%feature("docstring") OT::MaximumDistribution "Maximum distribution. Available constructors: MaximumDistribution(*distribution*) MaximumDistribution(*collection*) MaximumDistribution(*distribution, size*) Parameters ---------- distribution : :class:`~openturns.Distribution` The underlying distribution. collection : sequence of :class:`~openturns.Distribution` A collection of pdfs. size : int Number of instances of distribution. Notes ----- The maximum distribution of F is the distribution of :math:`X = max(X_1, ... , X_n)` where :math:`(X_1, ... , X_n) \sim F` .. math:: \Prob{X\leq x}=\Prob{X_1\leq x,\dots,X_n\leq x} This simplifies to :math:`\Prob{X\leq x}=\prod_{i=1}^n F_i(x)` when :math:`X_1,\dots,X_n` are independent (second constructor) and finally it simplifies into :math:`F^n(x)` when the random variables are iid (third constructor). Examples -------- Create a distribution: >>> import openturns as ot >>> coll = [ot.Uniform(2.5, 3.5), ot.LogUniform(1.0, 1.2), ot.Triangular(2.0, 3.0, 4.0)] >>> distribution = ot.MaximumDistribution(coll) Draw a sample: >>> sample = distribution.getSample(5)" // --------------------------------------------------------------------- %feature("docstring") OT::MaximumDistribution::getDistribution "Accessor to the underlying distribution. Returns ------- distribution : :class:`~openturns.Distribution` The underlying distribution." // --------------------------------------------------------------------- %feature("docstring") OT::MaximumDistribution::setDistribution "Accessor to the underlying distribution. Parameters ---------- distribution : :class:`~openturns.Distribution` The underlying distribution." // ---------------------------------------------------------------------