# Copyright 2010 Hakan Kjellerstrand hakank@gmail.com # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Seseman Convent problem in Google CP Solver. n is the length of a border There are (n-2)^2 "holes", i.e. there are n^2 - (n-2)^2 variables to find out. The simplest problem, n = 3 (n x n matrix) which is represented by the following matrix: a b c d e f g h Where the following constraints must hold: a + b + c = border_sum a + d + f = border_sum c + e + h = border_sum f + g + h = border_sum a + b + c + d + e + f = total_sum Compare with the following models: * Tailor/Essence': http://hakank.org/tailor/seseman.eprime * MiniZinc: http://hakank.org/minizinc/seseman.mzn * SICStus: http://hakank.org/sicstus/seseman.pl * Zinc: http://hakank.org/minizinc/seseman.zinc * Choco: http://hakank.org/choco/Seseman.java * Comet: http://hakank.org/comet/seseman.co * ECLiPSe: http://hakank.org/eclipse/seseman.ecl * Gecode: http://hakank.org/gecode/seseman.cpp * Gecode/R: http://hakank.org/gecode_r/seseman.rb * JaCoP: http://hakank.org/JaCoP/Seseman.java This version use a better way of looping through all solutions. This model was created by Hakan Kjellerstrand (hakank@gmail.com) Also see my other Google CP Solver models: http://www.hakank.org/google_or_tools/ """ from ortools.constraint_solver import pywrapcp def main(unused_argv): # Create the solver. solver = pywrapcp.Solver("Seseman Convent problem") # data n = 3 border_sum = n * n # declare variables total_sum = solver.IntVar(1, n * n * n * n, "total_sum") # x[0..n-1,0..n-1] x = {} for i in range(n): for j in range(n): x[(i, j)] = solver.IntVar(0, n * n, "x %i %i" % (i, j)) # # constraints # # zero all middle cells for i in range(1, n - 1): for j in range(1, n - 1): solver.Add(x[(i, j)] == 0) # all borders must be >= 1 for i in range(n): for j in range(n): if i == 0 or j == 0 or i == n - 1 or j == n - 1: solver.Add(x[(i, j)] >= 1) # sum the borders (border_sum) solver.Add(solver.Sum([x[(i, 0)] for i in range(n)]) == border_sum) solver.Add(solver.Sum([x[(i, n - 1)] for i in range(n)]) == border_sum) solver.Add(solver.Sum([x[(0, i)] for i in range(n)]) == border_sum) solver.Add(solver.Sum([x[(n - 1, i)] for i in range(n)]) == border_sum) # total solver.Add( solver.Sum([x[(i, j)] for i in range(n) for j in range(n)]) == total_sum) # # solution and search # solution = solver.Assignment() solution.Add([x[(i, j)] for i in range(n) for j in range(n)]) solution.Add(total_sum) db = solver.Phase([x[(i, j)] for i in range(n) for j in range(n)], solver.CHOOSE_PATH, solver.ASSIGN_MIN_VALUE) solver.NewSearch(db) num_solutions = 0 while solver.NextSolution(): num_solutions += 1 print("total_sum:", total_sum.Value()) for i in range(n): for j in range(n): print(x[(i, j)].Value(), end=" ") print() print() print("num_solutions:", num_solutions) print("failures:", solver.Failures()) print("branches:", solver.Branches()) print("WallTime:", solver.WallTime()) if __name__ == "__main__": main("cp sample")