_screen *screen = (void *) ice->ctx.screen; batch->screen = screen; batch->dbg = &ice->dbg; batch->reset = &ice->reset; batch->state_sizes = ice->state.sizes; batch->name = name; batch->ice = ice; batch->contains_fence_signal = false; batch->fine_fences.uploader = u_upload_create(&ice->ctx, 4096, PIPE_BIND_CUSTOM, PIPE_USAGE_STAGING, 0); iris_fine_fence_init(batch); batch->hw_ctx_id = iris_create_hw_context(screen->bufmgr); assert(batch->hw_ctx_id); iris_hw_context_set_priority(screen->bufmgr, batch->hw_ctx_id, priority); util_dynarray_init(&batch->exec_fences, ralloc_context(NULL)); util_dynarray_init(&batch->syncobjs, ralloc_context(NULL)); batch->exec_count = 0; batch->max_gem_handle = 0; batch->exec_array_size = 128; batch->exec_bos = malloc(batch->exec_array_size * sizeof(batch->exec_bos[0])); batch->bos_written = rzalloc_array(NULL, BITSET_WORD, BITSET_WORDS(batch->exec_array_size)); batch->cache.render = _mesa_hash_table_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal); memset(batch->other_batches, 0, sizeof(batch->other_batches)); for (int i = 0, j = 0; i < IRIS_BATCH_COUNT; i++) { if (i != name) batch->other_batches[j++] = &ice->batches[i]; } if (INTEL_DEBUG(DEBUG_ANY)) { const unsigned decode_flags = INTEL_BATCH_DECODE_FULL | (INTEL_DEBUG(DEBUG_COLOR) ? INTEL_BATCH_DECODE_IN_COLOR : 0) | INTEL_BATCH_DECODE_OFFSETS | INTEL_BATCH_DECODE_FLOATS; intel_batch_decode_ctx_init(&batch->decoder, &screen->devinfo, stderr, decode_flags, NULL, decode_get_bo, decode_get_state_size, batch); batch->decoder.dynamic_base = IRIS_MEMZONE_DYNAMIC_START; batch->decoder.instruction_base = IRIS_MEMZONE_SHADER_START; batch->decoder.max_vbo_decoded_lines = 32; } iris_init_batch_measure(ice, batch); iris_batch_reset(batch); } static int find_exec_index(struct iris_batch *batch, struct iris_bo *bo) { unsigned index = READ_ONCE(bo->index); if (index < batch->exec_count && batch->exec_bos[index] == bo) return index; /* May have been shared between multiple active batches */ for (index = 0; index < batch->exec_count; index++) { if (batch->exec_bos[index] == bo) return index; } return -1; } static void ensure_exec_obj_space(struct iris_batch *batch, uint32_t count) { while (batch->exec_count + count > batch->exec_array_size) { unsigned old_size = batch->exec_array_size; batch->exec_array_size *= 2; batch->exec_bos = realloc(batch->exec_bos, batch->exec_array_size * sizeof(batch->exec_bos[0])); batch->bos_written = rerzalloc(NULL, batch->bos_written, BITSET_WORD, BITSET_WORDS(old_size), BITSET_WORDS(batch->exec_array_size)); } } static void add_bo_to_batch(struct iris_batch *batch, struct iris_bo *bo, bool writable) { assert(batch->exec_array_size > batch->exec_count); iris_bo_reference(bo); batch->exec_bos[batch->exec_count] = bo; if (writable) BITSET_SET(batch->bos_written, batch->exec_count); bo->index = batch->exec_count; batch->exec_count++; batch->aperture_space += bo->size; batch->max_gem_handle = MAX2(batch->max_gem_handle, iris_get_backing_bo(bo)->gem_handle); } static void flush_for_cross_batch_dependencies(struct iris_batch *batch, struct iris_bo *bo, bool writable) { if (batch->measure && bo == batch->measure->bo) return; /* When a batch uses a buffer for the first time, or newly writes a buffer * it had already referenced, we may need to flush other batches in order * to correctly synchronize them. */ for (int b = 0; b < ARRAY_SIZE(batch->other_batches); b++) { struct iris_batch *other_batch = batch->other_batches[b]; int other_index = find_exec_index(other_batch, bo); /* If the buffer is referenced by another batch, and either batch * intends to write it, then flush the other batch and synchronize. * * Consider these cases: * * 1. They read, we read => No synchronization required. * 2. They read, we write => Synchronize (they need the old value) * 3. They write, we read => Synchronize (we need their new value) * 4. They write, we write => Synchronize (order writes) * * The read/read case is very common, as multiple batches usually * share a streaming state buffer or shader assembly buffer, and * we want to avoid synchronizing in this case. */ if (other_index != -1 && (writable || BITSET_TEST(other_batch->bos_written, other_index))) iris_batch_flush(other_batch); } } /** * Add a buffer to the current batch's validation list. * * You must call this on any BO you wish to use in this batch, to ensure * that it's resident when the GPU commands execute. */ void iris_use_pinned_bo(struct iris_batch *batch, struct iris_bo *bo, bool writable, enum iris_domain access) { assert(iris_get_backing_bo(bo)->real.kflags & EXEC_OBJECT_PINNED); assert(bo != batch->bo); /* Never mark the workaround BO with EXEC_OBJECT_WRITE. We don't care * about the order of any writes to that buffer, and marking it writable * would introduce data dependencies between multiple batches which share * the buffer. It is added directly to the batch using add_bo_to_batch() * during batch reset time. */ if (bo == batch->screen->workaround_bo) return; if (access < NUM_IRIS_DOMAINS) { assert(batch->sync_region_depth); iris_bo_bump_seqno(bo, batch->next_seqno, access); } int existing_index = find_exec_index(batch, bo); if (existing_index == -1) { flush_for_cross_batch_dependencies(batch, bo, writable); ensure_exec_obj_space(batch, 1); add_bo_to_batch(batch, bo, writable); } else if (writable && !BITSET_TEST(batch->bos_written, existing_index)) { flush_for_cross_batch_dependencies(batch, bo, writable); /* The BO is already in the list; mark it writable */ BITSET_SET(batch->bos_written, existing_index); } } static void create_batch(struct iris_batch *batch) { struct iris_screen *screen = batch->screen; struct iris_bufmgr *bufmgr = screen->bufmgr; /* TODO: We probably could suballocate batches... */ batch->bo = iris_bo_alloc(bufmgr, "command buffer", BATCH_SZ + BATCH_RESERVED, 1, IRIS_MEMZONE_OTHER, BO_ALLOC_NO_SUBALLOC); iris_get_backing_bo(batch->bo)->real.kflags |= EXEC_OBJECT_CAPTURE; batch->map = iris_bo_map(NULL, batch->bo, MAP_READ | MAP_WRITE); batch->map_next = batch->map; ensure_exec_obj_space(batch, 1); add_bo_to_batch(batch, batch->bo, false); } static void iris_batch_maybe_noop(struct iris_batch *batch) { /* We only insert the NOOP at the beginning of the batch. */ assert(iris_batch_bytes_used(batch) == 0); if (batch->noop_enabled) { /* Emit MI_BATCH_BUFFER_END to prevent any further command to be * executed. */ uint32_t *map = batch->map_next; map[0] = (0xA << 23); batch->map_next += 4; } } static void iris_batch_reset(struct iris_batch *batch) { struct iris_screen *screen = batch->screen; struct iris_bufmgr *bufmgr = screen->bufmgr; iris_bo_unreference(batch->bo); batch->primary_batch_size = 0; batch->total_chained_batch_size = 0; batch->contains_draw = false; batch->contains_fence_signal = false; batch->decoder.surface_base = batch->last_surface_base_address; create_batch(batch); assert(batch->bo->index == 0); memset(batch->bos_written, 0, sizeof(BITSET_WORD) * BITSET_WORDS(batch->exec_array_size)); struct iris_syncobj *syncobj = iris_create_syncobj(bufmgr); iris_batch_add_syncobj(batch, syncobj, I915_EXEC_FENCE_SIGNAL); iris_syncobj_reference(bufmgr, &syncobj, NULL); assert(!batch->sync_region_depth); iris_batch_sync_boundary(batch); iris_batch_mark_reset_sync(batch); /* Always add the workaround BO, it contains a driver identifier at the * beginning quite helpful to debug error states. */ add_bo_to_batch(batch, screen->workaround_bo, false); iris_batch_maybe_noop(batch); } void iris_batch_free(struct iris_batch *batch) { struct iris_screen *screen = batch->screen; struct iris_bufmgr *bufmgr = screen->bufmgr; for (int i = 0; i < batch->exec_count; i++) { iris_bo_unreference(batch->exec_bos[i]); } free(batch->exec_bos); ralloc_free(batch->bos_written); ralloc_free(batch->exec_fences.mem_ctx); pipe_resource_reference(&batch->fine_fences.ref.res, NULL); util_dynarray_foreach(&batch->syncobjs, struct iris_syncobj *, s) iris_syncobj_reference(bufmgr, s, NULL); ralloc_free(batch->syncobjs.mem_ctx); iris_fine_fence_reference(batch->screen, &batch->last_fence, NULL); u_upload_destroy(batch->fine_fences.uploader); iris_bo_unreference(batch->bo); batch->bo = NULL; batch->map = NULL; batch->map_next = NULL; iris_destroy_hw_context(bufmgr, batch->hw_ctx_id); iris_destroy_batch_measure(batch->measure); batch->measure = NULL; _mesa_hash_table_destroy(batch->cache.render, NULL); if (INTEL_DEBUG(DEBUG_ANY)) intel_batch_decode_ctx_finish(&batch->decoder); } /** * If we've chained to a secondary batch, or are getting near to the end, * then flush. This should only be called between draws. */ void iris_batch_maybe_flush(struct iris_batch *batch, unsigned estimate) { if (batch->bo != batch->exec_bos[0] || iris_batch_bytes_used(batch) + estimate >= BATCH_SZ) { iris_batch_flush(batch); } } static void record_batch_sizes(struct iris_batch *batch) { unsigned batch_size = iris_batch_bytes_used(batch); VG(VALGRIND_CHECK_MEM_IS_DEFINED(batch->map, batch_size)); if (batch->bo == batch->exec_bos[0]) batch->primary_batch_size = batch_size; batch->total_chained_batch_size += batch_size; } void iris_chain_to_new_batch(struct iris_batch *batch) { uint32_t *cmd = batch->map_next; uint64_t *addr = batch->map_next + 4; batch->map_next += 12; record_batch_sizes(batch); /* No longer held by batch->bo, still held by validation list */ iris_bo_unreference(batch->bo); create_batch(batch); /* Emit MI_BATCH_BUFFER_START to chain to another batch. */ *cmd = (0x31 << 23) | (1 << 8) | (3 - 2); *addr = batch->bo->address; } static void add_aux_map_bos_to_batch(struct iris_batch *batch) { void *aux_map_ctx = iris_bufmgr_get_aux_map_context(batch->screen->bufmgr); if (!aux_map_ctx) return; uint32_t count = intel_aux_map_get_num_buffers(aux_map_ctx); ensure_exec_obj_space(batch, count); intel_aux_map_fill_bos(aux_map_ctx, (void**)&batch->exec_bos[batch->exec_count], count); for (uint32_t i = 0; i < count; i++) { struct iris_bo *bo = batch->exec_bos[batch->exec_count]; add_bo_to_batch(batch, bo, false); } } static void finish_seqno(struct iris_batch *batch) { struct iris_fine_fence *sq = iris_fine_fence_new(batch, IRIS_FENCE_END); if (!sq) return; iris_fine_fence_reference(batch->screen, &batch->last_fence, sq); iris_fine_fence_reference(batch->screen, &sq, NULL); } /** * Terminate a batch with MI_BATCH_BUFFER_END. */ static void iris_finish_batch(struct iris_batch *batch) { const struct intel_device_info *devinfo = &batch->screen->devinfo; if (devinfo->ver == 12 && batch->name == IRIS_BATCH_RENDER) { /* We re-emit constants at the beginning of every batch as a hardware * bug workaround, so invalidate indirect state pointers in order to * save ourselves the overhead of restoring constants redundantly when * the next render batch is executed. */ iris_emit_pipe_control_flush(batch, "ISP invalidate at batch end", PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE | PIPE_CONTROL_STALL_AT_SCOREBOARD | PIPE_CONTROL_CS_STALL); } add_aux_map_bos_to_batch(batch); finish_seqno(batch); /* Emit MI_BATCH_BUFFER_END to finish our batch. */ uint32_t *map = batch->map_next; map[0] = (0xA << 23); batch->map_next += 4; record_batch_sizes(batch); } /** * Replace our current GEM context with a new one (in case it got banned). */ static bool replace_hw_ctx(struct iris_batch *batch) { struct iris_screen *screen = batch->screen; struct iris_bufmgr *bufmgr = screen->bufmgr; uint32_t new_ctx = iris_clone_hw_context(bufmgr, batch->hw_ctx_id); if (!new_ctx) return false; iris_destroy_hw_context(bufmgr, batch->hw_ctx_id); batch->hw_ctx_id = new_ctx; /* Notify the context that state must be re-initialized. */ iris_lost_context_state(batch); return true; } enum pipe_reset_status iris_batch_check_for_reset(struct iris_batch *batch) { struct iris_screen *screen = batch->screen; enum pipe_reset_status status = PIPE_NO_RESET; struct drm_i915_reset_stats stats = { .ctx_id = batch->hw_ctx_id }; if (intel_ioctl(screen->fd, DRM_IOCTL_I915_GET_RESET_STATS, &stats)) DBG("DRM_IOCTL_I915_GET_RESET_STATS failed: %s\n", strerror(errno)); if (stats.batch_active != 0) { /* A reset was observed while a batch from this hardware context was * executing. Assume that this context was at fault. */ status = PIPE_GUILTY_CONTEXT_RESET; } else if (stats.batch_pending != 0) { /* A reset was observed while a batch from this context was in progress, * but the batch was not executing. In this case, assume that the * context was not at fault. */ status = PIPE_INNOCENT_CONTEXT_RESET; } if (status != PIPE_NO_RESET) { /* Our context is likely banned, or at least in an unknown state. * Throw it away and start with a fresh context. Ideally this may * catch the problem before our next execbuf fails with -EIO. */ replace_hw_ctx(batch); } return status; } static void move_syncobj_to_batch(struct iris_batch *batch, struct iris_syncobj **p_syncobj, unsigned flags) { struct iris_bufmgr *bufmgr = batch->screen->bufmgr; if (!*p_syncobj) return; bool found = false; util_dynarray_foreach(&batch->syncobjs, struct iris_syncobj *, s) { if (*p_syncobj == *s) { found = true; break; } } if (!found) iris_batch_add_syncobj(batch, *p_syncobj, flags); iris_syncobj_reference(bufmgr, p_syncobj, NULL); } static void update_bo_syncobjs(struct iris_batch *batch, struct iris_bo *bo, bool write) { struct iris_screen *screen = batch->screen; struct iris_bufmgr *bufmgr = screen->bufmgr; /* Make sure bo->deps is big enough */ if (screen->id >= bo->deps_size) { int new_size = screen->id + 1; bo->deps= realloc(bo->deps, new_size * sizeof(bo->deps[0])); memset(&bo->deps[bo->deps_size], 0, sizeof(bo->deps[0]) * (new_size - bo->deps_size)); bo->deps_size = new_size; } /* When it comes to execbuf submission of non-shared buffers, we only need * to care about the reads and writes done by the other batches of our own * screen, and we also don't care about the reads and writes done by our * own batch, although we need to track them. Just note that other places of * our code may need to care about all the operations done by every batch * on every screen. */ struct iris_bo_screen_deps *deps = &bo->deps[screen->id]; int batch_idx = batch->name; #if IRIS_BATCH_COUNT == 2 /* Due to the above, we exploit the fact that IRIS_NUM_BATCHES is actually * 2, which means there's only one other batch we need to care about. */ int other_batch_idx = 1 - batch_idx; #else /* For IRIS_BATCH_COUNT == 3 we can do: * int other_batch_idxs[IRIS_BATCH_COUNT - 1] = { * (batch_idx ^ 1) & 1, * (batch_idx ^ 2) & 2, * }; * For IRIS_BATCH_COUNT == 4 we can do: * int other_batch_idxs[IRIS_BATCH_COUNT - 1] = { * (batch_idx + 1) & 3, * (batch_idx + 2) & 3, * (batch_idx + 3) & 3, * }; */ #error "Implement me." #endif /* If it is being written to by others, wait on it. */ if (deps->write_syncobjs[other_batch_idx]) move_syncobj_to_batch(batch, &deps->write_syncobjs[other_batch_idx], I915_EXEC_FENCE_WAIT); /* If it's being written by our screen, wait on it too. This is relevant * when there are multiple contexts on the same screen. */ if (deps->write_syncobjs[batch_idx]) move_syncobj_to_batch(batch, &deps->write_syncobjs[batch_idx], I915_EXEC_FENCE_WAIT); struct iris_syncobj *batch_syncobj = iris_batch_get_signal_syncobj(batch); if (write) { /* If we're writing to it, set our batch's syncobj as write_syncobj so * others can wait on us. Also wait every reader we care about before * writing. */ iris_syncobj_reference(bufmgr, &deps->write_syncobjs[batch_idx], batch_syncobj); move_syncobj_to_batch(batch, &deps->read_syncobjs[other_batch_idx], I915_EXEC_FENCE_WAIT); move_syncobj_to_batch(batch, &deps->read_syncobjs[batch_idx], I915_EXEC_FENCE_WAIT); } else { /* If we're reading, replace the other read from our batch index. */ iris_syncobj_reference(bufmgr, &deps->read_syncobjs[batch_idx], batch_syncobj); } } static void update_batch_syncobjs(struct iris_batch *batch) { struct iris_bufmgr *bufmgr = batch->screen->bufmgr; simple_mtx_t *bo_deps_lock = iris_bufmgr_get_bo_deps_lock(bufmgr); simple_mtx_lock(bo_deps_lock); for (int i = 0; i < batch->exec_count; i++) { struct iris_bo *bo = batch->exec_bos[i]; bool write = BITSET_TEST(batch->bos_written, i); if (bo == batch->screen->workaround_bo) continue; update_bo_syncobjs(batch, bo, write); } simple_mtx_unlock(bo_deps_lock); } /** * Submit the batch to the GPU via execbuffer2. */ static int submit_batch(struct iris_batch *batch) { iris_bo_unmap(batch->bo); struct drm_i915_gem_exec_object2 *validation_list = malloc(batch->exec_count * sizeof(*validation_list)); unsigned *index_for_handle = calloc(batch->max_gem_handle + 1, sizeof(unsigned)); unsigned validation_count = 0; for (int i = 0; i < batch->exec_count; i++) { struct iris_bo *bo = iris_get_backing_bo(batch->exec_bos[i]); assert(bo->gem_handle != 0); bool written = BITSET_TEST(batch->bos_written, i); unsigned prev_index = index_for_handle[bo->gem_handle]; if (prev_index > 0) { if (written) validation_list[prev_index].flags |= EXEC_OBJECT_WRITE; } else { index_for_handle[bo->gem_handle] = validation_count; validation_list[validation_count] = (struct drm_i915_gem_exec_object2) { .handle = bo->gem_handle, .offset = bo->address, .flags = bo->real.kflags | (written ? EXEC_OBJECT_WRITE : 0) | (iris_bo_is_external(bo) ? 0 : EXEC_OBJECT_ASYNC), }; ++validation_count; } } free(index_for_handle); if (INTEL_DEBUG(DEBUG_BATCH | DEBUG_SUBMIT)) { dump_fence_list(batch); dump_bo_list(batch); } if (INTEL_DEBUG(DEBUG_BATCH)) { decode_batch(batch); } /* The requirement for using I915_EXEC_NO_RELOC are: * * The addresses written in the objects must match the corresponding * reloc.address which in turn must match the corresponding * execobject.offset. * * Any render targets written to in the batch must be flagged with * EXEC_OBJECT_WRITE. * * To avoid stalling, execobject.offset should match the current * address of that object within the active context. */ struct drm_i915_gem_execbuffer2 execbuf = { .buffers_ptr = (uintptr_t) validation_list, .buffer_count = validation_count, .batch_start_offset = 0, /* This must be QWord aligned. */ .batch_len = ALIGN(batch->primary_batch_size, 8), .flags = I915_EXEC_RENDER | I915_EXEC_NO_RELOC | I915_EXEC_BATCH_FIRST | I915_EXEC_HANDLE_LUT, .rsvd1 = batch->hw_ctx_id, /* rsvd1 is actually the context ID */ }; if (num_fences(batch)) { execbuf.flags |= I915_EXEC_FENCE_ARRAY; execbuf.num_cliprects = num_fences(batch); execbuf.cliprects_ptr = (uintptr_t)util_dynarray_begin(&batch->exec_fences); } int ret = 0; if (!batch->screen->devinfo.no_hw && intel_ioctl(batch->screen->fd, DRM_IOCTL_I915_GEM_EXECBUFFER2, &execbuf)) ret = -errno; for (int i = 0; i < batch->exec_count; i++) { struct iris_bo *bo = batch->exec_bos[i]; bo->idle = false; bo->index = -1; iris_get_backing_bo(bo)->idle = false; iris_bo_unreference(bo); } free(validation_list); return ret; } static const char * batch_name_to_string(enum iris_batch_name name) { const char *names[IRIS_BATCH_COUNT] = { [IRIS_BATCH_RENDER] = "render", [IRIS_BATCH_COMPUTE] = "compute", }; return names[name]; } /** * Flush the batch buffer, submitting it to the GPU and resetting it so * we're ready to emit the next batch. */ void _iris_batch_flush(struct iris_batch *batch, const char *file, int line) { struct iris_screen *screen = batch->screen; /* If a fence signals we need to flush it. */ if (iris_batch_bytes_used(batch) == 0 && !batch->contains_fence_signal) return; iris_measure_batch_end(batch->ice, batch); iris_finish_batch(batch); update_batch_syncobjs(batch); if (INTEL_DEBUG(DEBUG_BATCH | DEBUG_SUBMIT | DEBUG_PIPE_CONTROL)) { const char *basefile = strstr(file, "iris/"); if (basefile) file = basefile + 5; fprintf(stderr, "%19s:%-3d: %s batch [%u] flush with %5db (%0.1f%%) " "(cmds), %4d BOs (%0.1fMb aperture)\n", file, line, batch_name_to_string(batch->name), batch->hw_ctx_id, batch->total_chained_batch_size, 100.0f * batch->total_chained_batch_size / BATCH_SZ, batch->exec_count, (float) batch->aperture_space / (1024 * 1024)); } int ret = submit_batch(batch); /* When batch submission fails, our end-of-batch syncobj remains * unsignalled, and in fact is not even considered submitted. * * In the hang recovery case (-EIO) or -ENOMEM, we recreate our context and * attempt to carry on. In that case, we need to signal our syncobj, * dubiously claiming that this batch completed, because future batches may * depend on it. If we don't, then execbuf would fail with -EINVAL for * those batches, because they depend on a syncobj that's considered to be * "never submitted". This would lead to an abort(). So here, we signal * the failing batch's syncobj to try and allow further progress to be * made, knowing we may have broken our dependency tracking. */ if (ret < 0) iris_syncobj_signal(screen->bufmgr, iris_batch_get_signal_syncobj(batch)); batch->exec_count = 0; batch->max_gem_handle = 0; batch->aperture_space = 0; util_dynarray_foreach(&batch->syncobjs, struct iris_syncobj *, s) iris_syncobj_reference(screen->bufmgr, s, NULL); util_dynarray_clear(&batch->syncobjs); util_dynarray_clear(&batch->exec_fences); if (INTEL_DEBUG(DEBUG_SYNC)) { dbg_printf("waiting for idle\n"); iris_bo_wait_rendering(batch->bo); /* if execbuf failed; this is a nop */ } /* Start a new batch buffer. */ iris_batch_reset(batch); /* EIO means our context is banned. In this case, try and replace it * with a new logical context, and inform iris_context that all state * has been lost and needs to be re-initialized. If this succeeds, * dubiously claim success... * Also handle ENOMEM here. */ if ((ret == -EIO || ret == -ENOMEM) && replace_hw_ctx(batch)) { if (batch->reset->reset) { /* Tell gallium frontends the device is lost and it was our fault. */ batch->reset->reset(batch->reset->data, PIPE_GUILTY_CONTEXT_RESET); } ret = 0; } if (ret < 0) { #ifdef DEBUG const bool color = INTEL_DEBUG(DEBUG_COLOR); fprintf(stderr, "%siris: Failed to submit batchbuffer: %-80s%s\n", color ? "\e[1;41m" : "", strerror(-ret), color ? "\e[0m" : ""); #endif abort(); } } /** * Does the current batch refer to the given BO? * * (In other words, is the BO in the current batch's validation list?) */ bool iris_batch_references(struct iris_batch *batch, struct iris_bo *bo) { return find_exec_index(batch, bo) != -1; } /** * Updates the state of the noop feature. Returns true if there was a noop * transition that led to state invalidation. */ bool iris_batch_prepare_noop(struct iris_batch *batch, bool noop_enable) { if (batch->noop_enabled == noop_enable) return 0; batch->noop_enabled = noop_enable; iris_batch_flush(batch); /* If the batch was empty, flush had no effect, so insert our noop. */ if (iris_batch_bytes_used(batch) == 0) iris_batch_maybe_noop(batch); /* We only need to update the entire state if we transition from noop -> * not-noop. */ return !batch->noop_enabled; }