.. _fixture: .. _fixtures: .. _`fixture functions`: pytest fixtures: explicit, modular, scalable ======================================================== .. currentmodule:: _pytest.python .. versionadded:: 2.0/2.3/2.4 .. _`xUnit`: http://en.wikipedia.org/wiki/XUnit .. _`purpose of test fixtures`: http://en.wikipedia.org/wiki/Test_fixture#Software .. _`Dependency injection`: http://en.wikipedia.org/wiki/Dependency_injection The `purpose of test fixtures`_ is to provide a fixed baseline upon which tests can reliably and repeatedly execute. pytest fixtures offer dramatic improvements over the classic xUnit style of setup/teardown functions: * fixtures have explicit names and are activated by declaring their use from test functions, modules, classes or whole projects. * fixtures are implemented in a modular manner, as each fixture name triggers a *fixture function* which can itself use other fixtures. * fixture management scales from simple unit to complex functional testing, allowing to parametrize fixtures and tests according to configuration and component options, or to re-use fixtures across function, class, module or whole test session scopes. In addition, pytest continues to support :ref:`xunitsetup`. You can mix both styles, moving incrementally from classic to new style, as you prefer. You can also start out from existing :ref:`unittest.TestCase style ` or :ref:`nose based ` projects. .. _`funcargs`: .. _`funcarg mechanism`: .. _`fixture function`: .. _`@pytest.fixture`: .. _`pytest.fixture`: Fixtures as Function arguments ----------------------------------------- Test functions can receive fixture objects by naming them as an input argument. For each argument name, a fixture function with that name provides the fixture object. Fixture functions are registered by marking them with :py:func:`@pytest.fixture <_pytest.python.fixture>`. Let's look at a simple self-contained test module containing a fixture and a test function using it:: # content of ./test_smtpsimple.py import pytest @pytest.fixture def smtp(): import smtplib return smtplib.SMTP("smtp.gmail.com", 587, timeout=5) def test_ehlo(smtp): response, msg = smtp.ehlo() assert response == 250 assert 0 # for demo purposes Here, the ``test_ehlo`` needs the ``smtp`` fixture value. pytest will discover and call the :py:func:`@pytest.fixture <_pytest.python.fixture>` marked ``smtp`` fixture function. Running the test looks like this:: $ pytest test_smtpsimple.py =========================== test session starts ============================ platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y rootdir: $REGENDOC_TMPDIR, inifile: collected 1 item test_smtpsimple.py F [100%] ================================= FAILURES ================================= ________________________________ test_ehlo _________________________________ smtp = def test_ehlo(smtp): response, msg = smtp.ehlo() assert response == 250 > assert 0 # for demo purposes E assert 0 test_smtpsimple.py:11: AssertionError ========================= 1 failed in 0.12 seconds ========================= In the failure traceback we see that the test function was called with a ``smtp`` argument, the ``smtplib.SMTP()`` instance created by the fixture function. The test function fails on our deliberate ``assert 0``. Here is the exact protocol used by ``pytest`` to call the test function this way: 1. pytest :ref:`finds ` the ``test_ehlo`` because of the ``test_`` prefix. The test function needs a function argument named ``smtp``. A matching fixture function is discovered by looking for a fixture-marked function named ``smtp``. 2. ``smtp()`` is called to create an instance. 3. ``test_ehlo()`` is called and fails in the last line of the test function. Note that if you misspell a function argument or want to use one that isn't available, you'll see an error with a list of available function arguments. .. note:: You can always issue :: pytest --fixtures test_simplefactory.py to see available fixtures (fixtures with leading ``_`` are only shown if you add the ``-v`` option). Fixtures: a prime example of dependency injection --------------------------------------------------- Fixtures allow test functions to easily receive and work against specific pre-initialized application objects without having to care about import/setup/cleanup details. It's a prime example of `dependency injection`_ where fixture functions take the role of the *injector* and test functions are the *consumers* of fixture objects. .. _`conftest.py`: .. _`conftest`: ``conftest.py``: sharing fixture functions ------------------------------------------ If during implementing your tests you realize that you want to use a fixture function from multiple test files you can move it to a ``conftest.py`` file. You don't need to import the fixture you want to use in a test, it automatically gets discovered by pytest. The discovery of fixture functions starts at test classes, then test modules, then ``conftest.py`` files and finally builtin and third party plugins. You can also use the ``conftest.py`` file to implement :ref:`local per-directory plugins `. Sharing test data ----------------- If you want to make test data from files available to your tests, a good way to do this is by loading these data in a fixture for use by your tests. This makes use of the automatic caching mechanisms of pytest. Another good approach is by adding the data files in the ``tests`` folder. There are also community plugins available to help managing this aspect of testing, e.g. `pytest-datadir `__ and `pytest-datafiles `__. .. _smtpshared: Scope: sharing a fixture instance across tests in a class, module or session ---------------------------------------------------------------------------- .. regendoc:wipe Fixtures requiring network access depend on connectivity and are usually time-expensive to create. Extending the previous example, we can add a ``scope="module"`` parameter to the :py:func:`@pytest.fixture <_pytest.python.fixture>` invocation to cause the decorated ``smtp`` fixture function to only be invoked once per test *module* (the default is to invoke once per test *function*). Multiple test functions in a test module will thus each receive the same ``smtp`` fixture instance, thus saving time. The next example puts the fixture function into a separate ``conftest.py`` file so that tests from multiple test modules in the directory can access the fixture function:: # content of conftest.py import pytest import smtplib @pytest.fixture(scope="module") def smtp(): return smtplib.SMTP("smtp.gmail.com", 587, timeout=5) The name of the fixture again is ``smtp`` and you can access its result by listing the name ``smtp`` as an input parameter in any test or fixture function (in or below the directory where ``conftest.py`` is located):: # content of test_module.py def test_ehlo(smtp): response, msg = smtp.ehlo() assert response == 250 assert b"smtp.gmail.com" in msg assert 0 # for demo purposes def test_noop(smtp): response, msg = smtp.noop() assert response == 250 assert 0 # for demo purposes We deliberately insert failing ``assert 0`` statements in order to inspect what is going on and can now run the tests:: $ pytest test_module.py =========================== test session starts ============================ platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y rootdir: $REGENDOC_TMPDIR, inifile: collected 2 items test_module.py FF [100%] ================================= FAILURES ================================= ________________________________ test_ehlo _________________________________ smtp = def test_ehlo(smtp): response, msg = smtp.ehlo() assert response == 250 assert b"smtp.gmail.com" in msg > assert 0 # for demo purposes E assert 0 test_module.py:6: AssertionError ________________________________ test_noop _________________________________ smtp = def test_noop(smtp): response, msg = smtp.noop() assert response == 250 > assert 0 # for demo purposes E assert 0 test_module.py:11: AssertionError ========================= 2 failed in 0.12 seconds ========================= You see the two ``assert 0`` failing and more importantly you can also see that the same (module-scoped) ``smtp`` object was passed into the two test functions because pytest shows the incoming argument values in the traceback. As a result, the two test functions using ``smtp`` run as quick as a single one because they reuse the same instance. If you decide that you rather want to have a session-scoped ``smtp`` instance, you can simply declare it: .. code-block:: python @pytest.fixture(scope="session") def smtp(): # the returned fixture value will be shared for # all tests needing it ... Finally, the ``class`` scope will invoke the fixture once per test *class*. Higher-scoped fixtures are instantiated first --------------------------------------------- .. versionadded:: 3.5 Within a function request for features, fixture of higher-scopes (such as ``session``) are instantiated first than lower-scoped fixtures (such as ``function`` or ``class``). The relative order of fixtures of same scope follows the declared order in the test function and honours dependencies between fixtures. Consider the code below: .. code-block:: python @pytest.fixture(scope="session") def s1(): pass @pytest.fixture(scope="module") def m1(): pass @pytest.fixture def f1(tmpdir): pass @pytest.fixture def f2(): pass def test_foo(f1, m1, f2, s1): ... The fixtures requested by ``test_foo`` will be instantiated in the following order: 1. ``s1``: is the highest-scoped fixture (``session``). 2. ``m1``: is the second highest-scoped fixture (``module``). 3. ``tmpdir``: is a ``function``-scoped fixture, required by ``f1``: it needs to be instantiated at this point because it is a dependency of ``f1``. 4. ``f1``: is the first ``function``-scoped fixture in ``test_foo`` parameter list. 5. ``f2``: is the last ``function``-scoped fixture in ``test_foo`` parameter list. .. _`finalization`: Fixture finalization / executing teardown code ------------------------------------------------------------- pytest supports execution of fixture specific finalization code when the fixture goes out of scope. By using a ``yield`` statement instead of ``return``, all the code after the *yield* statement serves as the teardown code: .. code-block:: python # content of conftest.py import smtplib import pytest @pytest.fixture(scope="module") def smtp(): smtp = smtplib.SMTP("smtp.gmail.com", 587, timeout=5) yield smtp # provide the fixture value print("teardown smtp") smtp.close() The ``print`` and ``smtp.close()`` statements will execute when the last test in the module has finished execution, regardless of the exception status of the tests. Let's execute it:: $ pytest -s -q --tb=no FFteardown smtp 2 failed in 0.12 seconds We see that the ``smtp`` instance is finalized after the two tests finished execution. Note that if we decorated our fixture function with ``scope='function'`` then fixture setup and cleanup would occur around each single test. In either case the test module itself does not need to change or know about these details of fixture setup. Note that we can also seamlessly use the ``yield`` syntax with ``with`` statements: .. code-block:: python # content of test_yield2.py import smtplib import pytest @pytest.fixture(scope="module") def smtp(): with smtplib.SMTP("smtp.gmail.com", 587, timeout=5) as smtp: yield smtp # provide the fixture value The ``smtp`` connection will be closed after the test finished execution because the ``smtp`` object automatically closes when the ``with`` statement ends. Note that if an exception happens during the *setup* code (before the ``yield`` keyword), the *teardown* code (after the ``yield``) will not be called. An alternative option for executing *teardown* code is to make use of the ``addfinalizer`` method of the `request-context`_ object to register finalization functions. Here's the ``smtp`` fixture changed to use ``addfinalizer`` for cleanup: .. code-block:: python # content of conftest.py import smtplib import pytest @pytest.fixture(scope="module") def smtp(request): smtp = smtplib.SMTP("smtp.gmail.com", 587, timeout=5) def fin(): print("teardown smtp") smtp.close() request.addfinalizer(fin) return smtp # provide the fixture value Both ``yield`` and ``addfinalizer`` methods work similarly by calling their code after the test ends, but ``addfinalizer`` has two key differences over ``yield``: 1. It is possible to register multiple finalizer functions. 2. Finalizers will always be called regardless if the fixture *setup* code raises an exception. This is handy to properly close all resources created by a fixture even if one of them fails to be created/acquired:: @pytest.fixture def equipments(request): r = [] for port in ('C1', 'C3', 'C28'): equip = connect(port) request.addfinalizer(equip.disconnect) r.append(equip) return r In the example above, if ``"C28"`` fails with an exception, ``"C1"`` and ``"C3"`` will still be properly closed. Of course, if an exception happens before the finalize function is registered then it will not be executed. .. _`request-context`: Fixtures can introspect the requesting test context ------------------------------------------------------------- Fixture functions can accept the :py:class:`request ` object to introspect the "requesting" test function, class or module context. Further extending the previous ``smtp`` fixture example, let's read an optional server URL from the test module which uses our fixture:: # content of conftest.py import pytest import smtplib @pytest.fixture(scope="module") def smtp(request): server = getattr(request.module, "smtpserver", "smtp.gmail.com") smtp = smtplib.SMTP(server, 587, timeout=5) yield smtp print ("finalizing %s (%s)" % (smtp, server)) smtp.close() We use the ``request.module`` attribute to optionally obtain an ``smtpserver`` attribute from the test module. If we just execute again, nothing much has changed:: $ pytest -s -q --tb=no FFfinalizing (smtp.gmail.com) 2 failed in 0.12 seconds Let's quickly create another test module that actually sets the server URL in its module namespace:: # content of test_anothersmtp.py smtpserver = "mail.python.org" # will be read by smtp fixture def test_showhelo(smtp): assert 0, smtp.helo() Running it:: $ pytest -qq --tb=short test_anothersmtp.py F [100%] ================================= FAILURES ================================= ______________________________ test_showhelo _______________________________ test_anothersmtp.py:5: in test_showhelo assert 0, smtp.helo() E AssertionError: (250, b'mail.python.org') E assert 0 ------------------------- Captured stdout teardown ------------------------- finalizing (mail.python.org) voila! The ``smtp`` fixture function picked up our mail server name from the module namespace. .. _`fixture-factory`: Factories as fixtures ------------------------------------------------------------- The "factory as fixture" pattern can help in situations where the result of a fixture is needed multiple times in a single test. Instead of returning data directly, the fixture instead returns a function which generates the data. This function can then be called multiple times in the test. Factories can have have parameters as needed:: @pytest.fixture def make_customer_record(): def _make_customer_record(name): return { "name": name, "orders": [] } return _make_customer_record def test_customer_records(make_customer_record): customer_1 = make_customer_record("Lisa") customer_2 = make_customer_record("Mike") customer_3 = make_customer_record("Meredith") If the data created by the factory requires managing, the fixture can take care of that:: @pytest.fixture def make_customer_record(): created_records = [] def _make_customer_record(name): record = models.Customer(name=name, orders=[]) created_records.append(record) return record yield _make_customer_record for record in created_records: record.destroy() def test_customer_records(make_customer_record): customer_1 = make_customer_record("Lisa") customer_2 = make_customer_record("Mike") customer_3 = make_customer_record("Meredith") .. _`fixture-parametrize`: Parametrizing fixtures ----------------------------------------------------------------- Fixture functions can be parametrized in which case they will be called multiple times, each time executing the set of dependent tests, i. e. the tests that depend on this fixture. Test functions do usually not need to be aware of their re-running. Fixture parametrization helps to write exhaustive functional tests for components which themselves can be configured in multiple ways. Extending the previous example, we can flag the fixture to create two ``smtp`` fixture instances which will cause all tests using the fixture to run twice. The fixture function gets access to each parameter through the special :py:class:`request ` object:: # content of conftest.py import pytest import smtplib @pytest.fixture(scope="module", params=["smtp.gmail.com", "mail.python.org"]) def smtp(request): smtp = smtplib.SMTP(request.param, 587, timeout=5) yield smtp print ("finalizing %s" % smtp) smtp.close() The main change is the declaration of ``params`` with :py:func:`@pytest.fixture <_pytest.python.fixture>`, a list of values for each of which the fixture function will execute and can access a value via ``request.param``. No test function code needs to change. So let's just do another run:: $ pytest -q test_module.py FFFF [100%] ================================= FAILURES ================================= ________________________ test_ehlo[smtp.gmail.com] _________________________ smtp = def test_ehlo(smtp): response, msg = smtp.ehlo() assert response == 250 assert b"smtp.gmail.com" in msg > assert 0 # for demo purposes E assert 0 test_module.py:6: AssertionError ________________________ test_noop[smtp.gmail.com] _________________________ smtp = def test_noop(smtp): response, msg = smtp.noop() assert response == 250 > assert 0 # for demo purposes E assert 0 test_module.py:11: AssertionError ________________________ test_ehlo[mail.python.org] ________________________ smtp = def test_ehlo(smtp): response, msg = smtp.ehlo() assert response == 250 > assert b"smtp.gmail.com" in msg E AssertionError: assert b'smtp.gmail.com' in b'mail.python.org\nPIPELINING\nSIZE 51200000\nETRN\nSTARTTLS\nAUTH DIGEST-MD5 NTLM CRAM-MD5\nENHANCEDSTATUSCODES\n8BITMIME\nDSN\nSMTPUTF8' test_module.py:5: AssertionError -------------------------- Captured stdout setup --------------------------- finalizing ________________________ test_noop[mail.python.org] ________________________ smtp = def test_noop(smtp): response, msg = smtp.noop() assert response == 250 > assert 0 # for demo purposes E assert 0 test_module.py:11: AssertionError ------------------------- Captured stdout teardown ------------------------- finalizing 4 failed in 0.12 seconds We see that our two test functions each ran twice, against the different ``smtp`` instances. Note also, that with the ``mail.python.org`` connection the second test fails in ``test_ehlo`` because a different server string is expected than what arrived. pytest will build a string that is the test ID for each fixture value in a parametrized fixture, e.g. ``test_ehlo[smtp.gmail.com]`` and ``test_ehlo[mail.python.org]`` in the above examples. These IDs can be used with ``-k`` to select specific cases to run, and they will also identify the specific case when one is failing. Running pytest with ``--collect-only`` will show the generated IDs. Numbers, strings, booleans and None will have their usual string representation used in the test ID. For other objects, pytest will make a string based on the argument name. It is possible to customise the string used in a test ID for a certain fixture value by using the ``ids`` keyword argument:: # content of test_ids.py import pytest @pytest.fixture(params=[0, 1], ids=["spam", "ham"]) def a(request): return request.param def test_a(a): pass def idfn(fixture_value): if fixture_value == 0: return "eggs" else: return None @pytest.fixture(params=[0, 1], ids=idfn) def b(request): return request.param def test_b(b): pass The above shows how ``ids`` can be either a list of strings to use or a function which will be called with the fixture value and then has to return a string to use. In the latter case if the function return ``None`` then pytest's auto-generated ID will be used. Running the above tests results in the following test IDs being used:: $ pytest --collect-only =========================== test session starts ============================ platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y rootdir: $REGENDOC_TMPDIR, inifile: collected 10 items ======================= no tests ran in 0.12 seconds ======================= .. _`fixture-parametrize-marks`: Using marks with parametrized fixtures -------------------------------------- :func:`pytest.param` can be used to apply marks in values sets of parametrized fixtures in the same way that they can be used with :ref:`@pytest.mark.parametrize <@pytest.mark.parametrize>`. Example:: # content of test_fixture_marks.py import pytest @pytest.fixture(params=[0, 1, pytest.param(2, marks=pytest.mark.skip)]) def data_set(request): return request.param def test_data(data_set): pass Running this test will *skip* the invocation of ``data_set`` with value ``2``:: $ pytest test_fixture_marks.py -v =========================== test session starts ============================ platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_PREFIX/bin/python3.5 cachedir: .pytest_cache rootdir: $REGENDOC_TMPDIR, inifile: collecting ... collected 3 items test_fixture_marks.py::test_data[0] PASSED [ 33%] test_fixture_marks.py::test_data[1] PASSED [ 66%] test_fixture_marks.py::test_data[2] SKIPPED [100%] =================== 2 passed, 1 skipped in 0.12 seconds ==================== .. _`interdependent fixtures`: Modularity: using fixtures from a fixture function ---------------------------------------------------------- You can not only use fixtures in test functions but fixture functions can use other fixtures themselves. This contributes to a modular design of your fixtures and allows re-use of framework-specific fixtures across many projects. As a simple example, we can extend the previous example and instantiate an object ``app`` where we stick the already defined ``smtp`` resource into it:: # content of test_appsetup.py import pytest class App(object): def __init__(self, smtp): self.smtp = smtp @pytest.fixture(scope="module") def app(smtp): return App(smtp) def test_smtp_exists(app): assert app.smtp Here we declare an ``app`` fixture which receives the previously defined ``smtp`` fixture and instantiates an ``App`` object with it. Let's run it:: $ pytest -v test_appsetup.py =========================== test session starts ============================ platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_PREFIX/bin/python3.5 cachedir: .pytest_cache rootdir: $REGENDOC_TMPDIR, inifile: collecting ... collected 2 items test_appsetup.py::test_smtp_exists[smtp.gmail.com] PASSED [ 50%] test_appsetup.py::test_smtp_exists[mail.python.org] PASSED [100%] ========================= 2 passed in 0.12 seconds ========================= Due to the parametrization of ``smtp`` the test will run twice with two different ``App`` instances and respective smtp servers. There is no need for the ``app`` fixture to be aware of the ``smtp`` parametrization as pytest will fully analyse the fixture dependency graph. Note, that the ``app`` fixture has a scope of ``module`` and uses a module-scoped ``smtp`` fixture. The example would still work if ``smtp`` was cached on a ``session`` scope: it is fine for fixtures to use "broader" scoped fixtures but not the other way round: A session-scoped fixture could not use a module-scoped one in a meaningful way. .. _`automatic per-resource grouping`: Automatic grouping of tests by fixture instances ---------------------------------------------------------- .. regendoc: wipe pytest minimizes the number of active fixtures during test runs. If you have a parametrized fixture, then all the tests using it will first execute with one instance and then finalizers are called before the next fixture instance is created. Among other things, this eases testing of applications which create and use global state. The following example uses two parametrized fixture, one of which is scoped on a per-module basis, and all the functions perform ``print`` calls to show the setup/teardown flow:: # content of test_module.py import pytest @pytest.fixture(scope="module", params=["mod1", "mod2"]) def modarg(request): param = request.param print (" SETUP modarg %s" % param) yield param print (" TEARDOWN modarg %s" % param) @pytest.fixture(scope="function", params=[1,2]) def otherarg(request): param = request.param print (" SETUP otherarg %s" % param) yield param print (" TEARDOWN otherarg %s" % param) def test_0(otherarg): print (" RUN test0 with otherarg %s" % otherarg) def test_1(modarg): print (" RUN test1 with modarg %s" % modarg) def test_2(otherarg, modarg): print (" RUN test2 with otherarg %s and modarg %s" % (otherarg, modarg)) Let's run the tests in verbose mode and with looking at the print-output:: $ pytest -v -s test_module.py =========================== test session starts ============================ platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_PREFIX/bin/python3.5 cachedir: .pytest_cache rootdir: $REGENDOC_TMPDIR, inifile: collecting ... collected 8 items test_module.py::test_0[1] SETUP otherarg 1 RUN test0 with otherarg 1 PASSED TEARDOWN otherarg 1 test_module.py::test_0[2] SETUP otherarg 2 RUN test0 with otherarg 2 PASSED TEARDOWN otherarg 2 test_module.py::test_1[mod1] SETUP modarg mod1 RUN test1 with modarg mod1 PASSED test_module.py::test_2[mod1-1] SETUP otherarg 1 RUN test2 with otherarg 1 and modarg mod1 PASSED TEARDOWN otherarg 1 test_module.py::test_2[mod1-2] SETUP otherarg 2 RUN test2 with otherarg 2 and modarg mod1 PASSED TEARDOWN otherarg 2 test_module.py::test_1[mod2] TEARDOWN modarg mod1 SETUP modarg mod2 RUN test1 with modarg mod2 PASSED test_module.py::test_2[mod2-1] SETUP otherarg 1 RUN test2 with otherarg 1 and modarg mod2 PASSED TEARDOWN otherarg 1 test_module.py::test_2[mod2-2] SETUP otherarg 2 RUN test2 with otherarg 2 and modarg mod2 PASSED TEARDOWN otherarg 2 TEARDOWN modarg mod2 ========================= 8 passed in 0.12 seconds ========================= You can see that the parametrized module-scoped ``modarg`` resource caused an ordering of test execution that lead to the fewest possible "active" resources. The finalizer for the ``mod1`` parametrized resource was executed before the ``mod2`` resource was setup. In particular notice that test_0 is completely independent and finishes first. Then test_1 is executed with ``mod1``, then test_2 with ``mod1``, then test_1 with ``mod2`` and finally test_2 with ``mod2``. The ``otherarg`` parametrized resource (having function scope) was set up before and teared down after every test that used it. .. _`usefixtures`: Using fixtures from classes, modules or projects ---------------------------------------------------------------------- .. regendoc:wipe Sometimes test functions do not directly need access to a fixture object. For example, tests may require to operate with an empty directory as the current working directory but otherwise do not care for the concrete directory. Here is how you can use the standard `tempfile `_ and pytest fixtures to achieve it. We separate the creation of the fixture into a conftest.py file:: # content of conftest.py import pytest import tempfile import os @pytest.fixture() def cleandir(): newpath = tempfile.mkdtemp() os.chdir(newpath) and declare its use in a test module via a ``usefixtures`` marker:: # content of test_setenv.py import os import pytest @pytest.mark.usefixtures("cleandir") class TestDirectoryInit(object): def test_cwd_starts_empty(self): assert os.listdir(os.getcwd()) == [] with open("myfile", "w") as f: f.write("hello") def test_cwd_again_starts_empty(self): assert os.listdir(os.getcwd()) == [] Due to the ``usefixtures`` marker, the ``cleandir`` fixture will be required for the execution of each test method, just as if you specified a "cleandir" function argument to each of them. Let's run it to verify our fixture is activated and the tests pass:: $ pytest -q .. [100%] 2 passed in 0.12 seconds You can specify multiple fixtures like this: .. code-block:: python @pytest.mark.usefixtures("cleandir", "anotherfixture") def test(): ... and you may specify fixture usage at the test module level, using a generic feature of the mark mechanism: .. code-block:: python pytestmark = pytest.mark.usefixtures("cleandir") Note that the assigned variable *must* be called ``pytestmark``, assigning e.g. ``foomark`` will not activate the fixtures. Lastly you can put fixtures required by all tests in your project into an ini-file: .. code-block:: ini # content of pytest.ini [pytest] usefixtures = cleandir .. _`autouse`: .. _`autouse fixtures`: Autouse fixtures (xUnit setup on steroids) ---------------------------------------------------------------------- .. regendoc:wipe Occasionally, you may want to have fixtures get invoked automatically without declaring a function argument explicitly or a `usefixtures`_ decorator. As a practical example, suppose we have a database fixture which has a begin/rollback/commit architecture and we want to automatically surround each test method by a transaction and a rollback. Here is a dummy self-contained implementation of this idea:: # content of test_db_transact.py import pytest class DB(object): def __init__(self): self.intransaction = [] def begin(self, name): self.intransaction.append(name) def rollback(self): self.intransaction.pop() @pytest.fixture(scope="module") def db(): return DB() class TestClass(object): @pytest.fixture(autouse=True) def transact(self, request, db): db.begin(request.function.__name__) yield db.rollback() def test_method1(self, db): assert db.intransaction == ["test_method1"] def test_method2(self, db): assert db.intransaction == ["test_method2"] The class-level ``transact`` fixture is marked with *autouse=true* which implies that all test methods in the class will use this fixture without a need to state it in the test function signature or with a class-level ``usefixtures`` decorator. If we run it, we get two passing tests:: $ pytest -q .. [100%] 2 passed in 0.12 seconds Here is how autouse fixtures work in other scopes: - autouse fixtures obey the ``scope=`` keyword-argument: if an autouse fixture has ``scope='session'`` it will only be run once, no matter where it is defined. ``scope='class'`` means it will be run once per class, etc. - if an autouse fixture is defined in a test module, all its test functions automatically use it. - if an autouse fixture is defined in a conftest.py file then all tests in all test modules below its directory will invoke the fixture. - lastly, and **please use that with care**: if you define an autouse fixture in a plugin, it will be invoked for all tests in all projects where the plugin is installed. This can be useful if a fixture only anyway works in the presence of certain settings e. g. in the ini-file. Such a global fixture should always quickly determine if it should do any work and avoid otherwise expensive imports or computation. Note that the above ``transact`` fixture may very well be a fixture that you want to make available in your project without having it generally active. The canonical way to do that is to put the transact definition into a conftest.py file **without** using ``autouse``:: # content of conftest.py @pytest.fixture def transact(request, db): db.begin() yield db.rollback() and then e.g. have a TestClass using it by declaring the need:: @pytest.mark.usefixtures("transact") class TestClass(object): def test_method1(self): ... All test methods in this TestClass will use the transaction fixture while other test classes or functions in the module will not use it unless they also add a ``transact`` reference. Overriding fixtures on various levels ------------------------------------- In relatively large test suite, you most likely need to ``override`` a ``global`` or ``root`` fixture with a ``locally`` defined one, keeping the test code readable and maintainable. Override a fixture on a folder (conftest) level ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Given the tests file structure is: :: tests/ __init__.py conftest.py # content of tests/conftest.py import pytest @pytest.fixture def username(): return 'username' test_something.py # content of tests/test_something.py def test_username(username): assert username == 'username' subfolder/ __init__.py conftest.py # content of tests/subfolder/conftest.py import pytest @pytest.fixture def username(username): return 'overridden-' + username test_something.py # content of tests/subfolder/test_something.py def test_username(username): assert username == 'overridden-username' As you can see, a fixture with the same name can be overridden for certain test folder level. Note that the ``base`` or ``super`` fixture can be accessed from the ``overriding`` fixture easily - used in the example above. Override a fixture on a test module level ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Given the tests file structure is: :: tests/ __init__.py conftest.py # content of tests/conftest.py @pytest.fixture def username(): return 'username' test_something.py # content of tests/test_something.py import pytest @pytest.fixture def username(username): return 'overridden-' + username def test_username(username): assert username == 'overridden-username' test_something_else.py # content of tests/test_something_else.py import pytest @pytest.fixture def username(username): return 'overridden-else-' + username def test_username(username): assert username == 'overridden-else-username' In the example above, a fixture with the same name can be overridden for certain test module. Override a fixture with direct test parametrization ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Given the tests file structure is: :: tests/ __init__.py conftest.py # content of tests/conftest.py import pytest @pytest.fixture def username(): return 'username' @pytest.fixture def other_username(username): return 'other-' + username test_something.py # content of tests/test_something.py import pytest @pytest.mark.parametrize('username', ['directly-overridden-username']) def test_username(username): assert username == 'directly-overridden-username' @pytest.mark.parametrize('username', ['directly-overridden-username-other']) def test_username_other(other_username): assert other_username == 'other-directly-overridden-username-other' In the example above, a fixture value is overridden by the test parameter value. Note that the value of the fixture can be overridden this way even if the test doesn't use it directly (doesn't mention it in the function prototype). Override a parametrized fixture with non-parametrized one and vice versa ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Given the tests file structure is: :: tests/ __init__.py conftest.py # content of tests/conftest.py import pytest @pytest.fixture(params=['one', 'two', 'three']) def parametrized_username(request): return request.param @pytest.fixture def non_parametrized_username(request): return 'username' test_something.py # content of tests/test_something.py import pytest @pytest.fixture def parametrized_username(): return 'overridden-username' @pytest.fixture(params=['one', 'two', 'three']) def non_parametrized_username(request): return request.param def test_username(parametrized_username): assert parametrized_username == 'overridden-username' def test_parametrized_username(non_parametrized_username): assert non_parametrized_username in ['one', 'two', 'three'] test_something_else.py # content of tests/test_something_else.py def test_username(parametrized_username): assert parametrized_username in ['one', 'two', 'three'] def test_username(non_parametrized_username): assert non_parametrized_username == 'username' In the example above, a parametrized fixture is overridden with a non-parametrized version, and a non-parametrized fixture is overridden with a parametrized version for certain test module. The same applies for the test folder level obviously.