/* * Copyright © 2019 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #ifndef MI_BUILDER_H #define MI_BUILDER_H #include "dev/intel_device_info.h" #include "genxml/genX_bits.h" #include "util/bitscan.h" #include "util/fast_idiv_by_const.h" #include "util/u_math.h" #ifndef MI_BUILDER_NUM_ALLOC_GPRS /** The number of GPRs the MI builder is allowed to allocate * * This may be set by a user of this API so that it can reserve some GPRs at * the top end for its own use. */ #define MI_BUILDER_NUM_ALLOC_GPRS 16 #endif /** These must be defined by the user of the builder * * void *__gen_get_batch_dwords(__gen_user_data *user_data, * unsigned num_dwords); * * __gen_address_type * __gen_address_offset(__gen_address_type addr, uint64_t offset); * * * If self-modifying batches are supported, we must be able to pass batch * addresses around as void*s so pinning as well as batch chaining or some * other mechanism for ensuring batch pointers remain valid during building is * required. The following function must also be defined, it returns an * address in canonical form: * * __gen_address_type * __gen_get_batch_address(__gen_user_data *user_data, void *location); * * Also, __gen_combine_address must accept a location value of NULL and return * a fully valid 64-bit address. */ /* * Start of the actual MI builder */ #define __genxml_cmd_length(cmd) cmd ## _length #define __genxml_cmd_header(cmd) cmd ## _header #define __genxml_cmd_pack(cmd) cmd ## _pack #define mi_builder_pack(b, cmd, dst, name) \ for (struct cmd name = { __genxml_cmd_header(cmd) }, \ *_dst = (struct cmd *)(dst); __builtin_expect(_dst != NULL, 1); \ __genxml_cmd_pack(cmd)((b)->user_data, (void *)_dst, &name), \ _dst = NULL) #define mi_builder_emit(b, cmd, name) \ mi_builder_pack((b), cmd, __gen_get_batch_dwords((b)->user_data, __genxml_cmd_length(cmd)), name) enum mi_value_type { MI_VALUE_TYPE_IMM, MI_VALUE_TYPE_MEM32, MI_VALUE_TYPE_MEM64, MI_VALUE_TYPE_REG32, MI_VALUE_TYPE_REG64, }; struct mi_value { enum mi_value_type type; union { uint64_t imm; __gen_address_type addr; uint32_t reg; }; #if GFX_VERx10 >= 75 bool invert; #endif }; struct mi_reg_num { uint32_t num; #if GFX_VER >= 11 bool cs; #endif }; static inline struct mi_reg_num mi_adjust_reg_num(uint32_t reg) { #if GFX_VER >= 11 bool cs = reg >= 0x2000 && reg < 0x4000; return (struct mi_reg_num) { .num = reg - (cs ? 0x2000 : 0), .cs = cs, }; #else return (struct mi_reg_num) { .num = reg, }; #endif } #if GFX_VER >= 9 #define MI_BUILDER_MAX_MATH_DWORDS 256 #else #define MI_BUILDER_MAX_MATH_DWORDS 64 #endif struct mi_builder { const struct intel_device_info *devinfo; __gen_user_data *user_data; #if GFX_VERx10 >= 75 uint32_t gprs; uint8_t gpr_refs[MI_BUILDER_NUM_ALLOC_GPRS]; unsigned num_math_dwords; uint32_t math_dwords[MI_BUILDER_MAX_MATH_DWORDS]; #endif }; static inline void mi_builder_init(struct mi_builder *b, const struct intel_device_info *devinfo, __gen_user_data *user_data) { memset(b, 0, sizeof(*b)); b->devinfo = devinfo; b->user_data = user_data; #if GFX_VERx10 >= 75 b->gprs = 0; b->num_math_dwords = 0; #endif } static inline void mi_builder_flush_math(struct mi_builder *b) { #if GFX_VERx10 >= 75 if (b->num_math_dwords == 0) return; uint32_t *dw = (uint32_t *)__gen_get_batch_dwords(b->user_data, 1 + b->num_math_dwords); mi_builder_pack(b, GENX(MI_MATH), dw, math) { math.DWordLength = 1 + b->num_math_dwords - GENX(MI_MATH_length_bias); } memcpy(dw + 1, b->math_dwords, b->num_math_dwords * sizeof(uint32_t)); b->num_math_dwords = 0; #endif } #define _MI_BUILDER_GPR_BASE 0x2600 /* The actual hardware limit on GPRs */ #define _MI_BUILDER_NUM_HW_GPRS 16 #if GFX_VERx10 >= 75 static inline bool mi_value_is_reg(struct mi_value val) { return val.type == MI_VALUE_TYPE_REG32 || val.type == MI_VALUE_TYPE_REG64; } static inline bool mi_value_is_gpr(struct mi_value val) { return mi_value_is_reg(val) && val.reg >= _MI_BUILDER_GPR_BASE && val.reg < _MI_BUILDER_GPR_BASE + _MI_BUILDER_NUM_HW_GPRS * 8; } static inline bool _mi_value_is_allocated_gpr(struct mi_value val) { return mi_value_is_reg(val) && val.reg >= _MI_BUILDER_GPR_BASE && val.reg < _MI_BUILDER_GPR_BASE + MI_BUILDER_NUM_ALLOC_GPRS * 8; } static inline uint32_t _mi_value_as_gpr(struct mi_value val) { assert(mi_value_is_gpr(val)); assert(val.reg % 8 == 0); return (val.reg - _MI_BUILDER_GPR_BASE) / 8; } static inline struct mi_value mi_new_gpr(struct mi_builder *b) { unsigned gpr = ffs(~b->gprs) - 1; assert(gpr < MI_BUILDER_NUM_ALLOC_GPRS); assert(b->gpr_refs[gpr] == 0); b->gprs |= (1u << gpr); b->gpr_refs[gpr] = 1; return (struct mi_value) { .type = MI_VALUE_TYPE_REG64, .reg = _MI_BUILDER_GPR_BASE + gpr * 8, }; } #endif /* GFX_VERx10 >= 75 */ /** Take a reference to a mi_value * * The MI builder uses reference counting to automatically free ALU GPRs for * re-use in calculations. All mi_* math functions consume the reference * they are handed for each source and return a reference to a value which the * caller must consume. In particular, if you pas the same value into a * single mi_* math function twice (say to add a number to itself), you * are responsible for calling mi_value_ref() to get a second reference * because the mi_* math function will consume it twice. */ static inline struct mi_value mi_value_ref(struct mi_builder *b, struct mi_value val) { #if GFX_VERx10 >= 75 if (_mi_value_is_allocated_gpr(val)) { unsigned gpr = _mi_value_as_gpr(val); assert(gpr < MI_BUILDER_NUM_ALLOC_GPRS); assert(b->gprs & (1u << gpr)); assert(b->gpr_refs[gpr] < UINT8_MAX); b->gpr_refs[gpr]++; } #endif /* GFX_VERx10 >= 75 */ return val; } /** Drop a reference to a mi_value * * See also mi_value_ref. */ static inline void mi_value_unref(struct mi_builder *b, struct mi_value val) { #if GFX_VERx10 >= 75 if (_mi_value_is_allocated_gpr(val)) { unsigned gpr = _mi_value_as_gpr(val); assert(gpr < MI_BUILDER_NUM_ALLOC_GPRS); assert(b->gprs & (1u << gpr)); assert(b->gpr_refs[gpr] > 0); if (--b->gpr_refs[gpr] == 0) b->gprs &= ~(1u << gpr); } #endif /* GFX_VERx10 >= 75 */ } static inline struct mi_value mi_imm(uint64_t imm) { return (struct mi_value) { .type = MI_VALUE_TYPE_IMM, .imm = imm, }; } static inline struct mi_value mi_reg32(uint32_t reg) { struct mi_value val = { .type = MI_VALUE_TYPE_REG32, .reg = reg, }; #if GFX_VERx10 >= 75 assert(!_mi_value_is_allocated_gpr(val)); #endif return val; } static inline struct mi_value mi_reg64(uint32_t reg) { struct mi_value val = { .type = MI_VALUE_TYPE_REG64, .reg = reg, }; #if GFX_VERx10 >= 75 assert(!_mi_value_is_allocated_gpr(val)); #endif return val; } static inline struct mi_value mi_mem32(__gen_address_type addr) { return (struct mi_value) { .type = MI_VALUE_TYPE_MEM32, .addr = addr, }; } static inline struct mi_value mi_mem64(__gen_address_type addr) { return (struct mi_value) { .type = MI_VALUE_TYPE_MEM64, .addr = addr, }; } static inline struct mi_value mi_value_half(struct mi_value value, bool top_32_bits) { switch (value.type) { case MI_VALUE_TYPE_IMM: if (top_32_bits) value.imm >>= 32; else value.imm &= 0xffffffffu; return value; case MI_VALUE_TYPE_MEM32: assert(!top_32_bits); return value; case MI_VALUE_TYPE_MEM64: if (top_32_bits) value.addr = __gen_address_offset(value.addr, 4); value.type = MI_VALUE_TYPE_MEM32; return value; case MI_VALUE_TYPE_REG32: assert(!top_32_bits); return value; case MI_VALUE_TYPE_REG64: if (top_32_bits) value.reg += 4; value.type = MI_VALUE_TYPE_REG32; return value; } unreachable("Invalid mi_value type"); } static inline void _mi_copy_no_unref(struct mi_builder *b, struct mi_value dst, struct mi_value src) { #if GFX_VERx10 >= 75 /* TODO: We could handle src.invert by emitting a bit of math if we really * wanted to. */ assert(!dst.invert && !src.invert); #endif mi_builder_flush_math(b); switch (dst.type) { case MI_VALUE_TYPE_IMM: unreachable("Cannot copy to an immediate"); case MI_VALUE_TYPE_MEM64: case MI_VALUE_TYPE_REG64: switch (src.type) { case MI_VALUE_TYPE_IMM: if (dst.type == MI_VALUE_TYPE_REG64) { uint32_t *dw = (uint32_t *)__gen_get_batch_dwords(b->user_data, GENX(MI_LOAD_REGISTER_IMM_length) + 2); struct mi_reg_num reg = mi_adjust_reg_num(dst.reg); mi_builder_pack(b, GENX(MI_LOAD_REGISTER_IMM), dw, lri) { lri.DWordLength = GENX(MI_LOAD_REGISTER_IMM_length) + 2 - GENX(MI_LOAD_REGISTER_IMM_length_bias); #if GFX_VER >= 11 lri.AddCSMMIOStartOffset = reg.cs; #endif } dw[1] = reg.num; dw[2] = src.imm; dw[3] = reg.num + 4; dw[4] = src.imm >> 32; } else { #if GFX_VER >= 8 assert(dst.type == MI_VALUE_TYPE_MEM64); uint32_t *dw = (uint32_t *)__gen_get_batch_dwords(b->user_data, GENX(MI_STORE_DATA_IMM_length) + 1); mi_builder_pack(b, GENX(MI_STORE_DATA_IMM), dw, sdm) { sdm.DWordLength = GENX(MI_STORE_DATA_IMM_length) + 1 - GENX(MI_STORE_DATA_IMM_length_bias); sdm.StoreQword = true; sdm.Address = dst.addr; } dw[3] = src.imm; dw[4] = src.imm >> 32; #else _mi_copy_no_unref(b, mi_value_half(dst, false), mi_value_half(src, false)); _mi_copy_no_unref(b, mi_value_half(dst, true), mi_value_half(src, true)); #endif } break; case MI_VALUE_TYPE_REG32: case MI_VALUE_TYPE_MEM32: _mi_copy_no_unref(b, mi_value_half(dst, false), mi_value_half(src, false)); _mi_copy_no_unref(b, mi_value_half(dst, true), mi_imm(0)); break; case MI_VALUE_TYPE_REG64: case MI_VALUE_TYPE_MEM64: _mi_copy_no_unref(b, mi_value_half(dst, false), mi_value_half(src, false)); _mi_copy_no_unref(b, mi_value_half(dst, true), mi_value_half(src, true)); break; default: unreachable("Invalid mi_value type"); } break; case MI_VALUE_TYPE_MEM32: switch (src.type) { case MI_VALUE_TYPE_IMM: mi_builder_emit(b, GENX(MI_STORE_DATA_IMM), sdi) { sdi.Address = dst.addr; #if GFX_VER >= 12 sdi.ForceWriteCompletionCheck = true; #endif sdi.ImmediateData = src.imm; } break; case MI_VALUE_TYPE_MEM32: case MI_VALUE_TYPE_MEM64: #if GFX_VER >= 8 mi_builder_emit(b, GENX(MI_COPY_MEM_MEM), cmm) { cmm.DestinationMemoryAddress = dst.addr; cmm.SourceMemoryAddress = src.addr; } #elif GFX_VERx10 == 75 { struct mi_value tmp = mi_new_gpr(b); _mi_copy_no_unref(b, tmp, src); _mi_copy_no_unref(b, dst, tmp); mi_value_unref(b, tmp); } #else unreachable("Cannot do mem <-> mem copy on IVB and earlier"); #endif break; case MI_VALUE_TYPE_REG32: case MI_VALUE_TYPE_REG64: mi_builder_emit(b, GENX(MI_STORE_REGISTER_MEM), srm) { struct mi_reg_num reg = mi_adjust_reg_num(src.reg); srm.RegisterAddress = reg.num; #if GFX_VER >= 11 srm.AddCSMMIOStartOffset = reg.cs; #endif srm.MemoryAddress = dst.addr; } break; default: unreachable("Invalid mi_value type"); } break; case MI_VALUE_TYPE_REG32: switch (src.type) { case MI_VALUE_TYPE_IMM: mi_builder_emit(b, GENX(MI_LOAD_REGISTER_IMM), lri) { struct mi_reg_num reg = mi_adjust_reg_num(dst.reg); lri.RegisterOffset = reg.num; #if GFX_VER >= 11 lri.AddCSMMIOStartOffset = reg.cs; #endif lri.DataDWord = src.imm; } break; case MI_VALUE_TYPE_MEM32: case MI_VALUE_TYPE_MEM64: #if GFX_VER >= 7 mi_builder_emit(b, GENX(MI_LOAD_REGISTER_MEM), lrm) { struct mi_reg_num reg = mi_adjust_reg_num(dst.reg); lrm.RegisterAddress = reg.num; #if GFX_VER >= 11 lrm.AddCSMMIOStartOffset = reg.cs; #endif lrm.MemoryAddress = src.addr; } #else unreachable("Cannot load do mem -> reg copy on SNB and earlier"); #endif break; case MI_VALUE_TYPE_REG32: case MI_VALUE_TYPE_REG64: #if GFX_VERx10 >= 75 if (src.reg != dst.reg) { mi_builder_emit(b, GENX(MI_LOAD_REGISTER_REG), lrr) { struct mi_reg_num reg = mi_adjust_reg_num(src.reg); lrr.SourceRegisterAddress = reg.num; #if GFX_VER >= 11 lrr.AddCSMMIOStartOffsetSource = reg.cs; #endif reg = mi_adjust_reg_num(dst.reg); lrr.DestinationRegisterAddress = reg.num; #if GFX_VER >= 11 lrr.AddCSMMIOStartOffsetDestination = reg.cs; #endif } } #else unreachable("Cannot do reg <-> reg copy on IVB and earlier"); #endif break; default: unreachable("Invalid mi_value type"); } break; default: unreachable("Invalid mi_value type"); } } #if GFX_VERx10 >= 75 static inline struct mi_value mi_resolve_invert(struct mi_builder *b, struct mi_value src); #endif /** Store the value in src to the value represented by dst * * If the bit size of src and dst mismatch, this function does an unsigned * integer cast. If src has more bits than dst, it takes the bottom bits. If * src has fewer bits then dst, it fills the top bits with zeros. * * This function consumes one reference for each of src and dst. */ static inline void mi_store(struct mi_builder *b, struct mi_value dst, struct mi_value src) { #if GFX_VERx10 >= 75 src = mi_resolve_invert(b, src); #endif _mi_copy_no_unref(b, dst, src); mi_value_unref(b, src); mi_value_unref(b, dst); } static inline void mi_memset(struct mi_builder *b, __gen_address_type dst, uint32_t value, uint32_t size) { #if GFX_VERx10 >= 75 assert(b->num_math_dwords == 0); #endif /* This memset operates in units of dwords. */ assert(size % 4 == 0); for (uint32_t i = 0; i < size; i += 4) { mi_store(b, mi_mem32(__gen_address_offset(dst, i)), mi_imm(value)); } } /* NOTE: On IVB, this function stomps GFX7_3DPRIM_BASE_VERTEX */ static inline void mi_memcpy(struct mi_builder *b, __gen_address_type dst, __gen_address_type src, uint32_t size) { #if GFX_VERx10 >= 75 assert(b->num_math_dwords == 0); #endif /* This memcpy operates in units of dwords. */ assert(size % 4 == 0); for (uint32_t i = 0; i < size; i += 4) { struct mi_value dst_val = mi_mem32(__gen_address_offset(dst, i)); struct mi_value src_val = mi_mem32(__gen_address_offset(src, i)); #if GFX_VERx10 >= 75 mi_store(b, dst_val, src_val); #else /* IVB does not have a general purpose register for command streamer * commands. Therefore, we use an alternate temporary register. */ struct mi_value tmp_reg = mi_reg32(0x2440); /* GFX7_3DPRIM_BASE_VERTEX */ mi_store(b, tmp_reg, src_val); mi_store(b, dst_val, tmp_reg); #endif } } /* * MI_MATH Section. Only available on Haswell+ */ #if GFX_VERx10 >= 75 /** * Perform a predicated store (assuming the condition is already loaded * in the MI_PREDICATE_RESULT register) of the value in src to the memory * location specified by dst. Non-memory destinations are not supported. * * This function consumes one reference for each of src and dst. */ static inline void mi_store_if(struct mi_builder *b, struct mi_value dst, struct mi_value src) { assert(!dst.invert && !src.invert); mi_builder_flush_math(b); /* We can only predicate MI_STORE_REGISTER_MEM, so restrict the * destination to be memory, and resolve the source to a temporary * register if it isn't in one already. */ assert(dst.type == MI_VALUE_TYPE_MEM64 || dst.type == MI_VALUE_TYPE_MEM32); if (src.type != MI_VALUE_TYPE_REG32 && src.type != MI_VALUE_TYPE_REG64) { struct mi_value tmp = mi_new_gpr(b); _mi_copy_no_unref(b, tmp, src); src = tmp; } if (dst.type == MI_VALUE_TYPE_MEM64) { mi_builder_emit(b, GENX(MI_STORE_REGISTER_MEM), srm) { struct mi_reg_num reg = mi_adjust_reg_num(src.reg); srm.RegisterAddress = reg.num; #if GFX_VER >= 11 srm.AddCSMMIOStartOffset = reg.cs; #endif srm.MemoryAddress = dst.addr; srm.PredicateEnable = true; } mi_builder_emit(b, GENX(MI_STORE_REGISTER_MEM), srm) { struct mi_reg_num reg = mi_adjust_reg_num(src.reg + 4); srm.RegisterAddress = reg.num; #if GFX_VER >= 11 srm.AddCSMMIOStartOffset = reg.cs; #endif srm.MemoryAddress = __gen_address_offset(dst.addr, 4); srm.PredicateEnable = true; } } else { mi_builder_emit(b, GENX(MI_STORE_REGISTER_MEM), srm) { struct mi_reg_num reg = mi_adjust_reg_num(src.reg); srm.RegisterAddress = reg.num; #if GFX_VER >= 11 srm.AddCSMMIOStartOffset = reg.cs; #endif srm.MemoryAddress = dst.addr; srm.PredicateEnable = true; } } mi_value_unref(b, src); mi_value_unref(b, dst); } static inline void _mi_builder_push_math(struct mi_builder *b, const uint32_t *dwords, unsigned num_dwords) { assert(num_dwords < MI_BUILDER_MAX_MATH_DWORDS); if (b->num_math_dwords + num_dwords > MI_BUILDER_MAX_MATH_DWORDS) mi_builder_flush_math(b); memcpy(&b->math_dwords[b->num_math_dwords], dwords, num_dwords * sizeof(*dwords)); b->num_math_dwords += num_dwords; } static inline uint32_t _mi_pack_alu(uint32_t opcode, uint32_t operand1, uint32_t operand2) { struct GENX(MI_MATH_ALU_INSTRUCTION) instr = { .Operand2 = operand2, .Operand1 = operand1, .ALUOpcode = opcode, }; uint32_t dw; GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr); return dw; } static inline struct mi_value mi_value_to_gpr(struct mi_builder *b, struct mi_value val) { if (mi_value_is_gpr(val)) return val; /* Save off the invert flag because it makes copy() grumpy */ bool invert = val.invert; val.invert = false; struct mi_value tmp = mi_new_gpr(b); _mi_copy_no_unref(b, tmp, val); tmp.invert = invert; return tmp; } static inline uint64_t mi_value_to_u64(struct mi_value val) { assert(val.type == MI_VALUE_TYPE_IMM); return val.invert ? ~val.imm : val.imm; } static inline uint32_t _mi_math_load_src(struct mi_builder *b, unsigned src, struct mi_value *val) { if (val->type == MI_VALUE_TYPE_IMM && (val->imm == 0 || val->imm == UINT64_MAX)) { uint64_t imm = val->invert ? ~val->imm : val->imm; return _mi_pack_alu(imm ? MI_ALU_LOAD1 : MI_ALU_LOAD0, src, 0); } else { *val = mi_value_to_gpr(b, *val); return _mi_pack_alu(val->invert ? MI_ALU_LOADINV : MI_ALU_LOAD, src, _mi_value_as_gpr(*val)); } } static inline struct mi_value mi_math_binop(struct mi_builder *b, uint32_t opcode, struct mi_value src0, struct mi_value src1, uint32_t store_op, uint32_t store_src) { struct mi_value dst = mi_new_gpr(b); uint32_t dw[4]; dw[0] = _mi_math_load_src(b, MI_ALU_SRCA, &src0); dw[1] = _mi_math_load_src(b, MI_ALU_SRCB, &src1); dw[2] = _mi_pack_alu(opcode, 0, 0); dw[3] = _mi_pack_alu(store_op, _mi_value_as_gpr(dst), store_src); _mi_builder_push_math(b, dw, 4); mi_value_unref(b, src0); mi_value_unref(b, src1); return dst; } static inline struct mi_value mi_inot(struct mi_builder *b, struct mi_value val) { if (val.type == MI_VALUE_TYPE_IMM) return mi_imm(~mi_value_to_u64(val)); val.invert = !val.invert; return val; } static inline struct mi_value mi_resolve_invert(struct mi_builder *b, struct mi_value src) { if (!src.invert) return src; assert(src.type != MI_VALUE_TYPE_IMM); return mi_math_binop(b, MI_ALU_ADD, src, mi_imm(0), MI_ALU_STORE, MI_ALU_ACCU); } static inline struct mi_value mi_iadd(struct mi_builder *b, struct mi_value src0, struct mi_value src1) { if (src0.type == MI_VALUE_TYPE_IMM && src1.type == MI_VALUE_TYPE_IMM) return mi_imm(mi_value_to_u64(src0) + mi_value_to_u64(src1)); return mi_math_binop(b, MI_ALU_ADD, src0, src1, MI_ALU_STORE, MI_ALU_ACCU); } static inline struct mi_value mi_iadd_imm(struct mi_builder *b, struct mi_value src, uint64_t N) { if (N == 0) return src; return mi_iadd(b, src, mi_imm(N)); } static inline struct mi_value mi_isub(struct mi_builder *b, struct mi_value src0, struct mi_value src1) { if (src0.type == MI_VALUE_TYPE_IMM && src1.type == MI_VALUE_TYPE_IMM) return mi_imm(mi_value_to_u64(src0) - mi_value_to_u64(src1)); return mi_math_binop(b, MI_ALU_SUB, src0, src1, MI_ALU_STORE, MI_ALU_ACCU); } static inline struct mi_value mi_ieq(struct mi_builder *b, struct mi_value src0, struct mi_value src1) { if (src0.type == MI_VALUE_TYPE_IMM && src1.type == MI_VALUE_TYPE_IMM) return mi_imm(mi_value_to_u64(src0) == mi_value_to_u64(src1) ? ~0ull : 0); /* Compute "equal" by subtracting and storing the zero bit */ return mi_math_binop(b, MI_ALU_SUB, src0, src1, MI_ALU_STORE, MI_ALU_ZF); } static inline struct mi_value mi_ine(struct mi_builder *b, struct mi_value src0, struct mi_value src1) { if (src0.type == MI_VALUE_TYPE_IMM && src1.type == MI_VALUE_TYPE_IMM) return mi_imm(mi_value_to_u64(src0) != mi_value_to_u64(src1) ? ~0ull : 0); /* Compute "not equal" by subtracting and storing the inverse zero bit */ return mi_math_binop(b, MI_ALU_SUB, src0, src1, MI_ALU_STOREINV, MI_ALU_ZF); } static inline struct mi_value mi_ult(struct mi_builder *b, struct mi_value src0, struct mi_value src1) { if (src0.type == MI_VALUE_TYPE_IMM && src1.type == MI_VALUE_TYPE_IMM) return mi_imm(mi_value_to_u64(src0) < mi_value_to_u64(src1) ? ~0ull : 0); /* Compute "less than" by subtracting and storing the carry bit */ return mi_math_binop(b, MI_ALU_SUB, src0, src1, MI_ALU_STORE, MI_ALU_CF); } static inline struct mi_value mi_uge(struct mi_builder *b, struct mi_value src0, struct mi_value src1) { if (src0.type == MI_VALUE_TYPE_IMM && src1.type == MI_VALUE_TYPE_IMM) return mi_imm(mi_value_to_u64(src0) >= mi_value_to_u64(src1) ? ~0ull : 0); /* Compute "less than" by subtracting and storing the carry bit */ return mi_math_binop(b, MI_ALU_SUB, src0, src1, MI_ALU_STOREINV, MI_ALU_CF); } static inline struct mi_value mi_iand(struct mi_builder *b, struct mi_value src0, struct mi_value src1) { if (src0.type == MI_VALUE_TYPE_IMM && src1.type == MI_VALUE_TYPE_IMM) return mi_imm(mi_value_to_u64(src0) & mi_value_to_u64(src1)); return mi_math_binop(b, MI_ALU_AND, src0, src1, MI_ALU_STORE, MI_ALU_ACCU); } static inline struct mi_value mi_nz(struct mi_builder *b, struct mi_value src) { if (src.type == MI_VALUE_TYPE_IMM) return mi_imm(mi_value_to_u64(src) != 0 ? ~0ull : 0); return mi_math_binop(b, MI_ALU_ADD, src, mi_imm(0), MI_ALU_STOREINV, MI_ALU_ZF); } static inline struct mi_value mi_z(struct mi_builder *b, struct mi_value src) { if (src.type == MI_VALUE_TYPE_IMM) return mi_imm(mi_value_to_u64(src) == 0 ? ~0ull : 0); return mi_math_binop(b, MI_ALU_ADD, src, mi_imm(0), MI_ALU_STORE, MI_ALU_ZF); } static inline struct mi_value mi_ior(struct mi_builder *b, struct mi_value src0, struct mi_value src1) { if (src0.type == MI_VALUE_TYPE_IMM && src1.type == MI_VALUE_TYPE_IMM) return mi_imm(mi_value_to_u64(src0) | mi_value_to_u64(src1)); return mi_math_binop(b, MI_ALU_OR, src0, src1, MI_ALU_STORE, MI_ALU_ACCU); } #if GFX_VERx10 >= 125 static inline struct mi_value mi_ishl(struct mi_builder *b, struct mi_value src0, struct mi_value src1) { if (src1.type == MI_VALUE_TYPE_IMM) { assert(util_is_power_of_two_or_zero(mi_value_to_u64(src1))); assert(mi_value_to_u64(src1) <= 32); } if (src0.type == MI_VALUE_TYPE_IMM && src1.type == MI_VALUE_TYPE_IMM) return mi_imm(mi_value_to_u64(src0) << mi_value_to_u64(src1)); return mi_math_binop(b, MI_ALU_SHL, src0, src1, MI_ALU_STORE, MI_ALU_ACCU); } static inline struct mi_value mi_ushr(struct mi_builder *b, struct mi_value src0, struct mi_value src1) { if (src1.type == MI_VALUE_TYPE_IMM) { assert(util_is_power_of_two_or_zero(mi_value_to_u64(src1))); assert(mi_value_to_u64(src1) <= 32); } if (src0.type == MI_VALUE_TYPE_IMM && src1.type == MI_VALUE_TYPE_IMM) return mi_imm(mi_value_to_u64(src0) >> mi_value_to_u64(src1)); return mi_math_binop(b, MI_ALU_SHR, src0, src1, MI_ALU_STORE, MI_ALU_ACCU); } static inline struct mi_value mi_ushr_imm(struct mi_builder *b, struct mi_value src, uint32_t shift) { if (shift == 0) return src; if (shift >= 64) return mi_imm(0); if (src.type == MI_VALUE_TYPE_IMM) return mi_imm(mi_value_to_u64(src) >> shift); struct mi_value res = mi_value_to_gpr(b, src); /* Annoyingly, we only have power-of-two shifts */ while (shift) { int bit = u_bit_scan(&shift); assert(bit <= 5); res = mi_ushr(b, res, mi_imm(1 << bit)); } return res; } static inline struct mi_value mi_ishr(struct mi_builder *b, struct mi_value src0, struct mi_value src1) { if (src1.type == MI_VALUE_TYPE_IMM) { assert(util_is_power_of_two_or_zero(mi_value_to_u64(src1))); assert(mi_value_to_u64(src1) <= 32); } if (src0.type == MI_VALUE_TYPE_IMM && src1.type == MI_VALUE_TYPE_IMM) return mi_imm((int64_t)mi_value_to_u64(src0) >> mi_value_to_u64(src1)); return mi_math_binop(b, MI_ALU_SAR, src0, src1, MI_ALU_STORE, MI_ALU_ACCU); } static inline struct mi_value mi_ishr_imm(struct mi_builder *b, struct mi_value src, uint32_t shift) { if (shift == 0) return src; if (shift >= 64) return mi_imm(0); if (src.type == MI_VALUE_TYPE_IMM) return mi_imm((int64_t)mi_value_to_u64(src) >> shift); struct mi_value res = mi_value_to_gpr(b, src); /* Annoyingly, we only have power-of-two shifts */ while (shift) { int bit = u_bit_scan(&shift); assert(bit <= 5); res = mi_ishr(b, res, mi_imm(1 << bit)); } return res; } #endif /* if GFX_VERx10 >= 125 */ static inline struct mi_value mi_imul_imm(struct mi_builder *b, struct mi_value src, uint32_t N) { if (src.type == MI_VALUE_TYPE_IMM) return mi_imm(mi_value_to_u64(src) * N); if (N == 0) { mi_value_unref(b, src); return mi_imm(0); } if (N == 1) return src; src = mi_value_to_gpr(b, src); struct mi_value res = mi_value_ref(b, src); unsigned top_bit = 31 - __builtin_clz(N); for (int i = top_bit - 1; i >= 0; i--) { res = mi_iadd(b, res, mi_value_ref(b, res)); if (N & (1 << i)) res = mi_iadd(b, res, mi_value_ref(b, src)); } mi_value_unref(b, src); return res; } static inline struct mi_value mi_ishl_imm(struct mi_builder *b, struct mi_value src, uint32_t shift) { if (shift == 0) return src; if (shift >= 64) return mi_imm(0); if (src.type == MI_VALUE_TYPE_IMM) return mi_imm(mi_value_to_u64(src) << shift); struct mi_value res = mi_value_to_gpr(b, src); #if GFX_VERx10 >= 125 /* Annoyingly, we only have power-of-two shifts */ while (shift) { int bit = u_bit_scan(&shift); assert(bit <= 5); res = mi_ishl(b, res, mi_imm(1 << bit)); } #else for (unsigned i = 0; i < shift; i++) res = mi_iadd(b, res, mi_value_ref(b, res)); #endif return res; } static inline struct mi_value mi_ushr32_imm(struct mi_builder *b, struct mi_value src, uint32_t shift) { if (shift == 0) return src; if (shift >= 64) return mi_imm(0); /* We right-shift by left-shifting by 32 - shift and taking the top 32 bits * of the result. */ if (src.type == MI_VALUE_TYPE_IMM) return mi_imm((mi_value_to_u64(src) >> shift) & UINT32_MAX); if (shift > 32) { struct mi_value tmp = mi_new_gpr(b); _mi_copy_no_unref(b, mi_value_half(tmp, false), mi_value_half(src, true)); _mi_copy_no_unref(b, mi_value_half(tmp, true), mi_imm(0)); mi_value_unref(b, src); src = tmp; shift -= 32; } assert(shift <= 32); struct mi_value tmp = mi_ishl_imm(b, src, 32 - shift); struct mi_value dst = mi_new_gpr(b); _mi_copy_no_unref(b, mi_value_half(dst, false), mi_value_half(tmp, true)); _mi_copy_no_unref(b, mi_value_half(dst, true), mi_imm(0)); mi_value_unref(b, tmp); return dst; } static inline struct mi_value mi_udiv32_imm(struct mi_builder *b, struct mi_value N, uint32_t D) { if (N.type == MI_VALUE_TYPE_IMM) { assert(mi_value_to_u64(N) <= UINT32_MAX); return mi_imm(mi_value_to_u64(N) / D); } /* We implicitly assume that N is only a 32-bit value */ if (D == 0) { /* This is invalid but we should do something */ return mi_imm(0); } else if (util_is_power_of_two_or_zero(D)) { return mi_ushr32_imm(b, N, util_logbase2(D)); } else { struct util_fast_udiv_info m = util_compute_fast_udiv_info(D, 32, 32); assert(m.multiplier <= UINT32_MAX); if (m.pre_shift) N = mi_ushr32_imm(b, N, m.pre_shift); /* Do the 32x32 multiply into gpr0 */ N = mi_imul_imm(b, N, m.multiplier); if (m.increment) N = mi_iadd(b, N, mi_imm(m.multiplier)); N = mi_ushr32_imm(b, N, 32); if (m.post_shift) N = mi_ushr32_imm(b, N, m.post_shift); return N; } } #endif /* MI_MATH section */ /* This assumes addresses of strictly more than 32bits (aka. Gfx8+). */ #if MI_BUILDER_CAN_WRITE_BATCH struct mi_address_token { /* Pointers to address memory fields in the batch. */ uint64_t *ptrs[2]; }; static inline struct mi_address_token mi_store_address(struct mi_builder *b, struct mi_value addr_reg) { mi_builder_flush_math(b); assert(addr_reg.type == MI_VALUE_TYPE_REG64); struct mi_address_token token = {}; for (unsigned i = 0; i < 2; i++) { mi_builder_emit(b, GENX(MI_STORE_REGISTER_MEM), srm) { srm.RegisterAddress = addr_reg.reg + (i * 4); const unsigned addr_dw = GENX(MI_STORE_REGISTER_MEM_MemoryAddress_start) / 8; token.ptrs[i] = (void *)_dst + addr_dw; } } mi_value_unref(b, addr_reg); return token; } static inline void mi_self_mod_barrier(struct mi_builder *b) { /* First make sure all the memory writes from previous modifying commands * have landed. We want to do this before going through the CS cache, * otherwise we could be fetching memory that hasn't been written to yet. */ mi_builder_emit(b, GENX(PIPE_CONTROL), pc) { pc.CommandStreamerStallEnable = true; } /* Documentation says Gfx11+ should be able to invalidate the command cache * but experiment show it doesn't work properly, so for now just get over * the CS prefetch. */ for (uint32_t i = 0; i < (b->devinfo->cs_prefetch_size / 4); i++) mi_builder_emit(b, GENX(MI_NOOP), noop); } static inline void _mi_resolve_address_token(struct mi_builder *b, struct mi_address_token token, void *batch_location) { __gen_address_type addr = __gen_get_batch_address(b->user_data, batch_location); uint64_t addr_addr_u64 = __gen_combine_address(b->user_data, batch_location, addr, 0); *(token.ptrs[0]) = addr_addr_u64; *(token.ptrs[1]) = addr_addr_u64 + 4; } #endif /* MI_BUILDER_CAN_WRITE_BATCH */ #if GFX_VERx10 >= 125 /* * Indirect load/store. Only available on XE_HP+ */ MUST_CHECK static inline struct mi_value mi_load_mem64_offset(struct mi_builder *b, __gen_address_type addr, struct mi_value offset) { uint64_t addr_u64 = __gen_combine_address(b->user_data, NULL, addr, 0); struct mi_value addr_val = mi_imm(addr_u64); struct mi_value dst = mi_new_gpr(b); uint32_t dw[5]; dw[0] = _mi_math_load_src(b, MI_ALU_SRCA, &addr_val); dw[1] = _mi_math_load_src(b, MI_ALU_SRCB, &offset); dw[2] = _mi_pack_alu(MI_ALU_ADD, 0, 0); dw[3] = _mi_pack_alu(MI_ALU_LOADIND, _mi_value_as_gpr(dst), MI_ALU_ACCU); dw[4] = _mi_pack_alu(MI_ALU_FENCE_RD, 0, 0); _mi_builder_push_math(b, dw, 5); mi_value_unref(b, addr_val); mi_value_unref(b, offset); return dst; } static inline void mi_store_mem64_offset(struct mi_builder *b, __gen_address_type addr, struct mi_value offset, struct mi_value data) { uint64_t addr_u64 = __gen_combine_address(b->user_data, NULL, addr, 0); struct mi_value addr_val = mi_imm(addr_u64); data = mi_value_to_gpr(b, mi_resolve_invert(b, data)); uint32_t dw[5]; dw[0] = _mi_math_load_src(b, MI_ALU_SRCA, &addr_val); dw[1] = _mi_math_load_src(b, MI_ALU_SRCB, &offset); dw[2] = _mi_pack_alu(MI_ALU_ADD, 0, 0); dw[3] = _mi_pack_alu(MI_ALU_STOREIND, MI_ALU_ACCU, _mi_value_as_gpr(data)); dw[4] = _mi_pack_alu(MI_ALU_FENCE_WR, 0, 0); _mi_builder_push_math(b, dw, 5); mi_value_unref(b, addr_val); mi_value_unref(b, offset); mi_value_unref(b, data); /* This is the only math case which has side-effects outside of regular * registers to flush math afterwards so we don't confuse anyone. */ mi_builder_flush_math(b); } /* * Control-flow Section. Only available on XE_HP+ */ struct _mi_goto { bool predicated; void *mi_bbs; }; struct mi_goto_target { bool placed; unsigned num_gotos; struct _mi_goto gotos[8]; __gen_address_type addr; }; #define MI_GOTO_TARGET_INIT ((struct mi_goto_target) {}) #define MI_BUILDER_MI_PREDICATE_RESULT_num 0x2418 static inline void mi_goto_if(struct mi_builder *b, struct mi_value cond, struct mi_goto_target *t) { /* First, set up the predicate, if any */ bool predicated; if (cond.type == MI_VALUE_TYPE_IMM) { /* If it's an immediate, the goto either doesn't happen or happens * unconditionally. */ if (mi_value_to_u64(cond) == 0) return; assert(mi_value_to_u64(cond) == ~0ull); predicated = false; } else if (mi_value_is_reg(cond) && cond.reg == MI_BUILDER_MI_PREDICATE_RESULT_num) { /* If it's MI_PREDICATE_RESULT, we use whatever predicate the client * provided us with */ assert(cond.type == MI_VALUE_TYPE_REG32); predicated = true; } else { mi_store(b, mi_reg32(MI_BUILDER_MI_PREDICATE_RESULT_num), cond); predicated = true; } if (predicated) { mi_builder_emit(b, GENX(MI_SET_PREDICATE), sp) { sp.PredicateEnable = NOOPOnResultClear; } } if (t->placed) { mi_builder_emit(b, GENX(MI_BATCH_BUFFER_START), bbs) { bbs.PredicationEnable = predicated; bbs.AddressSpaceIndicator = ASI_PPGTT; bbs.BatchBufferStartAddress = t->addr; } } else { assert(t->num_gotos < ARRAY_SIZE(t->gotos)); struct _mi_goto g = { .predicated = predicated, .mi_bbs = __gen_get_batch_dwords(b->user_data, GENX(MI_BATCH_BUFFER_START_length)), }; memset(g.mi_bbs, 0, 4 * GENX(MI_BATCH_BUFFER_START_length)); t->gotos[t->num_gotos++] = g; } if (predicated) { mi_builder_emit(b, GENX(MI_SET_PREDICATE), sp) { sp.PredicateEnable = NOOPNever; } } } static inline void mi_goto(struct mi_builder *b, struct mi_goto_target *t) { mi_goto_if(b, mi_imm(-1), t); } static inline void mi_goto_target(struct mi_builder *b, struct mi_goto_target *t) { mi_builder_emit(b, GENX(MI_SET_PREDICATE), sp) { sp.PredicateEnable = NOOPNever; t->addr = __gen_get_batch_address(b->user_data, _dst); } t->placed = true; struct GENX(MI_BATCH_BUFFER_START) bbs = { GENX(MI_BATCH_BUFFER_START_header) }; bbs.AddressSpaceIndicator = ASI_PPGTT; bbs.BatchBufferStartAddress = t->addr; for (unsigned i = 0; i < t->num_gotos; i++) { bbs.PredicationEnable = t->gotos[i].predicated; GENX(MI_BATCH_BUFFER_START_pack)(b->user_data, t->gotos[i].mi_bbs, &bbs); } } static inline struct mi_goto_target mi_goto_target_init_and_place(struct mi_builder *b) { struct mi_goto_target t = MI_GOTO_TARGET_INIT; mi_goto_target(b, &t); return t; } #define mi_loop(b) \ for (struct mi_goto_target __break = MI_GOTO_TARGET_INIT, \ __continue = mi_goto_target_init_and_place(b); !__break.placed; \ mi_goto(b, &__continue), mi_goto_target(b, &__break)) #define mi_break(b) mi_goto(b, &__break) #define mi_break_if(b, cond) mi_goto_if(b, cond, &__break) #define mi_continue(b) mi_goto(b, &__continue) #define mi_continue_if(b, cond) mi_goto_if(b, cond, &__continue) #endif /* GFX_VERx10 >= 125 */ #endif /* MI_BUILDER_H */