/*++ Copyright (c) 2012 Microsoft Corporation Module Name: nlsat_justification.h Abstract: An explanation for a (Boolean) assignment in the nlsat procedure Author: Leonardo de Moura (leonardo) 2012-01-10. Revision History: --*/ #pragma once #include "nlsat/nlsat_types.h" #include "util/tptr.h" namespace nlsat { // There are two kinds of justifications in nlsat: // // - clause // // - lazy_justification: it is a set of arithmetic literals s.t. // the maximal variable in each literal is the same. // The set is inconsistent in the current model. // Thus, our nonlinear procedure may be applied to it // to produce a clause. // class lazy_justification { unsigned m_num_literals; unsigned m_num_clauses; char m_data[0]; nlsat::clause* const* clauses() const { return (nlsat::clause *const*)(m_data); } public: static unsigned get_obj_size(unsigned nl, unsigned nc) { return sizeof(lazy_justification) + sizeof(literal)*nl + sizeof(nlsat::clause*)*nc; } lazy_justification(unsigned nl, literal const * lits, unsigned nc, nlsat::clause * const* clss): m_num_literals(nl), m_num_clauses(nc) { if (nc > 0) { memcpy(m_data + 0, clss, sizeof(nlsat::clause*)*nc); } if (nl > 0) { memcpy(m_data + sizeof(nlsat::clause*)*nc, lits, sizeof(literal)*nl); } } unsigned num_lits() const { return m_num_literals; } literal lit(unsigned i) const { SASSERT(i < num_lits()); return lits()[i]; } literal const * lits() const { return (literal const*)(m_data + m_num_clauses*sizeof(nlsat::clause*)); } unsigned num_clauses() const { return m_num_clauses; } nlsat::clause const& clause(unsigned i) const { SASSERT(i < num_clauses()); return *(clauses()[i]); } }; class justification { void * m_data; public: enum kind { NULL_JST = 0, DECISION, CLAUSE, LAZY }; justification():m_data(TAG(void *, nullptr, NULL_JST)) { SASSERT(is_null()); } justification(bool):m_data(TAG(void *, nullptr, DECISION)) { SASSERT(is_decision()); } justification(clause * c):m_data(TAG(void *, c, CLAUSE)) { SASSERT(is_clause()); } justification(lazy_justification * j):m_data(TAG(void *, j, LAZY)) { SASSERT(is_lazy()); } kind get_kind() const { return static_cast(GET_TAG(m_data)); } bool is_null() const { return get_kind() == NULL_JST; } bool is_decision() const { return get_kind() == DECISION; } bool is_clause() const { return get_kind() == CLAUSE; } bool is_lazy() const { return get_kind() == LAZY; } clause * get_clause() const { return UNTAG(clause*, m_data); } lazy_justification * get_lazy() const { return UNTAG(lazy_justification*, m_data); } bool operator==(justification other) const { return m_data == other.m_data; } bool operator!=(justification other) const { return m_data != other.m_data; } }; inline std::ostream& operator<<(std::ostream& out, justification::kind k) { switch (k) { case justification::NULL_JST: return out << "null"; case justification::DECISION: return out << "decision"; case justification::CLAUSE: return out << "clause"; case justification::LAZY: return out << "lazy"; default: return out << "??"; } } const justification null_justification; const justification decided_justification(true); inline justification mk_clause_jst(clause const * c) { return justification(const_cast(c)); } inline justification mk_lazy_jst(small_object_allocator & a, unsigned nl, literal const * lits, unsigned nc, clause *const* clauses) { void * mem = a.allocate(lazy_justification::get_obj_size(nl, nc)); return justification(new (mem) lazy_justification(nl, lits, nc, clauses)); } inline void del_jst(small_object_allocator & a, justification jst) { if (jst.is_lazy()) { lazy_justification * ptr = jst.get_lazy(); unsigned obj_sz = lazy_justification::get_obj_size(ptr->num_lits(), ptr->num_clauses()); a.deallocate(obj_sz, ptr); } } };