% Generated by roxygen2: do not edit by hand % Please edit documentation in R/mlsl.R \name{mlsl} \alias{mlsl} \title{Multi-level Single-linkage} \usage{ mlsl(x0, fn, gr = NULL, lower, upper, local.method = "LBFGS", low.discrepancy = TRUE, nl.info = FALSE, control = list(), ...) } \arguments{ \item{x0}{initial point for searching the optimum.} \item{fn}{objective function that is to be minimized.} \item{gr}{gradient of function \code{fn}; will be calculated numerically if not specified.} \item{lower, upper}{lower and upper bound constraints.} \item{local.method}{only \code{BFGS} for the moment.} \item{low.discrepancy}{logical; shall a low discrepancy variation be used.} \item{nl.info}{logical; shall the original NLopt info been shown.} \item{control}{list of options, see \code{nl.opts} for help.} \item{...}{additional arguments passed to the function.} } \value{ List with components: \item{par}{the optimal solution found so far.} \item{value}{the function value corresponding to \code{par}.} \item{iter}{number of (outer) iterations, see \code{maxeval}.} \item{convergence}{integer code indicating successful completion (> 0) or a possible error number (< 0).} \item{message}{character string produced by NLopt and giving additional information.} } \description{ The ``Multi-Level Single-Linkage'' (MLSL) algorithm for global optimization searches by a sequence of local optimizations from random starting points. A modification of MLSL is included using a low-discrepancy sequence (LDS) instead of pseudorandom numbers. } \details{ MLSL is a `multistart' algorithm: it works by doing a sequence of local optimizations (using some other local optimization algorithm) from random or low-discrepancy starting points. MLSL is distinguished, however by a `clustering' heuristic that helps it to avoid repeated searches of the same local optima, and has some theoretical guarantees of finding all local optima in a finite number of local minimizations. The local-search portion of MLSL can use any of the other algorithms in NLopt, and in particular can use either gradient-based or derivative-free algorithms. For this wrapper only gradient-based \code{L-BFGS} is available as local method. } \note{ If you don't set a stopping tolerance for your local-optimization algorithm, MLSL defaults to \code{ftol_rel=1e-15} and \code{xtol_rel=1e-7} for the local searches. } \examples{ ### Minimize the Hartmann6 function hartmann6 <- function(x) { n <- length(x) a <- c(1.0, 1.2, 3.0, 3.2) A <- matrix(c(10.0, 0.05, 3.0, 17.0, 3.0, 10.0, 3.5, 8.0, 17.0, 17.0, 1.7, 0.05, 3.5, 0.1, 10.0, 10.0, 1.7, 8.0, 17.0, 0.1, 8.0, 14.0, 8.0, 14.0), nrow=4, ncol=6) B <- matrix(c(.1312,.2329,.2348,.4047, .1696,.4135,.1451,.8828, .5569,.8307,.3522,.8732, .0124,.3736,.2883,.5743, .8283,.1004,.3047,.1091, .5886,.9991,.6650,.0381), nrow=4, ncol=6) fun <- 0.0 for (i in 1:4) { fun <- fun - a[i] * exp(-sum(A[i,]*(x-B[i,])^2)) } return(fun) } S <- mlsl(x0 = rep(0, 6), hartmann6, lower = rep(0,6), upper = rep(1,6), nl.info = TRUE, control=list(xtol_rel=1e-8, maxeval=1000)) ## Number of Iterations....: 1000 ## Termination conditions: ## stopval: -Inf, xtol_rel: 1e-08, maxeval: 1000, ftol_rel: 0, ftol_abs: 0 ## Number of inequality constraints: 0 ## Number of equality constraints: 0 ## Current value of objective function: -3.32236801141552 ## Current value of controls: ## 0.2016895 0.1500107 0.476874 0.2753324 0.3116516 0.6573005 } \references{ A. H. G. Rinnooy Kan and G. T. Timmer, ``Stochastic global optimization methods'' Mathematical Programming, vol. 39, p. 27-78 (1987). Sergei Kucherenko and Yury Sytsko, ``Application of deterministic low-discrepancy sequences in global optimization,'' Computational Optimization and Applications, vol. 30, p. 297-318 (2005). } \seealso{ \code{\link{direct}} } \author{ Hans W. Borchers }