*> \brief \b ZLAQZ3
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLAQZ3 + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZLAQZ3( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NSHIFTS,
* $ NBLOCK_DESIRED, ALPHA, BETA, A, LDA, B, LDB, Q, LDQ, Z, LDZ,
* $ QC, LDQC, ZC, LDZC, WORK, LWORK, INFO )
* IMPLICIT NONE
*
* Function arguments
* LOGICAL, INTENT( IN ) :: ILSCHUR, ILQ, ILZ
* INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK,
* $ NSHIFTS, NBLOCK_DESIRED, LDQC, LDZC
*
* COMPLEX*16, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ,
* $ * ), Z( LDZ, * ), QC( LDQC, * ), ZC( LDZC, * ), WORK( * ),
* $ ALPHA( * ), BETA( * )
*
* INTEGER, INTENT( OUT ) :: INFO
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZLAQZ3 Executes a single multishift QZ sweep
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] ILSCHUR
*> \verbatim
*> ILSCHUR is LOGICAL
*> Determines whether or not to update the full Schur form
*> \endverbatim
*>
*> \param[in] ILQ
*> \verbatim
*> ILQ is LOGICAL
*> Determines whether or not to update the matrix Q
*> \endverbatim
*>
*> \param[in] ILZ
*> \verbatim
*> ILZ is LOGICAL
*> Determines whether or not to update the matrix Z
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrices A, B, Q, and Z. N >= 0.
*> \endverbatim
*>
*> \param[in] ILO
*> \verbatim
*> ILO is INTEGER
*> \endverbatim
*>
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
*> \endverbatim
*>
*> \param[in] NSHIFTS
*> \verbatim
*> NSHIFTS is INTEGER
*> The desired number of shifts to use
*> \endverbatim
*>
*> \param[in] NBLOCK_DESIRED
*> \verbatim
*> NBLOCK_DESIRED is INTEGER
*> The desired size of the computational windows
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is COMPLEX*16 array. SR contains
*> the alpha parts of the shifts to use.
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*> BETA is COMPLEX*16 array. SS contains
*> the scale of the shifts to use.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA, N)
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max( 1, N ).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (LDB, N)
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max( 1, N ).
*> \endverbatim
*>
*> \param[in,out] Q
*> \verbatim
*> Q is COMPLEX*16 array, dimension (LDQ, N)
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*> LDQ is INTEGER
*> \endverbatim
*>
*> \param[in,out] Z
*> \verbatim
*> Z is COMPLEX*16 array, dimension (LDZ, N)
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*> LDZ is INTEGER
*> \endverbatim
*>
*> \param[in,out] QC
*> \verbatim
*> QC is COMPLEX*16 array, dimension (LDQC, NBLOCK_DESIRED)
*> \endverbatim
*>
*> \param[in] LDQC
*> \verbatim
*> LDQC is INTEGER
*> \endverbatim
*>
*> \param[in,out] ZC
*> \verbatim
*> ZC is COMPLEX*16 array, dimension (LDZC, NBLOCK_DESIRED)
*> \endverbatim
*>
*> \param[in] LDZC
*> \verbatim
*> LDZ is INTEGER
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
*> On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK. LWORK >= max(1,N).
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Thijs Steel, KU Leuven
*
*> \date May 2020
*
*> \ingroup complex16GEcomputational
*>
* =====================================================================
SUBROUTINE ZLAQZ3( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NSHIFTS,
$ NBLOCK_DESIRED, ALPHA, BETA, A, LDA, B, LDB,
$ Q, LDQ, Z, LDZ, QC, LDQC, ZC, LDZC, WORK,
$ LWORK, INFO )
IMPLICIT NONE
* Function arguments
LOGICAL, INTENT( IN ) :: ILSCHUR, ILQ, ILZ
INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK,
$ NSHIFTS, NBLOCK_DESIRED, LDQC, LDZC
COMPLEX*16, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ,
$ * ), Z( LDZ, * ), QC( LDQC, * ), ZC( LDZC, * ), WORK( * ),
$ ALPHA( * ), BETA( * )
INTEGER, INTENT( OUT ) :: INFO
* Parameters
COMPLEX*16 CZERO, CONE
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), CONE = ( 1.0D+0,
$ 0.0D+0 ) )
DOUBLE PRECISION :: ZERO, ONE, HALF
PARAMETER( ZERO = 0.0D0, ONE = 1.0D0, HALF = 0.5D0 )
* Local scalars
INTEGER :: I, J, NS, ISTARTM, ISTOPM, SHEIGHT, SWIDTH, K, NP,
$ ISTARTB, ISTOPB, ISHIFT, NBLOCK, NPOS
DOUBLE PRECISION :: SAFMIN, SAFMAX, C, SCALE
COMPLEX*16 :: TEMP, TEMP2, TEMP3, S
* External Functions
EXTERNAL :: XERBLA, DLABAD, ZLASET, ZLARTG, ZROT, ZLAQZ1, ZGEMM,
$ ZLACPY
DOUBLE PRECISION, EXTERNAL :: DLAMCH
INFO = 0
IF ( NBLOCK_DESIRED .LT. NSHIFTS+1 ) THEN
INFO = -8
END IF
IF ( LWORK .EQ.-1 ) THEN
* workspace query, quick return
WORK( 1 ) = N*NBLOCK_DESIRED
RETURN
ELSE IF ( LWORK .LT. N*NBLOCK_DESIRED ) THEN
INFO = -25
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZLAQZ3', -INFO )
RETURN
END IF
*
* Executable statements
*
* Get machine constants
SAFMIN = DLAMCH( 'SAFE MINIMUM' )
SAFMAX = ONE/SAFMIN
CALL DLABAD( SAFMIN, SAFMAX )
IF ( ILO .GE. IHI ) THEN
RETURN
END IF
IF ( ILSCHUR ) THEN
ISTARTM = 1
ISTOPM = N
ELSE
ISTARTM = ILO
ISTOPM = IHI
END IF
NS = NSHIFTS
NPOS = MAX( NBLOCK_DESIRED-NS, 1 )
* The following block introduces the shifts and chases
* them down one by one just enough to make space for
* the other shifts. The near-the-diagonal block is
* of size (ns+1) x ns.
CALL ZLASET( 'FULL', NS+1, NS+1, CZERO, CONE, QC, LDQC )
CALL ZLASET( 'FULL', NS, NS, CZERO, CONE, ZC, LDZC )
DO I = 1, NS
* Introduce the shift
SCALE = SQRT( ABS( ALPHA( I ) ) ) * SQRT( ABS( BETA( I ) ) )
IF( SCALE .GE. SAFMIN .AND. SCALE .LE. SAFMAX ) THEN
ALPHA( I ) = ALPHA( I )/SCALE
BETA( I ) = BETA( I )/SCALE
END IF
TEMP2 = BETA( I )*A( ILO, ILO )-ALPHA( I )*B( ILO, ILO )
TEMP3 = BETA( I )*A( ILO+1, ILO )
IF ( ABS( TEMP2 ) .GT. SAFMAX .OR.
$ ABS( TEMP3 ) .GT. SAFMAX ) THEN
TEMP2 = CONE
TEMP3 = CZERO
END IF
CALL ZLARTG( TEMP2, TEMP3, C, S, TEMP )
CALL ZROT( NS, A( ILO, ILO ), LDA, A( ILO+1, ILO ), LDA, C,
$ S )
CALL ZROT( NS, B( ILO, ILO ), LDB, B( ILO+1, ILO ), LDB, C,
$ S )
CALL ZROT( NS+1, QC( 1, 1 ), 1, QC( 1, 2 ), 1, C,
$ DCONJG( S ) )
* Chase the shift down
DO J = 1, NS-I
CALL ZLAQZ1( .TRUE., .TRUE., J, 1, NS, IHI-ILO+1, A( ILO,
$ ILO ), LDA, B( ILO, ILO ), LDB, NS+1, 1, QC,
$ LDQC, NS, 1, ZC, LDZC )
END DO
END DO
* Update the rest of the pencil
* Update A(ilo:ilo+ns,ilo+ns:istopm) and B(ilo:ilo+ns,ilo+ns:istopm)
* from the left with Qc(1:ns+1,1:ns+1)'
SHEIGHT = NS+1
SWIDTH = ISTOPM-( ILO+NS )+1
IF ( SWIDTH > 0 ) THEN
CALL ZGEMM( 'C', 'N', SHEIGHT, SWIDTH, SHEIGHT, CONE, QC, LDQC,
$ A( ILO, ILO+NS ), LDA, CZERO, WORK, SHEIGHT )
CALL ZLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, A( ILO,
$ ILO+NS ), LDA )
CALL ZGEMM( 'C', 'N', SHEIGHT, SWIDTH, SHEIGHT, CONE, QC, LDQC,
$ B( ILO, ILO+NS ), LDB, CZERO, WORK, SHEIGHT )
CALL ZLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, B( ILO,
$ ILO+NS ), LDB )
END IF
IF ( ILQ ) THEN
CALL ZGEMM( 'N', 'N', N, SHEIGHT, SHEIGHT, CONE, Q( 1, ILO ),
$ LDQ, QC, LDQC, CZERO, WORK, N )
CALL ZLACPY( 'ALL', N, SHEIGHT, WORK, N, Q( 1, ILO ), LDQ )
END IF
* Update A(istartm:ilo-1,ilo:ilo+ns-1) and B(istartm:ilo-1,ilo:ilo+ns-1)
* from the right with Zc(1:ns,1:ns)
SHEIGHT = ILO-1-ISTARTM+1
SWIDTH = NS
IF ( SHEIGHT > 0 ) THEN
CALL ZGEMM( 'N', 'N', SHEIGHT, SWIDTH, SWIDTH, CONE,
$ A( ISTARTM, ILO ), LDA, ZC, LDZC, CZERO, WORK,
$ SHEIGHT )
CALL ZLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, A( ISTARTM,
$ ILO ), LDA )
CALL ZGEMM( 'N', 'N', SHEIGHT, SWIDTH, SWIDTH, CONE,
$ B( ISTARTM, ILO ), LDB, ZC, LDZC, CZERO, WORK,
$ SHEIGHT )
CALL ZLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, B( ISTARTM,
$ ILO ), LDB )
END IF
IF ( ILZ ) THEN
CALL ZGEMM( 'N', 'N', N, SWIDTH, SWIDTH, CONE, Z( 1, ILO ),
$ LDZ, ZC, LDZC, CZERO, WORK, N )
CALL ZLACPY( 'ALL', N, SWIDTH, WORK, N, Z( 1, ILO ), LDZ )
END IF
* The following block chases the shifts down to the bottom
* right block. If possible, a shift is moved down npos
* positions at a time
K = ILO
DO WHILE ( K < IHI-NS )
NP = MIN( IHI-NS-K, NPOS )
* Size of the near-the-diagonal block
NBLOCK = NS+NP
* istartb points to the first row we will be updating
ISTARTB = K+1
* istopb points to the last column we will be updating
ISTOPB = K+NBLOCK-1
CALL ZLASET( 'FULL', NS+NP, NS+NP, CZERO, CONE, QC, LDQC )
CALL ZLASET( 'FULL', NS+NP, NS+NP, CZERO, CONE, ZC, LDZC )
* Near the diagonal shift chase
DO I = NS-1, 0, -1
DO J = 0, NP-1
* Move down the block with index k+i+j, updating
* the (ns+np x ns+np) block:
* (k:k+ns+np,k:k+ns+np-1)
CALL ZLAQZ1( .TRUE., .TRUE., K+I+J, ISTARTB, ISTOPB, IHI,
$ A, LDA, B, LDB, NBLOCK, K+1, QC, LDQC,
$ NBLOCK, K, ZC, LDZC )
END DO
END DO
* Update rest of the pencil
* Update A(k+1:k+ns+np, k+ns+np:istopm) and
* B(k+1:k+ns+np, k+ns+np:istopm)
* from the left with Qc(1:ns+np,1:ns+np)'
SHEIGHT = NS+NP
SWIDTH = ISTOPM-( K+NS+NP )+1
IF ( SWIDTH > 0 ) THEN
CALL ZGEMM( 'C', 'N', SHEIGHT, SWIDTH, SHEIGHT, CONE, QC,
$ LDQC, A( K+1, K+NS+NP ), LDA, CZERO, WORK,
$ SHEIGHT )
CALL ZLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, A( K+1,
$ K+NS+NP ), LDA )
CALL ZGEMM( 'C', 'N', SHEIGHT, SWIDTH, SHEIGHT, CONE, QC,
$ LDQC, B( K+1, K+NS+NP ), LDB, CZERO, WORK,
$ SHEIGHT )
CALL ZLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, B( K+1,
$ K+NS+NP ), LDB )
END IF
IF ( ILQ ) THEN
CALL ZGEMM( 'N', 'N', N, NBLOCK, NBLOCK, CONE, Q( 1, K+1 ),
$ LDQ, QC, LDQC, CZERO, WORK, N )
CALL ZLACPY( 'ALL', N, NBLOCK, WORK, N, Q( 1, K+1 ), LDQ )
END IF
* Update A(istartm:k,k:k+ns+npos-1) and B(istartm:k,k:k+ns+npos-1)
* from the right with Zc(1:ns+np,1:ns+np)
SHEIGHT = K-ISTARTM+1
SWIDTH = NBLOCK
IF ( SHEIGHT > 0 ) THEN
CALL ZGEMM( 'N', 'N', SHEIGHT, SWIDTH, SWIDTH, CONE,
$ A( ISTARTM, K ), LDA, ZC, LDZC, CZERO, WORK,
$ SHEIGHT )
CALL ZLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT,
$ A( ISTARTM, K ), LDA )
CALL ZGEMM( 'N', 'N', SHEIGHT, SWIDTH, SWIDTH, CONE,
$ B( ISTARTM, K ), LDB, ZC, LDZC, CZERO, WORK,
$ SHEIGHT )
CALL ZLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT,
$ B( ISTARTM, K ), LDB )
END IF
IF ( ILZ ) THEN
CALL ZGEMM( 'N', 'N', N, NBLOCK, NBLOCK, CONE, Z( 1, K ),
$ LDZ, ZC, LDZC, CZERO, WORK, N )
CALL ZLACPY( 'ALL', N, NBLOCK, WORK, N, Z( 1, K ), LDZ )
END IF
K = K+NP
END DO
* The following block removes the shifts from the bottom right corner
* one by one. Updates are initially applied to A(ihi-ns+1:ihi,ihi-ns:ihi).
CALL ZLASET( 'FULL', NS, NS, CZERO, CONE, QC, LDQC )
CALL ZLASET( 'FULL', NS+1, NS+1, CZERO, CONE, ZC, LDZC )
* istartb points to the first row we will be updating
ISTARTB = IHI-NS+1
* istopb points to the last column we will be updating
ISTOPB = IHI
DO I = 1, NS
* Chase the shift down to the bottom right corner
DO ISHIFT = IHI-I, IHI-1
CALL ZLAQZ1( .TRUE., .TRUE., ISHIFT, ISTARTB, ISTOPB, IHI,
$ A, LDA, B, LDB, NS, IHI-NS+1, QC, LDQC, NS+1,
$ IHI-NS, ZC, LDZC )
END DO
END DO
* Update rest of the pencil
* Update A(ihi-ns+1:ihi, ihi+1:istopm)
* from the left with Qc(1:ns,1:ns)'
SHEIGHT = NS
SWIDTH = ISTOPM-( IHI+1 )+1
IF ( SWIDTH > 0 ) THEN
CALL ZGEMM( 'C', 'N', SHEIGHT, SWIDTH, SHEIGHT, CONE, QC, LDQC,
$ A( IHI-NS+1, IHI+1 ), LDA, CZERO, WORK, SHEIGHT )
CALL ZLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT,
$ A( IHI-NS+1, IHI+1 ), LDA )
CALL ZGEMM( 'C', 'N', SHEIGHT, SWIDTH, SHEIGHT, CONE, QC, LDQC,
$ B( IHI-NS+1, IHI+1 ), LDB, CZERO, WORK, SHEIGHT )
CALL ZLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT,
$ B( IHI-NS+1, IHI+1 ), LDB )
END IF
IF ( ILQ ) THEN
CALL ZGEMM( 'N', 'N', N, NS, NS, CONE, Q( 1, IHI-NS+1 ), LDQ,
$ QC, LDQC, CZERO, WORK, N )
CALL ZLACPY( 'ALL', N, NS, WORK, N, Q( 1, IHI-NS+1 ), LDQ )
END IF
* Update A(istartm:ihi-ns,ihi-ns:ihi)
* from the right with Zc(1:ns+1,1:ns+1)
SHEIGHT = IHI-NS-ISTARTM+1
SWIDTH = NS+1
IF ( SHEIGHT > 0 ) THEN
CALL ZGEMM( 'N', 'N', SHEIGHT, SWIDTH, SWIDTH, CONE,
$ A( ISTARTM, IHI-NS ), LDA, ZC, LDZC, CZERO, WORK,
$ SHEIGHT )
CALL ZLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, A( ISTARTM,
$ IHI-NS ), LDA )
CALL ZGEMM( 'N', 'N', SHEIGHT, SWIDTH, SWIDTH, CONE,
$ B( ISTARTM, IHI-NS ), LDB, ZC, LDZC, CZERO, WORK,
$ SHEIGHT )
CALL ZLACPY( 'ALL', SHEIGHT, SWIDTH, WORK, SHEIGHT, B( ISTARTM,
$ IHI-NS ), LDB )
END IF
IF ( ILZ ) THEN
CALL ZGEMM( 'N', 'N', N, NS+1, NS+1, CONE, Z( 1, IHI-NS ), LDZ,
$ ZC, LDZC, CZERO, WORK, N )
CALL ZLACPY( 'ALL', N, NS+1, WORK, N, Z( 1, IHI-NS ), LDZ )
END IF
END SUBROUTINE