/* Copyright (C) 2014 Fredrik Johansson This file is part of Arb. Arb is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License (LGPL) as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. See . */ #include "acb_poly.h" static void bound_I(arb_ptr I, const arb_t A, const arb_t B, const arb_t C, slong len, slong wp) { slong k; arb_t D, Dk, L, T, Bm1; arb_init(D); arb_init(Dk); arb_init(Bm1); arb_init(T); arb_init(L); arb_sub_ui(Bm1, B, 1, wp); arb_one(L); /* T = 1 / (A^Bm1 * Bm1) */ arb_inv(T, A, wp); arb_pow(T, T, Bm1, wp); arb_div(T, T, Bm1, wp); if (len > 1) { arb_log(D, A, wp); arb_add(D, D, C, wp); arb_mul(D, D, Bm1, wp); arb_set(Dk, D); } for (k = 0; k < len; k++) { if (k > 0) { arb_mul_ui(L, L, k, wp); arb_add(L, L, Dk, wp); arb_mul(Dk, Dk, D, wp); } arb_mul(I + k, L, T, wp); arb_div(T, T, Bm1, wp); } arb_clear(D); arb_clear(Dk); arb_clear(Bm1); arb_clear(T); arb_clear(L); } /* 0.5*(B/AN)^2 + |B|/AN */ static void bound_C(arb_t C, const arb_t AN, const arb_t B, slong wp) { arb_t t; arb_init(t); arb_abs(t, B); arb_div(t, t, AN, wp); arb_mul_2exp_si(C, t, -1); arb_add_ui(C, C, 1, wp); arb_mul(C, C, t, wp); arb_clear(t); } static void bound_K(arb_t C, const arb_t AN, const arb_t B, const arb_t T, slong wp) { if (arb_is_zero(B) || arb_is_zero(T)) { arb_one(C); } else { arb_div(C, B, AN, wp); /* TODO: atan is dumb, should also bound by pi/2 */ arb_atan(C, C, wp); arb_mul(C, C, T, wp); if (arb_is_nonpositive(C)) arb_one(C); else arb_exp(C, C, wp); } } static void bound_rfac(arb_ptr F, const acb_t s, ulong n, slong len, slong wp) { if (len == 1) { acb_rising_ui_get_mag(arb_radref(F), s, n); arf_set_mag(arb_midref(F), arb_radref(F)); mag_zero(arb_radref(F + 0)); } else { arb_struct sx[2]; arb_init(sx + 0); arb_init(sx + 1); acb_abs(sx + 0, s, wp); arb_one(sx + 1); _arb_vec_zero(F, len); _arb_poly_rising_ui_series(F, sx, 2, n, len, wp); arb_clear(sx + 0); arb_clear(sx + 1); } } void _acb_poly_zeta_em_bound(arb_ptr bound, const acb_t s, const acb_t a, ulong N, ulong M, slong len, slong wp) { arb_t K, C, AN, S2M; arb_ptr F, R; slong k; arb_srcptr alpha = acb_realref(a); arb_srcptr beta = acb_imagref(a); arb_srcptr sigma = acb_realref(s); arb_srcptr tau = acb_imagref(s); arb_init(AN); arb_init(S2M); /* require alpha + N > 1, sigma + 2M > 1 */ arb_add_ui(AN, alpha, N - 1, wp); arb_add_ui(S2M, sigma, 2*M - 1, wp); if (!arb_is_positive(AN) || !arb_is_positive(S2M) || N < 1 || M < 1) { arb_clear(AN); arb_clear(S2M); for (k = 0; k < len; k++) arb_pos_inf(bound + k); return; } /* alpha + N, sigma + 2M */ arb_add_ui(AN, AN, 1, wp); arb_add_ui(S2M, S2M, 1, wp); R = _arb_vec_init(len); F = _arb_vec_init(len); arb_init(K); arb_init(C); /* bound for power integral */ bound_C(C, AN, beta, wp); bound_K(K, AN, beta, tau, wp); bound_I(R, AN, S2M, C, len, wp); for (k = 0; k < len; k++) { arb_mul(R + k, R + k, K, wp); arb_div_ui(K, K, k + 1, wp); } /* bound for rising factorial */ bound_rfac(F, s, 2*M, len, wp); /* product (TODO: only need upper bound; write a function for this) */ _arb_poly_mullow(bound, F, len, R, len, len, wp); /* bound for bernoulli polynomials, 4 / (2pi)^(2M) */ arb_const_pi(C, wp); arb_mul_2exp_si(C, C, 1); arb_pow_ui(C, C, 2 * M, wp); arb_ui_div(C, 4, C, wp); _arb_vec_scalar_mul(bound, bound, len, C, wp); arb_clear(K); arb_clear(C); arb_clear(AN); arb_clear(S2M); _arb_vec_clear(R, len); _arb_vec_clear(F, len); } void _acb_poly_zeta_em_bound1(mag_t bound, const acb_t s, const acb_t a, slong N, slong M, slong len, slong wp) { arb_ptr vec = _arb_vec_init(len); _acb_poly_zeta_em_bound(vec, s, a, N, M, len, wp); _arb_vec_get_mag(bound, vec, len); _arb_vec_clear(vec, len); }