%feature("docstring") OT::P1LagrangeEvaluation "Data based math evaluation implementation. Available constructors: P1LagrangeEvaluation(*field*) Parameters ---------- field : :class:`~openturns.Field` Field :math:`\cF` defining the parameters of a P1 Lagrange interpolation function. See also -------- Function, AggregatedEvaluation, DualLinearCombinationEvaluation, LinearFunction Notes ----- It returns a :class:`~openturns.Function` that implements the P1 Lagrange interpolation function :math:`f : \cD_N \rightarrow \Rset^p` : .. math:: \forall \vect{x} \in \Rset^n, f(\vect{x}) = \sum_{\vect{\xi}_i\in\cV(\vect{x})}\alpha_i f(\vect{\xi}_i) where :math:`\cD_N` is a :class:`~openturns.Mesh`, :math:`\cV(\vect{x})` is the simplex in :math:`\cD_N` that contains :math:`\vect{x}`, :math:`\alpha_i` are the barycentric coordinates of :math:`\vect{x}` wrt the vertices :math:`\vect{\xi}_i` of :math:`\cV(\vect{x})`: .. math:: \vect{x}=\sum_{\vect{\xi}_i\in\cV(\vect{x})}\alpha_i\vect{\xi}_i Examples -------- Create a P1 Lagrange evaluation: >>> import openturns as ot >>> field = ot.Field(ot.RegularGrid(0.0, 1.0, 4), [[0.5], [1.5], [1.0], [-0.5]]) >>> evaluation = ot.P1LagrangeEvaluation(field) >>> print(evaluation([2.3])) [0.55]" // --------------------------------------------------------------------- %feature("docstring") OT::P1LagrangeEvaluation::getField "Accessor to the field defining the functions. Returns ------- field : :class:`~openturns.Field` The field defining the function." // --------------------------------------------------------------------- %feature("docstring") OT::P1LagrangeEvaluation::setField "Accessor to the field defining the functions. Parameters ---------- field : :class:`~openturns.Field` The field defining the function."